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[bookmark: _Toc65830955]Supplemental Methods
[bookmark: _Toc63253735][bookmark: _Toc65830956]Plasmids and oligonucleotides
Expression plasmids for the Cas effectors and their respective gRNAs were obtained through Addgene (Addgene #41815, 47108, 78742, 78744). For SpCas9, the guide RNA scaffold region was modified as previously described to increase efficiency (Chen et al. 2013). To create the sgRNA plasmid, oligonucleotides containing the target sequences were obtained from IDT, hybridized, phosphorylated and cloned in the appropriate plasmids using BbsI or BsmBI sites. Information on the guide RNAs used in this study can be found in Supplemental Table S1. Gibson assembly was used to create the donor plasmid. Gibson DNA fragments for the homology arms were generated in two steps. First the region was amplified by PCR using A549 genomic DNA with AccuPrime Taq DNA Polymerase (Thermo Fisher Scientific) followed by SPRI bead purification (Beckman Coulter). A subsequent PCR was performed to add necessary overhangs between fragments. The fragment containing the 3xFLAG epitope and PuroR expression cassette were synthesized as GeneBlocks (IDT) and were amplified by PCR. Information on the primers used for amplification can be found in Supplemental Table S2. Gibson assembly Master Mix (NEB) was used to perform the ligation reaction per manufacturer protocol. Ligations were transformed into DH5alpha bacterial cells and colonies were used to inoculate cultures. Plasmids was purified using the MiniPrep Kit (Qiagen), sequence confirmed by Sanger sequencing, and stored for future use.



[bookmark: _Toc65830957]Cell culture
A single seed culture of human A549 cells was obtained from Duke University Cell Culture Facility (obtained ultimately from ATCC) and expanded under standard culture conditions using Ham's F-12K (Kaighn's) Medium, 10% FBS, 1% penicillin-streptomycin at 37 °C with 5% CO2. Cells were received at passage 83, seeded, passed three more times, then viably frozen in 55 aliquots of 10 × 106 cells at passage 87. 

[bookmark: _Toc65830958]Generation of ChIP-seq Libraries
1x107 cell aliquots were seeded in a square 500 cm2 dish and cultured for four days with a media change on the second day. Cells were then split into five 500 cm2 plates on day four, split into a total of 20 x 500 cm2 square plates on day seven, and harvested on day ten after a designated time of dexamethasone (dex) exposure. All culturing was performed with 100 mL of growth media per plate. Cells reached confluence approximately two days after the final passaging step. At that point, cells were treated with 100 nM dex for 0, 1, 4, 8, or 12 hrs. Dex was added in a staggered manner so that all time points were harvested at the same time. Cells were treated with dex by tilting plates to the side and diluting 5 mM dex into the gathered media to a final concentration of 100 nM. The plates were then tilted side-to-side and front-to-back five times each to disperse the dex evenly throughout the media. For ChIP-seq, three plates were treated for each time point.
Before harvesting for ChIP-seq, cells from one untreated plate were used to obtain a cell count, which we required to be approximately 60 × 106. For each batch of ChIP-seq assays, we harvested cells from 15 x 500 cm2 square plates. To harvest, cells were crosslinked for 10 min at room temperature with 1% formaldehyde in media. The reaction was quenched for 5 min at room temperature in 0.125 M glycine. After quenching, media was removed and cells were washed once with 100 mL of 1X PBS at 4°C. Cells were then lysed in 15 mL of Farnham lysis buffer (5 mM PIPES pH 8, 85 mM KCl, 0.5% NP-40) with added protease inhibitor (Sigma-Aldrich product #11836153001 and 11836145001) added to the plate and tilted side-to-side. Cells were manually scraped from the plate and pipetted into 50 mL conical tubes, then pelleted by centrifugation at 2,000 rpm for 5 min at 4°C. The supernatant was removed and the pelleted cells were frozen on dry ice and stored at -80°C for downstream processing.
Cells were sheared in aliquots of 20 × 106 cells in 300 μL of 4°C RIPA buffer (1X PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) with added protease inhibitor on the Biorupter Twin for 45 min on high setting using 30 seconds ON / 30 seconds OFF. After shearing, the cells were centrifuged at 14,000 rpm for 15 min at 4°C. Supernatant from time points harvested from the same plate were collected and combined, and 15 μL of supernatant was reserved to serve as a shearing size check and input control. The remaining sheared chromatin was split into 10 × 106 cell aliquots in 300 μL RIPA, snap frozen, and stored at -80°C. Next, 45 μL of RIPA buffer was added to the size check and split into two 30 μL aliquots. 
ChIP was performed as described previously (Reddy et al. 2009) Reverse cross-linked ChIP'ed DNA was cleaned using the Qiagen PCR Purification kit. Post-IP concentration was determined using Invitrogen's Qubit dsDNA High Sensitivity and Broad Range assay kit. Sequencing libraries were prepared using 7 ng input of ChIP'ed DNA and the Kapa Biosystems Hyper Prep kit for Illumina sequencing. Samples were barcoded with Illumina TruSeq indexes and normalized to 10 nM after library preparation. Final libraries were pooled—twelve libraries per pool for TFs and six libraries per pool for histone modifications—and run on a HiSeq 4000 to generate 50 bp single-end reads.

[bookmark: _Toc65830959]Sequencing data processing pipelines and quality control
Sequencing data processing pipelines are freely available online at https://github.com/Duke-GCB/GGR-cwl. Raw sequencing reads were processed with assay-specific pipelines. For ChIP-seq and RNA-seq, overrepresented, contaminating sequences were discovered using FastQC (v.0.11.3;Andrews 2010). Contaminants and low-quality bases were trimmed using Trimmomatic (v.0.32; Bolger et al. 2014), with arguments: adapters_and_contaminants.fa:2:30:15 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:15. For ChIP-seq, all libraries were required to have a PCR bottleneck coefficient (PBC) of at least 0.5 and at least two replicates per time point were required to have a relative strand cross-correlation (RSC) of at least 0.8 (The ENCODE Project Consortium 2012). Additional samples were filtered based on low correlation across samples. Briefly, we merged called peaks from each sample into a union peak set using BEDTools (v.2.25.0; Quinlan and Hall 2010) merge utility to merge book-ended or overlapped peaks, quantified counts from each library within the union peak set, correlated counts across libraries, and hierarchically clustered samples with complete linkage and 1 minus the Pearson correlation coefficient as the distance metric. Samples were manually filtered by visual inspection. After sample filtering, all time points were required to have at least 2 replicates. 

[bookmark: _Toc65830960]Western blot
Cells were lysed in 50 mM Tris-Cl (pH 7.4), 150 mM NaCl, 0.5% Triton X-100, and 0.1% SDS. Lysates were mixed with loading buffer, boiled for 5 min, and equal volumes of protein were run in NuPAGE® Novex 4-12% or 10% Bis-Tris Gel polyacrylamide gels and transferred to nitrocellulose membranes. Non-specific antibody binding was blocked with 50 mM Tris/150 mM NaCl/0.1% Tween-20 (TBS-T) with 5% nonfat milk for 1 hr. The membranes were incubated with primary antibodies (Anti-Flag Sigma-Aldrich, F1804) in 5% BSA in TBS-T diluted 1:1000 overnight at 4º C; anti-GAPDH (Cell Signaling Technology, clone 14C10) in 5% milk in TBS-T diluted 1:5000 for 30 min at room temperature. The membranes were washed 3 times with TBS-T for 10 min each. Membranes labeled with primary antibodies were incubated for 1 hr with anti-rabbit HRP-conjugated antibody (Sigma-Aldrich, 12-348) diluted 1:5000 for 30 min, or anti-mouse diluted 1:5000 (Sigma-Aldrich, A9917) and washed with TBS-T for 30 min. Membranes were visualized using the Immun-Star WesternC™ Chemiluminescence Kit (Bio-Rad) and images were captured using a ChemiDoc™ XRS+ System and processed using ImageLab software (Bio-Rad).

[bookmark: _Toc65830961]Analysis of sequence dependent features
Genomic regions of different AP-1 binding modes were centered on the AP-1 motif, as  defined by the JASPAR database (Mathelier et al. 2014). For a given nucleotide sequence, four DNA shape features (minor groove width, Roll, propeller twist and helix twist) were predicted using DNAshapeR (Chiu et al. 2016). The sitepro plots of DNA shape were plotted within 100 bp window from the motif. The phastCon scores (Siepel et al. 2005) for multiple alignment of 100 vertebrate genomes to human genome were obtained through the UCSC Genome Browser. Conservation scores of each sequence centered on the AP-1 motif were plotted. To reduce confounding, we repeatedly compared scores from a subset of sequences that matched in GC-content. This process generated a total of 100 bootstrap replicates of each region and average/standard error of scores at a given genomic position were plotted. 

[bookmark: _Toc65830962]ChIP-seq analysis for different AP-1 binding modes
Sequencing reads from FLAG tagged AP-1 ChIP-seq experiments were mapped to the GRCh38 assembly (GCA_000001405.15). Bowtie (v.0.12.9; (Langmead and Salzberg 2012)) was used for mapping. We excluded mapped reads that overlap with ENCODE blacklist regions (The ENCODE Project Consortium 2012). Peaks were called using MACS2 (MACS2 2.1.1.20160309;  (Zhang et al. 2008)) with parameters -f  BAM -g hs –nomodel -q 0.05 --extsize $(ext), where $(ext) is estimated by SPP (v.2.0; (Kharchenko et al. 2008)). We also used the same data processing pipeline of previous studies (Johnson et al. 2018; McDowell et al. 2018) to obtain sequence alignment map for STARR-seq and ChIP-seq for GR, CTCF, BCL, HES2, EP300, CEBPB, H3K27ac, H3K4me1, H3K4me2 and H3K9me3.  HOMER (v4.10, (Heinz et al. 2010)) was used to quantify ChIP-seq tag density for given genomic regions. 
To compare AP-1 binding activities at loci characterized by different AP-1 binding modes, we selected a subset of each AP-1 binding region that matched in chromatin accessibility and compared their averaged binding signals. This process created a total of 100 bootstrap replicates of each region and allowed us to reduce confounding that might arise when comparing ChIP signals. 

[bookmark: _Toc65830963]Enrichment analysis of GWAS SNPs
The SNPs curated in the GWAS Catalog  (Welter et al. 2014) were downloaded from the NHGRI-EBI catalog of published genome-wide association studies (https://www.ebi.ac.uk/gwas/). For downstream analysis, we only included SNPs that have been identified for a trait in at least in two independent studies. To compare the enrichment of GWAS SNPs, the same number of subsets of genomic sites marked by each AP-1 binding mode were randomly selected and then we computed the frequency of SNP presence per 100 kb in each class. The process was repeated 1000 times to build the distribution of SNP density. Gene Ontology(GO) and Disease Ontology (DO) enrichment P-values from binomial and hypergeometric test were computed for each AP-1 binding mode using GREAT (McLean et al. 2010).

Permutation analysis
Permutation analysis was performed on union AP-1 subunit binary binding matrix, Mij, where i and j represent a binding peak and AP-1 subunit factor, respectively. Mij is defined [image: A picture containing text

Description automatically generated]as follows: 
To conserve the same number of peaks in each and across chromosome during 10,000 permutations, we shuffled the matrix by each chromosome in each AP-1 subunit factor. From each permutation, the patterns of colocalized AP-1 subunits were obtained and, in doing so, the null distribution of AP-1 subunit colocalization was built. Z-score was computed from this null distribution.  

[bookmark: _Toc65830964]TF binding, gene expression and Hi-C data in A549
We used dex-responsive TF bindings (ChIP-seq), histone marks (ChIP-seq) and gene expression data (RAN-seq) from ENCODE DCC portal (http://www.encodeproject.org) (Supplemental Table S3). TEAD4 and SMAD3 ChIP-seq were downloaded from GSM10110868 and GSM1246721, respectively. Hi-C data for chromatin loops was downloaded from GSE92819, GSE92793, GSE92804, GSE92825, GSE92811 and the same data processing pipeline was used in that study. Centroids of chromatin contact coordinates from Hi-C were used as anchors for target genes linked to a genomic site displaying a certain AP-1 binding mode.

[bookmark: _Toc65830965]AP-1 bindings across different cellular context and organism 
We downloaded various ChIP-seq data for AP-1 subunits (JUN, JUNB, JUND, FOS, FOSL2 and ATF3) and other TFs (SPl1 and CEBP) from an external study (GEO accessions: GSE111856). Sequencing reads from C57BL/6J were mapped to the mm10 reference genome using the latest version of Bowtie 2 with default parameters (Langmead and Salzberg 2012). Genomic sites occupied by each AP-1 subunit were used to determine loci with distinct AP-1 binding modes using the same method used for determining distinct AP-1 subunit binding classes in our study. For all ChIP-seq data, HOMER was used to quantify tag density for given genomic sites. For DNA shape and sequence conservation analysis, we applied the same method used for analysis of sequence dependent feature in our study. 
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[bookmark: _Toc65830967]Supplemental Figure S1. 
Validating tagging efficiency at the DNA level of tagged AP-1 cell lines. (A) Schema describing the measurement of precise gene editing events. (B) Tagging efficiency for GR and AP-1 genes using SpCas9 or LbCas12a. Error bars represent s.e.m. for n=3. Guide RNA sequences and characteristics are described in Supplemental Table 1. (C) Protein alignments of FOS and JUN family members. Alignments were generated using Clustal Omega. Conserved residues are highlighted in yellow, a consensus sequence is shown in bold, and the degree of conservation at a particular residue is represented by the colored bar above the consensus sequence, red indicating a high degree of conservation. The domains of FOS and JUN that were used in a previously determined crystal structure of the dimerization interface (PDB: 1FOS) are annotated by black bars below the alignment.
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[bookmark: _Toc65830968]Supplemental Figure S2.
Expression profiles and dynamics of AP-1 subunits. Protein levels of AP-1 family members before and after a 1 hr 100 nM dexamethasone exposure, as measured by western blot. Subunits follow trends in Supplemental Fig. S3B and S5B.
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[bookmark: _Toc65830969]Supplemental Figure S3.
Pairwise comparisons of subunit binding activities measured by ChIP-seq from AP-1 tagged and untagged cell lines. (A) Bar plot shows the number of ChIP-seq peaks for each factor before and after dex exposure. (B) Absolute TPM in the expression of each subunit across a 12 hr time course of 100 nM dexamethasone (dex) treatment in A549 cells, measured by RNA-seq. (C) Pairwise scatter plots show the concordance of binding activities measured by ChIP-seq between AP-1 tagged and untagged A549 cell line.
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[bookmark: _Toc65830970]Supplemental Figure S4.
Distribution of genomic loci occupied by various AP-1 subunit. (A) The colocalization pattern of AP-1 subunit occupancy enriched from input DNA. Each subunit is represented by a different color scheme. The frequency of FOS and JUN family subunits at given loci was plotted in opposite directions with respect to the center line. (B) The Venn diagram shows overlaps across AP-1 subunits.
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[bookmark: _Toc65830971]Supplemental Figure S5.
Testing for the enrichment of AP-1 subunit colocalization by Permutation Test. (A) Heatmap showing z-scores for an observed binding pattern computed from permutation test where genomic loci for all AP-1 subunits were randomly shuffled across each chromosome. Different colors in each cell represent a z-score for a given colocalzation pattern at a given dexamethasone exposure time point. (B) Fold changes in the expression of each subunit across a 12 hr time course of 100 nM dexamethasone treatment in A549 cells, measured by RNA-seq. (C) Cumulative distribution of the distance to the nearest neighboring transcription start sites (TSS) for each AP-1 binding class. P-values were calculated using Wilcoxon rank-sum test. (***) P < 0.001. (D) The bar plot shows the proportion of genomic sites occupied by various AP-1 binding configurations. (E) The box plot shows the distribution of best AP-1 matching motif scores (FIMO) for all sites of each class. (F) The bar plot shows the dynamics of AP-1 hotspots over the time course of dex exposure.
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[bookmark: _Toc65830972]Supplemental Figure S6.
Heatmap showing ChIP-signal of five significant AP-1 subunits (JUNB, JUN, JUND, FOSL1, FOSL2) and control genomic regions for distinct AP-1 binding classes in RPKM (right). Aggregate profile plots showing ChIP-signal across sites for distinct AP-1 binding classes that matches in chromatin accessibility (left).
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[bookmark: _Toc65830973]Supplemental Figure S7.
TF binding signal for distinct AP-1 binding classes in A549 cell. Spatial distribution of TFs for distinct AP-1 binding classes: (A) TEA Domain Transcription Factor 4 (TEAD4), (B) Mothers against Decapentaplegic Homolog 3 (SMAD3). (C) The ChIP-seq signals of GR-induced TFs for AP-1 hotspots with or without CTCF at loop anchors. P-values were calculated using a two-sided Student’s t-test based on ChIP-seq signal intensity within 1 kb centered by each peak. (***) P < 0.001.
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[bookmark: _Toc65830974]Supplemental Figure S8.
Genomic and chromatin landscape of distinct AP-1 configurations in response to dex in A549. Spatial distribution of dex-responsive TFs and histone marks for distinct AP-1 binding classes: (A) CEBPB, (B) Hes Family BHLH Transcription Factor 2 (HES2) , (C) BCL3, (D) CTCF, (E) H3K27ac, (F) H3K4me1, (G) H3K4me2 and (H) H3K4me3. P-values were calculated using a two-sided Student’s t-test based on ChIP-seq signal intensity within 1kb centered by each peak. (***) P < 0.001.
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[bookmark: _Toc65830975]Supplemental Figure S9.
Gained AP-1 hotspots primarily drive gene activation. (A) GR binding activity measured by ChIP-seq (left) and enhancer activity measured by whole genome STARR-seq (right) for sites occupied by GR but not AP-1 (GR+/AP-1-) and gained AP-1 hotspots. (B) Temporal gene expression trajectory plot showing log2 fold change in gene expression mapped to the gains of AP-1 hotspots and GR+/AP-1- in response to 100 nM dex according to Hi-C coupled with chromatin accessibility (DNAse-seq) and active enhancer marker (H3K27ac). P-values were calculated using Wilcoxon rank-sum test based changes in log2 folds at 12hr. (***) P < 0.001. (C) Pie chart showing the percentage(%) of sites that lose AP-1 hotspots with (AP-1 hotspot lost /GR+) or without (AP-1 hotspot lost /GR-) GR binding after 5 minutes of dex treatment. (D) Spatial distribution of GR after 1 hour of dex treatment for sites that gain, lose and maintain AP-1 hotspots. P-values were calculated using a two-sided Student’s t-test based on ChIP-seq signal intensity within 1 kb centered by each peak. (***) P < 0.001; N.S. = P > 0.05.


[image: ]
[bookmark: _Toc65830976]Supplemental Figure S10.
Genomic and chromatin landscape of distinct AP-1 configurations in K562. Spatial distribution of TFs and cohesion subunits for distinct AP-1 binding classes: (A) EP300, (B) JUNB, (C) FOSL1, (D) SMC3, (E) RAD21 and (F) CTCF. P-values were calculated using a two-sided Student’s t-test based on ChIP-seq signal intensity within 1 kb centered by each peak. (***) P < 0.001.
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[bookmark: _Toc65830977]Supplemental Figure S11.
Relative de novo motif enrichment analysis. The heatmap shows the significance of motif enrichment (-log10 P-value) from relative de novo motif enrichment analysis using the cell-type shared regions as background for cell-type specific motif enrichment and vice versa.
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[bookmark: _Toc65830978]Supplemental Figure S12.
Genomic features of AP-1 hotspots in immortalized mouse macrophages. (A) Bar plot showing the proportion of genomic annotation for distinct AP-1 binding classes. (B) Cumulative distribution of distance to nearest neighboring transcription start sites (TSS) for each AP-1 binding class. P values were calculated using Wilcoxon rank-sum test. (***) P < 0.001; N.S. = P > 0.05. (C) Sitepro plot showing DNA shape information featured by propeller twist for each AP-1 binding class. P-values were calculated using a a two-sided Student’s t-test based on quantified DNA shape information within 200 bp window centered by the motif. (***) P < 0.001; N.S. = P > 0.05. (D) Sitepro plot showing sequence conservation defined by Phastcon60way scores for each AP-1 binding class. P-values were calculated using a two-sided Student’s t-test based on the Phastcon60way scores within 200 bp window centered by the motif. (***) P < 0.001; N.S. = P > 0.05.
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[bookmark: _Toc65830979]Supplemental Figure S13.
TF binding activities for distinct AP-1 binding classes in immortalized mouse macrophages. Spatial distribution of various TFs for distinct AP-1 binding classes: (A) ATF3, (B) JUNB, (C) JUND, (D) JUN, (E) FOS, (F) FOSL2, (G) SPI1 and (H) CEBPA. P-values were calculated using a two-sided Student’s t-test based on ChIP-seq signal intensity within 1 kb centered by each peak. (***) P < 0.001.
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	Guide RNAs used in this study (separate file).




[bookmark: _Toc65830982]Supplemental Table 2
Primers used in ths study (separate file).


[bookmark: _Toc65830983]Supplemental Table 3
ChIP-seq and RNA-seq in A549 cells (separate file).
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ChIP-seq in K562 cells (separate file).
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