

Supplementary Methods

Modeling expression ranks for noise-tolerant differential expression analysis of scRNA-seq data

Krishan Gupta¹, Manan Lalit², Aditya Biswas³, Chad D. Sanada⁴, Cassandra Greene⁴, Kyle Hukari⁴, Ujjwal Maulik⁵, Sanghamitra Bandyopadhyay⁶, Naveen Ramalingam⁴, Gaurav Ahuja⁷, Abhik Ghosh^{8*}, Debarka Sengupta^{1,7,9,10*}

¹ Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India, ² Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany, ³ Microsoft India Pvt. Ltd., Hyderabad, Telangana 500032, India, ⁴ Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, CA 94080, USA ⁵ Department of Computer Science, Jadavpur University, Kolkata, West Bengal 700032, India, ⁶ Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India, ⁷ Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi 110020, India, ⁸ Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India ⁹ Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, Delhi 110020, India, ¹⁰ Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.

*To whom correspondence should be addressed. Tel: +91 11 2690 7446; Email: debarka@iiitd.ac.in
Correspondence may also be addressed to Abhik Ghosh. Tel: +91 33 2575 2307; Email: abhik.ghosh@isical.ac.in

Derivation of the Fisher Information Matrix

Note that, for our DGBD model with likelihood function given by Eq (2) of the main paper, we have

$$\begin{aligned}\frac{\partial^2 \log L}{\partial a^2} &= \left(\sum_{r=1}^N y_r\right) \frac{\partial^2 \log(A)}{\partial a^2} \\ \frac{\partial^2 \log L}{\partial b^2} &= \left(\sum_{r=1}^N y_r\right) \frac{\partial^2 \log(A)}{\partial b^2} \\ \frac{\partial^2 \log L}{\partial a \partial b} &= \left(\sum_{r=1}^N y_r\right) \frac{\partial^2 \log(A)}{\partial a \partial b}\end{aligned}\tag{1}$$

So in order to evaluate the above mentioned double derivatives, the first order derivative $\frac{\partial \log A}{\partial a}$ and $\frac{\partial \log A}{\partial b}$ are determined as follows:

$$\begin{aligned}\log A &= -\log \left(\sum_{r=1}^N \frac{(N+1-r)^b}{r^a} \right) \\ \frac{\partial \log A}{\partial a} &= \frac{1}{\left(\sum_{r=1}^N \frac{(N+1-r)^b}{r^a} \right)} \times \sum_{r=1}^N \frac{(N+1-r)^b \log r}{r^a} \\ \frac{\partial \log A}{\partial b} &= \frac{-1}{\left(\sum_{r=1}^N \frac{(N+1-r)^b}{r^a} \right)} \times \sum_{r=1}^N \frac{(N+1-r)^b \log(N+1-r)}{r^a}\end{aligned}\tag{2}$$

Re-writing Equation 2 in a more succinct form in the Equation 3 below, we get

$$\frac{\partial \log A}{\partial a} = \frac{u_{1,0}}{u_{0,0}} \quad \text{and} \quad \frac{\partial \log A}{\partial b} = -\frac{u_{0,1}}{u_{0,0}}\tag{3}$$

where $u_{i,j}$ s are as defined in the main paper. Evaluating the partial derivatives of $u_{1,0}$, $u_{0,0}$ and $u_{0,1}$ with

respect to a and b , in the Equation 4:

$$\begin{aligned}
\frac{\partial u_{1,0}}{\partial a} &= -\sum_{r=1}^{r=N} \frac{(N+1-r)^b (\log r)^2}{r^a} \\
\frac{\partial u_{1,0}}{\partial b} &= \sum_{r=1}^{r=N} \frac{(N+1-r)^b [\log r] [\log(N+1-r)]}{r^a} \\
\frac{\partial u_{0,0}}{\partial a} &= -\sum_{r=1}^{r=N} \frac{(N+1-r)^b \log r}{r^a} \\
\frac{\partial u_{0,0}}{\partial b} &= \sum_{r=1}^{r=N} \frac{(N+1-r)^b \log(N+1-r)}{r^a} \\
\frac{\partial u_{0,1}}{\partial a} &= \sum_{r=1}^{r=N} \frac{(N+1-r)^b [\log r] [\log(N+1-r)]}{r^a} \\
\frac{\partial u_{0,1}}{\partial b} &= -\sum_{r=1}^{r=N} \frac{(N+1-r)^b [\log(N+1-r)]^2}{r^a}
\end{aligned} \tag{4}$$

In a compact form, these can be written more generally, for any $i, j = 0, 1$, as

$$\frac{\partial u_{i,j}}{\partial a} = -u_{i+1,j}, \quad \frac{\partial u_{i,j}}{\partial b} = u_{i,j+1}. \tag{5}$$

Substituting the above expressions in the formula for Fisher information matrix in Eq (3) of the main paper, we get its simplified form for computation within our ROSeq.