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Derivation of the Fisher Information Matrix

Note that, for our DGBD model with likelihood function given by Eq (2) of the main paper, we have
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So in order to evaluate the above mentioned double derivatives, the first order derivative ∂ log A
∂a and

∂ log A
∂b are determined as follows:
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Re-writing Equation 2 in a more succinct form in the Equation 3 below, we get
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where ui, js are as defined in the main paper. Evaluating the partial derivatives of u1,0, u0,0 and u0,1 with
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respect to a and b, in the Equation 4:
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In a compact form, these can be written more generally, for any i, j = 0,1, as
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Substituting the above expressions in the formula for Fisher information matrix in Eq (3) of the main

paper, we get its simplified form for computation within our ROSeq.
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