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Supplemental Note S1. Differential analysis between two groups of ChIP-seq
samples

Here we give a detailed description of the statistical model designed in MAnorm2 for
calling differential ChlP-seq signals between two groups of samples corresponding to
different biological conditions, provided that all related samples have been normalized

to be comparable with each other.

1.1 Model formulation and hypothesis testing

For j=1,2, suppose Xj- is an nXm; matrix recording normalized ChIP-seq

signal intensities (i.e., normalized log, read counts) at n genomic intervals for m;

samples belonging to condition ;. Let Xi’j be a column vector representing the
transpose of row i of X - We assume

Here MVN refers to the multivariate normal distribution; 44 ; and #; ; are two

unknown scalars that parametrize the mean signal intensity of interval i in condition

j and the associated signal variability, respectively; 1 is a column vector of ones;

S

i termed structure matrix, is an m ; Xm ; matrix designed for the convenience of

J J

incorporating existing tools for modeling the precision weights of signal measurements
from different samples as well as the correlations among them (Smyth 2004; Smyth et
al. 2005; Law et al. 2014). All structure matrices used in the study were simply identity
matrices. MAnorm2 next derives mean and variance estimates by applying the

generalized least squares method:
— -1
T o—1 T o—1
ﬂi,j:(l Si,jl) IS, jXij
(2)

(i) i) (-t
1

g _

In practice, m; are typically very small (most ChiP-seq data sets only have two or

three biological replicates for each experiment), which results in large uncertainty

associated with the 7; ; estimators and, thus, low statistical power for the following
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differential tests. To improve variance estimates for individual genomic intervals,
MAnorm2 borrows strength between intervals with similar signal levels and captures
the underlying mean-variance dependence by fitting a smooth mean-variance curve
(MVC). Specifically, it assumes the MVCs of the two groups of samples have the same
shape and differ from each other only by a scaling factor. Formally, MAnorm2 defines

2

Oi ;= l-’j/yj , where 7j , termed variance ratio factor, is a parameter that quantifies

the global variability of ChIP-seq signals across the samples of group ;. Naturally,

we have O'l~2 ti’j/yj . And the complete Bayesian model that uses mean-variance

g
trend as source of prior information is given by

Xl,j

2 2

1 1 _Z§O (3)
Gz%j / (“i,j) do

Overall, the above model is similar to limma (Smyth 2004) and an extension of it (Sartor

et al. 2006), except that MAnorm2 allows for different global within-group variability

between groups of samples. Here f() refers to an unscaled MVC common to the

two groups of samples and f(,ul-,j) is called the prior variance of interval i in

group J; ;(]2\/ refers to the chi-squared distribution with N degrees of freedom;

do, termed the number of prior degrees of freedom, is a hyper-parameter designed
for assessing how well in general the variance of an individual interval could be
predicted by its mean signal intensity. In practice, do amounts to the number of extra

ChlP-seq samples gained by sharing information between genomic intervals, and the

use of these “samples” typically contributes significantly to the estimation of variances

for individual intervals. Note also that MAnorm2 empirically determines dO based on

the data, which renders the method adaptive to the regularity of variance structure
associated with the specific data set (see the section below and also Supplemental
Note S2).

For the following differential tests, we further assume that the unscaled variances of

non-differential genomic intervals remain invariant across the two groups of samples.
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Formally, for each interval i thatsatisfies 141 = 4 5, we assume Gl%l equals sz
with a probability of one (i.e., they can be treated as the same random variable). This

assumption is consistent with the fact that 61%1 and 61-2’2 follow the same prior

distribution as long as 441 = 4; 5 . Finally, MAnorm2 tests the null hypothesis

Hy: 141 = 14 foreach interval i by using the following key statistic:

—_——

Tl _ Hip—Hil @)
n_,._n ~2
s s
where
Bt 52 )y oo 12 s (11
dof % +(m1—1)0',-2’1+(m2—1)0',-2,2
5—12 - (5)

do +mp+my — 2
According to the theoretical deduction presented in Smyth et al. (Smyth 2004), we

assert that 7; termed moderated t-statistic, follows a t-distribution under the null

hypothesis with (do +my +my —2) degrees of freedom, disregarding the
uncertainty associated with the mean estimate for determining prior variance (i.e.,
(,um + Ui )/2 )- Many existing methods derive the mean signal intensities for

determining prior variances (or dispersions, if the negative binomial distribution is used)
by taking the average signal intensities across individual samples (Sartor et al. 2006;
Love et al. 2014), which could lead to unbalanced statistical power for identifying up-
regulated signals for the two conditions, especially when the numbers of samples
belonging to the two conditions differ dramatically from each other. To alleviate this

effect, MAnorm2 chooses to take the average signal intensities across conditions,

which is especially helpful for balancing the statistical power when do is much larger

than both my and m,.

The resulting moderated t-statistics can be used to effectively rank genomic intervals
in order of statistical evidence of having differential signals between the two conditions.

MAnorm2 also gives the exact (two-sided) p-values by
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Pi =214 ym +m,~2 (_‘T;‘) (6)
where Ty () refers to the cumulative distribution function of the t-distribution with

N degrees of freedom.

1.2 Mean-variance curve fitting and parameter estimation

This section discusses the estimation of [, dy, y; and y,.

To fit the MVC in an unbiased manner, MAnorm2 calculates mean and variance
estimates separately within each group of samples and pools the resulting mean-
variance pairs into a regression process, which is different from many previous
methods that derive a single mean-variance pair for each individual genomic interval
(Sartor et al. 2006; Law et al. 2014; Love et al. 2014). To make variance estimates

comparable between the two groups of samples, we first deduce an estimate of

}/2/7/1 . Given the model formulation presented in the previous section, we have

l 2 /72 F
/7/ m2_1 m,~1 for each interval i that satisfies 141 = 14 o, where N,.N,
l 1/71

refers to the F-distribution with Ny and N, degrees of freedom. And we give an

estimator of y, / Y1 as

_ median:(t., /1,
72/7/1: 1 1(152/191)

sz—l,ml—l (1/2)

(7)

where F]G},Nz () denotes the inverse of the cumulative distribution function of the

indicated F-distribution. Here we use sample median instead of sample mean to
perform the estimation because the former is more robust to the influence of differential
intervals. To further improve the unbiasedness of the estimator, we use only the
genomic intervals that are occupied by both groups of samples to calculate the median
(see Methods in the main text for a detailed explanation of occupancy states of

genomic intervals).

MAnorm2 next pools the mean-variance pairs of the form (/ui,lsti,l) or

— t/-\
Mo, /’-2\ into a weighted gamma-family regression process, with (ml —1)

72/71
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and (m2 —1) as the weights of observations from group 1 and 2, respectively.

Note that, to enhance the regularity of the data on which the regression is performed,
MAnorm2 selects for each group of samples only the genomic intervals that are
occupied by it to calculate mean-variance pairs. Currently, we have devised two
candidate schemes for performing the regression. One of them uses a theoretically

derived parametric form to fit a generalized linear model (see the following section for

the specific form as well as the deduction of it). This method is most suited to data sets
with a highly regular variance structure, in which the mean-variance relationship could
be expected to be well profiled by the presumed formula (e.g., when the samples of
each group are biological replicates for the same experiment). The other method
adopts a local regression procedure implemented in the locfit package (Loader 1999).
This method allows for more general mean-variance relationships (Anders and Huber
2010). Whichever method is chosen, MAnorm2 iteratively fits an MVC and detects
outliers by using 1e-4 and 15 as lower and upper bounds of residuals (i.e., the ratios
of observed variances to fitted ones), respectively (Love et al. 2014). Outliers detected
in a round of iteration are removed from the fitting of MVC in the next round, and the
whole regression process finishes as soon as the set of outliers fixes.

In the rest of this section, we ignore the uncertainty associated with the estimate of

f, since it is typically fited on a great number of observations. The method for

estimating do is similar to the one used in limma (Smyth 2004), except that MAnorm2

integrates two estimation results that are respectively derived from the two groups of

. t -
. i,
14/1\ . Given /

samples. Formally, we define Zi j zlog
f(,ui,j) yif\ i

j ] ~ 1,

which can be deduced from equation (2) and (3), we assert that the marginal

distribution of z; : is a scaled Fisher’s z-distribution plus a constant (Aroian 1941),

L]
—_—

disregarding the uncertainty associated with b j - And we have
m; —1 d d

~ . J —wl 20 _“0

E[zijj]Nlog}/]+y/( 5 j (//(2)+10gmj "

VaI‘|:Zl-’j:| ~ y/’(mjz_ lj + y/(%)

where l//() and l//'(-) are the digamma and trigamma functions, respectively.
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MAnorm2 next uses these two moments to estimate »; and dy.
Noticing that Zjj from the same group of samples (approximately) have the same

expectation and variance, we give, using the data associated with each group ;, an

estimate of y'(dy/2) by

(9)

2
Zi(zi»J _zi'zi'»f'/”f) _l//(mj _1j
n.—1

j 2

Note that MAnorm2 only uses the genomic intervals that have been used for fitting
to estimate Vi and d. Therefore, each of the sum operators in equation (9) is
applied only to the intervals whose mean-variance pairs in group ; have been

. denotes the number of such intervals. 7 :

involved in the regression process, and n; j

varies with j, as MAnorm2 selects only occupied intervals from each group of
samples to fit f . The final estimate of d, is obtained by solving
V/{@J B Zj(”j _I)Dj

2 Z]‘(”] B 1)

whose right-hand side has a form similar to the pooled sample variance in a two-

(10)

sample t-test. Note that do is set to positive infinity if the right-hand side of equation

(10) is less than or equal to 0, since in such cases there is no evidence supporting the

variation of the underlying variance (i.e., Gi%j ) across genomic intervals with the same

—~

mean signal intensity. Note also that the marginal distribution of each tl-,j is a scaled

chi-squared distribution when do is positive infinity (as the number of denominator

degrees of freedom of an F-distribution approaches positive infinity, the F-distribution

converges to a scaled chi-squared distribution), which is consistent with the use of a

gamma-family regression procedure to fit f .

Finally, we derive for each group j an estimate of Y by
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P Z; m;—1 - i
yj=exp 2, Y iy [ R (1)

Again, the above sum operator is applied only to the genomic intervals whose mean-

variance pairs in group ;j have been used for fitting [ .

1.3 Deducing a parametric form for the mean-variance curve

MAnorm2 deduces an explicit formula for profiling mean-variance trend by assuming
a quadratic relationship between expectations and variances of read count variables,
which has been proposed by several previous studies (Robinson et al. 2010; Law et
al. 2014; Love et al. 2014). Formally, suppose Y is a random variable standing for a
read count and that it satisfies

var[Y]= BoE*[Y ]+ BE[Y] (12)

Of note, the whole framework designed in MAnorm2 is for analyzing continuous

measurements, which are typically obtained by applying a log. transformation to read

counts. We next deduce an approximate formula that connects the variance of log2 Y

with its expectation by using the delta method (Oehlert 1992). Formally, by defining

X =log, Y and investigating its one-order Taylor expansion at ¥ = E[Y] , we have
dX
X ~logy E[Y]+(Y —E[Y]) iy lr=g[y]- Itfollows that

E[X]~log, E[Y] (13)

. var[Y | 1
E[Y] (log2)’

var[ X | (14)

Finally, by substituting the right-hand side of equation (12) for Var[Y] in (14) and

using (13) to replace E[Y],we have

~E[X] 15)

var[ X |~ S + 32
B
(log2)

performing a gamma-family generalized linear regression with identity link.

where f/ = for i=0,1 . This form shall be used by MAnorm2 for

1.4 Statistical simulation
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We performed statistical simulation across various settings to verify the effectiveness
of the whole parameter estimation framework. In each simulation, data (i.e., normalized
ChlP-seq signal intensities) were generated based on the model assumption of
MAnorm2, and the occupancy states of genomic intervals were ignored (or equivalently,
each genomic interval was considered to be occupied by each group of samples).
Each simulation was about a comparison between two groups of samples, and the
data for each genomic interval were independently generated. Here, we give a formal

description of the process for generating data for a specific interval i (we keep using

the notations defined in 1.1). The point is to first determine £4 ; and ; ; for j=1,2.

Then, the data are generated by equation (1) (all structure matrices used in statistical

simulation were identity matrices). If interval i is non-differential, 4, j and f; ; are

determined by

Hil~ U(Alower’Auppe’”)

Hip = Hi
7]
ot f(my) do (16)
o7y =07
i1 = 7101'2,1
lip = 7201'2,2

where U(a,b) refers to the uniform distribution with @ and b as lower and upper

bounds, respectively. Otherwise, £ ; and {; ; are determined by

4, ~U (Alower ’ Aupper )

Ml-~N(o,a§4)

My =4 —M; /2

Hip =4 +M;[2 (a7)
1,

e S (my) do

1 |z

- 0

tin - vaf (1i2) do
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where N refers to the normal distribution.

For each simulation, we generated data for 30,000 genomic intervals, and the default

proportion of differential intervals was 10%. Default settings of the other parameters

were as follows:

These settings generally matched our observations from practical ChlP-seq data sets.
We used default parameter settings with modification of at most one parameter in
each simulation, and we inspected the distribution of p-values assigned to non-

differential intervals for an overall assessment of the parameter estimation framework:

Density

Density

Tu et al.
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0']%/_,=4
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Density
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0.2

0.0

0.2 04 0.6 0.8 1.0

0.0

Y2=31

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

P-values for non—differential intervals

Proportion of differential intervals: 30%

[ T T T T 1
0.0 0.2 04 06 0.8 1.0

P-values for non—differential intervals

(18)



These simulations involved cases with distinct global within-group variability between
groups of samples, unbalanced group sizes, or abundant differential intervals. It can

be seen that the p-value distribution associated with non-differential intervals is very
uniform on (0,1) across different parameter settings, which indicates the

effectiveness of the parameter estimation framework.
Complete R source code for performing the simulations and generating the
histograms can be found in Supplemental Code.
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Supplemental Note S2. Being adaptive to the regularity of variance structure

MAnorm2 introduces the notion of prior degrees of freedom in the modeling of mean-
variance trend, which is for achieving a wide applicability to data sets of various
characteristics. Here by characteristics of a data set we specifically refer to the
regularity of the associated variance structure, which we assess by quantifying the

variability of variance residual (from the regression of variance on mean signal intensity)

across different genomic intervals (i.e., the variability of Zj,j across different i for

some fixed ;; see Supplemental Note S1). For clarification, if this variability is low for

a data set, it is considered to be of high regularity. Note that MAnorm2 typically derives
large numbers of prior degrees of freedom for data sets of high regularity (see equation
(9) and (10) in Supplemental Note S1).

In practice, the regularity of variance structure as well as the number of prior degrees

of freedom derived by MAnorm2 (denoted by dO in the following) varies significantly

across data sets. This is because there are quite a few factors that could influence the
variability of ChlP-seq signals across samples (Steinhauser et al. 2016), including
technical noise, biological variation, batch effects, and so on. As more such factors are

involved in a data set, it becomes harder to predict the variances for individual genomic

intervals depending solely on their mean signal intensities, and the associated dO

decreases accordingly. For example, we have performed all pairwise comparisons of
H3K4me3 ChlIP-seq signals among four human lymphoblastoid cell lines (LCLs;
GM12890, GM12891, GM12892 and SNYDER) derived from different individuals of
the Caucasian population (Supplemental Fig. S2). In this analysis, each group of ChlIP-
seq samples belonging to the same biological condition was comprised of biological

replicates for an individual LCL, and the associated variance structure could be

expected to be highly regular. As a result, dO derived by MAnorm2 for these

comparisons ranged from 9.5 to 137.5 and had a median of 18.8. For contrast, we
have also made a between-sex comparison (of H3K4me3 levels) by classifying the
four LCLs into two males (GM12891 and SNYDER) and two females (GM12890 and
GM12892; Supplemental Fig. S1B, D). Note that, for this analysis, we created a
reference profile for each individual LCL by taking the average ChlP-seq signals across
its replicates (see Methods in the main text for details about reference profile).
Compared to the previous scenario, ChlP-seq profiles grouped together in this case
were additionally associated with epigenetic variation across human individuals

(Kasowski et al. 2013) and, thus, the associated variance structure should become
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less regular. Consistently, MAnorm2 derived a dO of 4.2.
MAnorm2 improves its adaptivity to the specific data set by empirically estimating

dy and using the estimation result to determine the relative contributions of observed

variances and prior ones to the final variance estimates for individual intervals (see
equation (5) in Supplemental Note S1). Based on the corresponding gene expression
data, we compared the performance of MAnorm2 with two variants of it in the above
two scenarios of differential ChlP-seq analysis. Note that we used the comparison
between GM12890 and SNYDER LCLs (2 vs. 2 biological replicates) as representative
of the first scenario, as this comparison was associated with the same group sizes as
the between-sex comparison (2 vs. 2 LCLs). The two variants of MAnorm2, referred to
as no-MVC and MVC-only respectively, adopt different strategies to derive final
variance estimates. Specifically, no-MVC and MVC-only directly use observed and
prior variances as final variance estimates, respectively, while MAnorm2 integrates the

two types of variances by taking a weighted average, with the weights depending on

the d(y estimated from the data (technically, no-MVC and MVC-only are equivalent to

always treating do as 0 and positive infinity, respectively). As described above, the

variance structure in the first scenario was of high regularity, and there was a low
variability of variance across genomic intervals with the same mean signal intensity
(Supplemental Fig. S1A). In this case, prior variances alone can serve as reliable
variance estimates for individual intervals. By contrast, the observed variances were
associated with large uncertainty due to the small numbers of biological replicates,

which resulted in a much worse performance of no-MVC compared to MVC-only

(Supplemental Fig. S1C). As for MAnorm2, it derived a dO of 14.6, which was more

than seven times the number of observed degrees of freedom (i.e., the number of free
signal measurements for calculating the observed variance of each interval, which
equals the total number of ChlP-seq samples minus the number of groups).
Consequently, the final variance estimates used by MAnorm2 were dominated by prior
variances, and MAnorm2 therefore exhibited virtually the same performance as MVC-

only. In comparison with the first scenario, the variance structure in the second one

was considerably less regular, and the d() derived by MAnorm2 was only 4.2

(Supplemental Fig. S1B), which was comparable to the number of observed degrees
of freedom. In this scenario, no-MVC continued to suffer from small group sizes, and

MVC-only completely ignored the high fluctuation of variance across intervals with the
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same mean signal intensity. As a result, both no-MVC and MVC-only were clearly
outperformed by MAnorm2 (Supplemental Fig. S1D). Together, these results
demonstrated the adaptivity of MAnorm2 and suggested a wide applicability of it.
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Supplemental Note S3. Integrating LOESS and robust linear regression into
hierarchical MA normalization
In principle, any regression process allowing extrapolation can be integrated into the
hierarchical MA normalization framework (see Methods in the main text). For this
integration, the original framework is largely retained, only that the underlying
technique for normalizing an individual sample or a reference profile against another
is changed, which is now achieved by designing abundance-dependent offsets to
remove M-A trend.

Suppose that X and Y are two vectors of log, read counts (we used an offset of
0.5 in the study) representing raw signal intensities of two ChIP-seq samples in a list

of genomic intervals. Let M and A values be defined by M =Y —-X and

|
A=E(X+Y), respectively. We now normalize Y against X by using an

arbitrary regression process to fit M-A trend. Specifically, we perform a regression by

using M and A as responses and predictor values, respectively, where

indicates the vectors are subsetted to common peak regions (i.e., the intervals
occupied by both samples). Let f() be the resulting (vectorized) regression function.

The normalization is accomplished by applying the following transformation:

Y =Y - f(4) (19)
For normalizing a reference profile against another, the offset vector (i.e., f(A))

derived for the former is equally applied to each individual sample of the corresponding
group.

In the study, we have separately used LOESS (local polynomial regression) and
robust linear regression to implement this normalization algorithm, and the resulting
two normalization methods were referred to as loess and rim-offset respectively
(Supplemental Fig. S15). We applied LOESS by using the loess function provided by
the R package stats, with control=loess.control (surface="direct") to
allow extrapolation (R Core Team 2018). For robust linear regression, we used the rim
function of the MASS package with default parameters (Venables and Ripley 2002).

We have also used another way to integrate robust linear regression into the

hierarchical MA normalization framework, which was referred to as rim-linear. For this

integration, f is still fitted as described above. Given the nature of linear regression,

f is determined by an intercept and a slope, and a connection between M and A
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values can therefore be established as
M ~ ﬂo + ﬂlA (20)

This connection can be expanded to

Y—X~ﬂ0+%(X+Y) (21)
which is then rearranged as
1+4/2  1+4/2

Finally, the linear transformation given by the right hand of equation (22) is applied to

Y tofinish the normalization. Again, for normalizing a reference profile against another,
the linear transformation derived for the former is equally applied to each individual

sample of the corresponding group.
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Supplemental Note S4. Simultaneously comparing multiple groups of ChiP-seq
samples

This note gives a formal description of the statistical model designed in MAnorm2 for
simultaneously comparing more than two groups of ChlP-seq samples corresponding

to different biological conditions. We keep using the notations defined in Supplemental

Note S1, except that the group index j now takes integers from 1 through C, where

C is the total number of groups to be compared. To be rigorous, we give a succinct
but still self-contained description of the related model formulation and hypothesis

testing.

For each genomic interval i in each group j, we assume

Xl,j

) 2
Gl',j ~ MVN(llul,j’Sl,] (7/]01’] ))

1 1z, (23)

o) ) Flag) do

We further assume that the unscaled variance of each non-differential genomic interval
remains invariant across groups. Formally, for each interval i that satisfies

Ml =Hip=...= l c , We assume Gzl 261%2 =...= I%C happens with a
probability of one (i.e., they can be treated as the same random variable). This

assumption is consistent with the fact that 01%1,652,...,05(; follow the same prior

distribution as long as 141 = 145 =...= ; ¢ . For later use, we derive expressions
of mean and variance estimators by applying the generalized least squares method:
—_— _1
T o—1 T o1
Hij = (1 Si,jl) IS, jXi,j
(24)

(i) i) (-t
1

g _

Methods detailed in Supplemental Note S1 for estimating f, do, and 7j can be

naturally extended with few modifications to cases involving more than two groups of

samples. Specifically, for fitting f, we select a group as baseline and derive an

estimate of 7/j/7/b for each j#b by using equation (7), where b refers to the

Tu et al. 18



fi-6 )

selected baseline group. Then, the mean-variance pairs having a form of (/ui,bati,b

or | 4 7,/,,1.]7 with j # b are pooled into a weighted gamma-family regression
j/7b

process, with (mj —1) as the weight of observations from group ;. For the

selection of baseline group, MAnorm2 utilizes an algorithm similar to the one for
selecting a baseline ChlP-seq sample to normalize a group of samples (see Methods

in the main text). Specifically, it first picks out the genomic intervals that are occupied
by all the C groups and uses their tj? to construct a matrix, whose rows and

columns correspond to the intervals and the groups, respectively. MAnorm2 then
applies the median-ratio strategy (Anders and Huber 2010) to the matrix and derives

the “size factor” of each group. Finally, the group whose log; size factor is closest to 0

is selected as baseline. After fitting f , the estimation of do and Vi is

accomplished by using equation (9), (10) and (11). The resulting estimates of f,

do, and y j are treated as non-stochastic in subsequent statistical tests, as they are

typically derived based on a great number of observations.

We next detail the procedure for testing the null hypothesis

Ho: 1= =...= 4 c for each interval i. As in the one-way analysis of

variance (ANOVA), we first fit the full model and calculate the corresponding residual

sum of squares (RSS):

C (m,-1)t,
RSS; = Zw (25)
j=1 Vj
We then fit a reduced model by assuming all the C biological conditions are

associated with the same mean signal intensity in interval i:

(26)

where ﬂl@) is intrinsically a weighted average of mean estimates from different

groups, with the weights being inversely proportional to their variances. And the
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associated RSS can be derived by

RSSI-(O) _ i (Xi’j B l’ul(O))T Slifl' (Xi’j B lluz@)

j=1 Vi

(27)

Before defining the final key statistic for testing the null hypothesis, we summarize

some facts regarding the distributions of associated random variables as follows.

Under the H|, we have M1 = My =...= l ¢ (denoted by 4 in the following)

and that 01%1,652,...,05(; refer to the same random variable (denoted by O'iz in
the following). Based on equation (23) and previous studies of one-way ANOVA, we

have (under the H))

LN 1 .Zc%o
Gl-z f(ﬂi) dy

RSS; o}

o2 1 (RSSZ-(O) - RSSi)

(28)
RSS,

2 2.2
Oi ~Oi "Xy .m~C

2 2 2
O; ~O; " XC-1

(RSSZ-(O) ~RSS, )

in which the second formula indicates that the two random variables are conditionally

(on O'iz) independent of each other. Equation (28) gives all the results that are

necessary for us to derive

(RSSI-(O) — RSS, ) /(C—l)
(RSS; +do f (1)) (X m; ~C+do

Finally, we define a moderated F-statistic for interval i as

) ~Fe1y m -+, (29)

. (RSSZ.(O) ~RSS, ) /(C—l)

i (RSSI- +d0f(zj/7i,\j/c))/(zjmj —C+do)

which approximately follows FC—lZ m —C+d, under the null hypothesis,
9 / J

(30)

considering the uncertainty of the mean estimate for deducing the prior variance of

interval i (i.e., Z];/JZ\J/C )- Fl has a form similar to the classical F-statistic in
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one-way ANOVA, except that its variance estimate (i.e., the denominator) has

incorporated additional information regarding 0'-2, which is exactly obtained by

modeling mean-variance dependence. In practice, this incorporation of prior variances
helps stabilizing variance estimates for individual intervals as well as increasing the

statistical power for identifying differential signals, which can be seen from the

increased number of denominator degrees of freedom associated with F;. Note also

that 13; is similar to the moderated F-statistic designed in limma (Smyth 2004), except

that the latter uses a constant prior variance for all genomic intervals and does not take
mean-variance dependence into account. As explained in Supplemental Note S1, here
we derive the mean estimates for determining prior variances by taking the average
signal intensities across groups of samples rather than individual samples, which is for
avoiding biasing the mean estimates towards the groups that have more samples than
the others. In practice, such biases typically lead to stronger statistical power for
identifying up-regulated signals in the conditions with more samples. Taking the

average signal intensities across groups is especially effective for alleviating the

unbalanced statistical power when do is much larger than (ijj - C) :
Accordingly, MAnorm2 gives the p-value of the statistical test for interval i by
pi=1=Fc1y m-C+d, (£) (31)

where FNI N, () refers to the cumulative distribution function of the F-distribution

with Ny and N, degrees of freedom.
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