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Supplemental Note S1. Differential analysis between two groups of ChIP-seq 

samples 

Here we give a detailed description of the statistical model designed in MAnorm2 for 

calling differential ChIP-seq signals between two groups of samples corresponding to 

different biological conditions, provided that all related samples have been normalized 

to be comparable with each other. 

 

1.1 Model formulation and hypothesis testing 

For 1,2j  , suppose jX  is an jn m  matrix recording normalized ChIP-seq 

signal intensities (i.e., normalized log2 read counts) at n  genomic intervals for jm  

samples belonging to condition j . Let ,i jX  be a column vector representing the 

transpose of row i  of jX . We assume 

  , , , , ,1 ,i j i j i j i j i jX t MVN S t   (1) 

Here MVN  refers to the multivariate normal distribution; ,i j  and ,i jt  are two 

unknown scalars that parametrize the mean signal intensity of interval i  in condition 

j  and the associated signal variability, respectively; 1  is a column vector of ones; 

,i jS , termed structure matrix, is an j jm m  matrix designed for the convenience of 

incorporating existing tools for modeling the precision weights of signal measurements 

from different samples as well as the correlations among them (Smyth 2004; Smyth et 

al. 2005; Law et al. 2014). All structure matrices used in the study were simply identity 

matrices. MAnorm2 next derives mean and variance estimates by applying the 

generalized least squares method: 
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In practice, jm  are typically very small (most ChIP-seq data sets only have two or 

three biological replicates for each experiment), which results in large uncertainty 

associated with the ,i jt  estimators and, thus, low statistical power for the following 
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differential tests. To improve variance estimates for individual genomic intervals, 

MAnorm2 borrows strength between intervals with similar signal levels and captures 

the underlying mean-variance dependence by fitting a smooth mean-variance curve 

(MVC). Specifically, it assumes the MVCs of the two groups of samples have the same 

shape and differ from each other only by a scaling factor. Formally, MAnorm2 defines 

2
, ,i j i j jt  , where j , termed variance ratio factor, is a parameter that quantifies 

the global variability of ChIP-seq signals across the samples of group j . Naturally, 

we have 
 2
, ,i j i j jt  . And the complete Bayesian model that uses mean-variance 

trend as source of prior information is given by 

 

  

 
0

2 2
, , , , ,

2

2
0,,

1 ,

1 1

i j i j i j i j j i j

d

i ji j

X MVN S

df

   









  (3) 

Overall, the above model is similar to limma (Smyth 2004) and an extension of it (Sartor 

et al. 2006), except that MAnorm2 allows for different global within-group variability 

between groups of samples. Here  f   refers to an unscaled MVC common to the 

two groups of samples and  ,i jf   is called the prior variance of interval i  in 

group j ; 
2
N  refers to the chi-squared distribution with N  degrees of freedom; 

0d , termed the number of prior degrees of freedom, is a hyper-parameter designed 

for assessing how well in general the variance of an individual interval could be 

predicted by its mean signal intensity. In practice, 0d  amounts to the number of extra 

ChIP-seq samples gained by sharing information between genomic intervals, and the 

use of these “samples” typically contributes significantly to the estimation of variances 

for individual intervals. Note also that MAnorm2 empirically determines 0d  based on 

the data, which renders the method adaptive to the regularity of variance structure 

associated with the specific data set (see the section below and also Supplemental 

Note S2). 

For the following differential tests, we further assume that the unscaled variances of 

non-differential genomic intervals remain invariant across the two groups of samples. 
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Formally, for each interval i  that satisfies ,1 ,2i i  , we assume 
2
,1i  equals 

2
,2i  

with a probability of one (i.e., they can be treated as the same random variable). This 

assumption is consistent with the fact that 
2
,1i  and 

2
,2i  follow the same prior 

distribution as long as ,1 ,2i i  . Finally, MAnorm2 tests the null hypothesis 

0 ,1 ,2: i iH    for each interval i  by using the following key statistic: 
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where 
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According to the theoretical deduction presented in Smyth et al. (Smyth 2004), we 

assert that iT
 , termed moderated t-statistic, follows a t-distribution under the null 

hypothesis with  0 1 2 2d m m    degrees of freedom, disregarding the 

uncertainty associated with the mean estimate for determining prior variance (i.e., 

  ,1 ,2 2i i  ). Many existing methods derive the mean signal intensities for 

determining prior variances (or dispersions, if the negative binomial distribution is used) 

by taking the average signal intensities across individual samples (Sartor et al. 2006; 

Love et al. 2014), which could lead to unbalanced statistical power for identifying up-

regulated signals for the two conditions, especially when the numbers of samples 

belonging to the two conditions differ dramatically from each other. To alleviate this 

effect, MAnorm2 chooses to take the average signal intensities across conditions, 

which is especially helpful for balancing the statistical power when 0d  is much larger 

than both 1m  and 2m . 

The resulting moderated t-statistics can be used to effectively rank genomic intervals 

in order of statistical evidence of having differential signals between the two conditions. 

MAnorm2 also gives the exact (two-sided) p-values by 
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  
0 1 2 2

2i d m m ip T T        (6) 

where  NT   refers to the cumulative distribution function of the t-distribution with 

N  degrees of freedom. 

 

1.2 Mean-variance curve fitting and parameter estimation 

This section discusses the estimation of f , 0d , 1  and 2 . 

To fit the MVC in an unbiased manner, MAnorm2 calculates mean and variance 

estimates separately within each group of samples and pools the resulting mean-

variance pairs into a regression process, which is different from many previous 

methods that derive a single mean-variance pair for each individual genomic interval 

(Sartor et al. 2006; Law et al. 2014; Love et al. 2014). To make variance estimates 

comparable between the two groups of samples, we first deduce an estimate of 

2 1  . Given the model formulation presented in the previous section, we have 
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1 2,N NF  

refers to the F-distribution with 1N  and 2N  degrees of freedom. And we give an 

estimator of 2 1   as 
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where  
1 2

1
,N NF   denotes the inverse of the cumulative distribution function of the 

indicated F-distribution. Here we use sample median instead of sample mean to 

perform the estimation because the former is more robust to the influence of differential 

intervals. To further improve the unbiasedness of the estimator, we use only the 

genomic intervals that are occupied by both groups of samples to calculate the median 

(see Methods in the main text for a detailed explanation of occupancy states of 

genomic intervals). 

MAnorm2 next pools the mean-variance pairs of the form   ,1 ,1,i it  or 
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 into a weighted gamma-family regression process, with  1 1m   
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and  2 1m   as the weights of observations from group 1  and 2 , respectively. 

Note that, to enhance the regularity of the data on which the regression is performed, 

MAnorm2 selects for each group of samples only the genomic intervals that are 

occupied by it to calculate mean-variance pairs. Currently, we have devised two 

candidate schemes for performing the regression. One of them uses a theoretically 

derived parametric form to fit a generalized linear model (see the following section for 

the specific form as well as the deduction of it). This method is most suited to data sets 

with a highly regular variance structure, in which the mean-variance relationship could 

be expected to be well profiled by the presumed formula (e.g., when the samples of 

each group are biological replicates for the same experiment). The other method 

adopts a local regression procedure implemented in the locfit package (Loader 1999). 

This method allows for more general mean-variance relationships (Anders and Huber 

2010). Whichever method is chosen, MAnorm2 iteratively fits an MVC and detects 

outliers by using 1e-4 and 15 as lower and upper bounds of residuals (i.e., the ratios 

of observed variances to fitted ones), respectively (Love et al. 2014). Outliers detected 

in a round of iteration are removed from the fitting of MVC in the next round, and the 

whole regression process finishes as soon as the set of outliers fixes. 

In the rest of this section, we ignore the uncertainty associated with the estimate of 

f , since it is typically fitted on a great number of observations. The method for 

estimating 0d  is similar to the one used in limma (Smyth 2004), except that MAnorm2 

integrates two estimation results that are respectively derived from the two groups of 

samples. Formally, we define 
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which can be deduced from equation (2) and (3), we assert that the marginal 

distribution of ,i jz  is a scaled Fisher’s z-distribution plus a constant (Aroian 1941), 

disregarding the uncertainty associated with ,i j . And we have 
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  (8) 

where     and      are the digamma and trigamma functions, respectively. 
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MAnorm2 next uses these two moments to estimate j  and 0d . 

Noticing that ,i jz  from the same group of samples (approximately) have the same 

expectation and variance, we give, using the data associated with each group j , an 

estimate of  0 2d  by 
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Note that MAnorm2 only uses the genomic intervals that have been used for fitting f  

to estimate j  and 0d . Therefore, each of the sum operators in equation (9) is 

applied only to the intervals whose mean-variance pairs in group j  have been 

involved in the regression process, and jn  denotes the number of such intervals. jn  

varies with j , as MAnorm2 selects only occupied intervals from each group of 

samples to fit f . The final estimate of 0d  is obtained by solving 
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whose right-hand side has a form similar to the pooled sample variance in a two-

sample t-test. Note that 0d  is set to positive infinity if the right-hand side of equation 

(10) is less than or equal to 0, since in such cases there is no evidence supporting the 

variation of the underlying variance (i.e., 
2
,i j ) across genomic intervals with the same 

mean signal intensity. Note also that the marginal distribution of each ,i jt  is a scaled 

chi-squared distribution when 0d  is positive infinity (as the number of denominator 

degrees of freedom of an F-distribution approaches positive infinity, the F-distribution 

converges to a scaled chi-squared distribution), which is consistent with the use of a 

gamma-family regression procedure to fit f . 

Finally, we derive for each group j  an estimate of j  by 
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Again, the above sum operator is applied only to the genomic intervals whose mean-

variance pairs in group j  have been used for fitting f . 

 

1.3 Deducing a parametric form for the mean-variance curve 

MAnorm2 deduces an explicit formula for profiling mean-variance trend by assuming 

a quadratic relationship between expectations and variances of read count variables, 

which has been proposed by several previous studies (Robinson et al. 2010; Law et 

al. 2014; Love et al. 2014). Formally, suppose Y  is a random variable standing for a 

read count and that it satisfies 

      2
0 1var Y E Y E Y     (12) 

Of note, the whole framework designed in MAnorm2 is for analyzing continuous 

measurements, which are typically obtained by applying a log2 transformation to read 

counts. We next deduce an approximate formula that connects the variance of 2log Y  

with its expectation by using the delta method (Oehlert 1992). Formally, by defining 

2logX Y  and investigating its one-order Taylor expansion at  Y E Y , we have 

      2log |Y E Y
dX

X E Y Y E Y
dY     . It follows that 

    2logE X E Y   (13) 
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Finally, by substituting the right-hand side of equation (12) for  var Y  in (14) and 

using (13) to replace  E Y , we have 

    
0 1var 2

E X
X        (15) 

where 

 2log2

i
i


    for 0,1i  . This form shall be used by MAnorm2 for 

performing a gamma-family generalized linear regression with identity link. 

 

1.4 Statistical simulation 
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We performed statistical simulation across various settings to verify the effectiveness 

of the whole parameter estimation framework. In each simulation, data (i.e., normalized 

ChIP-seq signal intensities) were generated based on the model assumption of 

MAnorm2, and the occupancy states of genomic intervals were ignored (or equivalently, 

each genomic interval was considered to be occupied by each group of samples). 

  Each simulation was about a comparison between two groups of samples, and the 

data for each genomic interval were independently generated. Here, we give a formal 

description of the process for generating data for a specific interval i  (we keep using 

the notations defined in 1.1). The point is to first determine ,i j  and ,i jt  for 1,2j  . 

Then, the data are generated by equation (1) (all structure matrices used in statistical 

simulation were identity matrices). If interval i  is non-differential, ,i j  and ,i jt  are 

determined by 

 

 

 
0

,1

,2 ,1

2

2
0,1,1

2 2
,2 ,1

2
,1 1 ,1

2
,2 2 ,2

~ ,

1 1

i lower upper

i i

d

ii

i i

i i

i i

U A A

df

t

t



 





 

 

 












  (16) 

where  ,U a b  refers to the uniform distribution with a  and b  as lower and upper 

bounds, respectively. Otherwise, ,i j  and ,i jt  are determined by 
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where N  refers to the normal distribution. 

For each simulation, we generated data for 30,000 genomic intervals, and the default 

proportion of differential intervals was 10%. Default settings of the other parameters 

were as follows: 
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  (18) 

These settings generally matched our observations from practical ChIP-seq data sets. 

We used default parameter settings with modification of at most one parameter in 

each simulation, and we inspected the distribution of p-values assigned to non-

differential intervals for an overall assessment of the parameter estimation framework: 
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These simulations involved cases with distinct global within-group variability between 

groups of samples, unbalanced group sizes, or abundant differential intervals. It can 

be seen that the p-value distribution associated with non-differential intervals is very 

uniform on  0,1  across different parameter settings, which indicates the 

effectiveness of the parameter estimation framework. 

Complete R source code for performing the simulations and generating the 

histograms can be found in Supplemental Code. 
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Supplemental Note S2. Being adaptive to the regularity of variance structure 

MAnorm2 introduces the notion of prior degrees of freedom in the modeling of mean-

variance trend, which is for achieving a wide applicability to data sets of various 

characteristics. Here by characteristics of a data set we specifically refer to the 

regularity of the associated variance structure, which we assess by quantifying the 

variability of variance residual (from the regression of variance on mean signal intensity) 

across different genomic intervals (i.e., the variability of ,i jz  across different i  for 

some fixed j ; see Supplemental Note S1). For clarification, if this variability is low for 

a data set, it is considered to be of high regularity. Note that MAnorm2 typically derives 

large numbers of prior degrees of freedom for data sets of high regularity (see equation 

(9) and (10) in Supplemental Note S1). 

In practice, the regularity of variance structure as well as the number of prior degrees 

of freedom derived by MAnorm2 (denoted by 0d  in the following) varies significantly 

across data sets. This is because there are quite a few factors that could influence the 

variability of ChIP-seq signals across samples (Steinhauser et al. 2016), including 

technical noise, biological variation, batch effects, and so on. As more such factors are 

involved in a data set, it becomes harder to predict the variances for individual genomic 

intervals depending solely on their mean signal intensities, and the associated 0d  

decreases accordingly. For example, we have performed all pairwise comparisons of 

H3K4me3 ChIP-seq signals among four human lymphoblastoid cell lines (LCLs; 

GM12890, GM12891, GM12892 and SNYDER) derived from different individuals of 

the Caucasian population (Supplemental Fig. S2). In this analysis, each group of ChIP-

seq samples belonging to the same biological condition was comprised of biological 

replicates for an individual LCL, and the associated variance structure could be 

expected to be highly regular. As a result, 0d  derived by MAnorm2 for these 

comparisons ranged from 9.5 to 137.5 and had a median of 18.8. For contrast, we 

have also made a between-sex comparison (of H3K4me3 levels) by classifying the 

four LCLs into two males (GM12891 and SNYDER) and two females (GM12890 and 

GM12892; Supplemental Fig. S1B, D). Note that, for this analysis, we created a 

reference profile for each individual LCL by taking the average ChIP-seq signals across 

its replicates (see Methods in the main text for details about reference profile). 

Compared to the previous scenario, ChIP-seq profiles grouped together in this case 

were additionally associated with epigenetic variation across human individuals 

(Kasowski et al. 2013) and, thus, the associated variance structure should become 
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less regular. Consistently, MAnorm2 derived a 0d  of 4.2. 

MAnorm2 improves its adaptivity to the specific data set by empirically estimating 

0d  and using the estimation result to determine the relative contributions of observed 

variances and prior ones to the final variance estimates for individual intervals (see 

equation (5) in Supplemental Note S1). Based on the corresponding gene expression 

data, we compared the performance of MAnorm2 with two variants of it in the above 

two scenarios of differential ChIP-seq analysis. Note that we used the comparison 

between GM12890 and SNYDER LCLs (2 vs. 2 biological replicates) as representative 

of the first scenario, as this comparison was associated with the same group sizes as 

the between-sex comparison (2 vs. 2 LCLs). The two variants of MAnorm2, referred to 

as no-MVC and MVC-only respectively, adopt different strategies to derive final 

variance estimates. Specifically, no-MVC and MVC-only directly use observed and 

prior variances as final variance estimates, respectively, while MAnorm2 integrates the 

two types of variances by taking a weighted average, with the weights depending on 

the 0d  estimated from the data (technically, no-MVC and MVC-only are equivalent to 

always treating 0d  as 0 and positive infinity, respectively). As described above, the 

variance structure in the first scenario was of high regularity, and there was a low 

variability of variance across genomic intervals with the same mean signal intensity 

(Supplemental Fig. S1A). In this case, prior variances alone can serve as reliable 

variance estimates for individual intervals. By contrast, the observed variances were 

associated with large uncertainty due to the small numbers of biological replicates, 

which resulted in a much worse performance of no-MVC compared to MVC-only 

(Supplemental Fig. S1C). As for MAnorm2, it derived a 0d  of 14.6, which was more 

than seven times the number of observed degrees of freedom (i.e., the number of free 

signal measurements for calculating the observed variance of each interval, which 

equals the total number of ChIP-seq samples minus the number of groups). 

Consequently, the final variance estimates used by MAnorm2 were dominated by prior 

variances, and MAnorm2 therefore exhibited virtually the same performance as MVC-

only. In comparison with the first scenario, the variance structure in the second one 

was considerably less regular, and the 0d  derived by MAnorm2 was only 4.2 

(Supplemental Fig. S1B), which was comparable to the number of observed degrees 

of freedom. In this scenario, no-MVC continued to suffer from small group sizes, and 

MVC-only completely ignored the high fluctuation of variance across intervals with the 
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same mean signal intensity. As a result, both no-MVC and MVC-only were clearly 

outperformed by MAnorm2 (Supplemental Fig. S1D). Together, these results 

demonstrated the adaptivity of MAnorm2 and suggested a wide applicability of it. 
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Supplemental Note S3. Integrating LOESS and robust linear regression into 

hierarchical MA normalization 

In principle, any regression process allowing extrapolation can be integrated into the 

hierarchical MA normalization framework (see Methods in the main text). For this 

integration, the original framework is largely retained, only that the underlying 

technique for normalizing an individual sample or a reference profile against another 

is changed, which is now achieved by designing abundance-dependent offsets to 

remove M-A trend. 

Suppose that X  and Y  are two vectors of log2 read counts (we used an offset of 

0.5 in the study) representing raw signal intensities of two ChIP-seq samples in a list 

of genomic intervals. Let M and A values be defined by M Y X   and 

 
1

2
A X Y  , respectively. We now normalize Y  against X  by using an 

arbitrary regression process to fit M-A trend. Specifically, we perform a regression by 

using _M  and _A  as responses and predictor values, respectively, where _  

indicates the vectors are subsetted to common peak regions (i.e., the intervals 

occupied by both samples). Let  f   be the resulting (vectorized) regression function. 

The normalization is accomplished by applying the following transformation: 

  *Y Y f A    (19) 

For normalizing a reference profile against another, the offset vector (i.e.,  f A ) 

derived for the former is equally applied to each individual sample of the corresponding 

group. 

In the study, we have separately used LOESS (local polynomial regression) and 

robust linear regression to implement this normalization algorithm, and the resulting 

two normalization methods were referred to as loess and rlm-offset respectively 

(Supplemental Fig. S15). We applied LOESS by using the loess function provided by 

the R package stats, with control=loess.control(surface="direct") to 

allow extrapolation (R Core Team 2018). For robust linear regression, we used the rlm 

function of the MASS package with default parameters (Venables and Ripley 2002). 

We have also used another way to integrate robust linear regression into the 

hierarchical MA normalization framework, which was referred to as rlm-linear. For this 

integration, f  is still fitted as described above. Given the nature of linear regression, 

f  is determined by an intercept and a slope, and a connection between M and A 
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values can therefore be established as 

 0 1M A    (20) 

This connection can be expanded to 

  1
0

2
Y X X Y


     (21) 

which is then rearranged as 

 01

1 1

1 2

1 2 1 2
X Y



 




 
   (22) 

Finally, the linear transformation given by the right hand of equation (22) is applied to 

Y  to finish the normalization. Again, for normalizing a reference profile against another, 

the linear transformation derived for the former is equally applied to each individual 

sample of the corresponding group. 
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Supplemental Note S4. Simultaneously comparing multiple groups of ChIP-seq 

samples 

This note gives a formal description of the statistical model designed in MAnorm2 for 

simultaneously comparing more than two groups of ChIP-seq samples corresponding 

to different biological conditions. We keep using the notations defined in Supplemental 

Note S1, except that the group index j  now takes integers from 1 through C , where 

C  is the total number of groups to be compared. To be rigorous, we give a succinct 

but still self-contained description of the related model formulation and hypothesis 

testing. 

For each genomic interval i  in each group j , we assume 

 

  

 
0

2 2
, , , , ,

2

2
0,,

1 ,

1 1

i j i j i j i j j i j

d

i ji j

X MVN S

df

   









  (23) 

We further assume that the unscaled variance of each non-differential genomic interval 

remains invariant across groups. Formally, for each interval i  that satisfies 

,1 ,2 ,i i i C     , we assume 
2 2 2
,1 ,2 ,i i i C      happens with a 

probability of one (i.e., they can be treated as the same random variable). This 

assumption is consistent with the fact that 
2 2 2
,1 ,2 ,, , ,i i i C    follow the same prior 

distribution as long as ,1 ,2 ,i i i C     . For later use, we derive expressions 

of mean and variance estimators by applying the generalized least squares method: 

 

  


   

11 1
, , , ,

1
, , , , ,

,

1 1 1

1 1

1

T T
i j i j i j i j

T

i j i j i j i j i j
i j

j

S S X

X S X
t

m



 

 





 




  (24) 

Methods detailed in Supplemental Note S1 for estimating f , 0d , and j  can be 

naturally extended with few modifications to cases involving more than two groups of 

samples. Specifically, for fitting f , we select a group as baseline and derive an 

estimate of j b   for each j b  by using equation (7), where b  refers to the 
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selected baseline group. Then, the mean-variance pairs having a form of   , ,,i b i bt  

or 



,

, ,
i j

i j
j b

t


 

 
 
 
 

 with j b  are pooled into a weighted gamma-family regression 

process, with  1jm   as the weight of observations from group j . For the 

selection of baseline group, MAnorm2 utilizes an algorithm similar to the one for 

selecting a baseline ChIP-seq sample to normalize a group of samples (see Methods 

in the main text). Specifically, it first picks out the genomic intervals that are occupied 

by all the C  groups and uses their ,i jt  to construct a matrix, whose rows and 

columns correspond to the intervals and the groups, respectively. MAnorm2 then 

applies the median-ratio strategy (Anders and Huber 2010) to the matrix and derives 

the “size factor” of each group. Finally, the group whose log2 size factor is closest to 0 

is selected as baseline. After fitting f , the estimation of 0d  and j  is 

accomplished by using equation (9), (10) and (11). The resulting estimates of f , 

0d , and j  are treated as non-stochastic in subsequent statistical tests, as they are 

typically derived based on a great number of observations. 

We next detail the procedure for testing the null hypothesis 

0 ,1 ,2 ,: i i i CH       for each interval i . As in the one-way analysis of 

variance (ANOVA), we first fit the full model and calculate the corresponding residual 

sum of squares (RSS): 

 
 ,
1

1C
j i j

i
jj

m t
RSS





    (25) 

We then fit a reduced model by assuming all the C  biological conditions are 

associated with the same mean signal intensity in interval i : 

 
 



0

1
,

,
1

1
,

1

1 1

1 1
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i j

i j
jj

TC
i j

jj

S

Si
















 
 
 
 





  (26) 

where 
 0
i  is intrinsically a weighted average of mean estimates from different 

groups, with the weights being inversely proportional to their variances. And the 
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associated RSS can be derived by 

 
 

     0 01
, , ,0

1

1 1
T

C
i j i j i ji i

i
jj

X S X
RSS

 







 
    (27) 

Before defining the final key statistic for testing the null hypothesis, we summarize 

some facts regarding the distributions of associated random variables as follows. 

Under the 0H , we have ,1 ,2 ,i i i C      (denoted by i  in the following) 

and that 
2 2 2
,1 ,2 ,, , ,i i i C    refer to the same random variable (denoted by 

2
i  in 

the following). Based on equation (23) and previous studies of one-way ANOVA, we 

have (under the 0H ) 

 

 

  

  

0

2

2
0

02 2

2 2 2

0 2 2 2
1
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



 

  
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





 

 
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





  (28) 

in which the second formula indicates that the two random variables are conditionally 

(on 
2
i ) independent of each other. Equation (28) gives all the results that are 

necessary for us to derive 

 

    

     0

0

1,

0 0

1

jj

ii

C m C d

i i jj

RSS RSS C
F

RSS d f m C d
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 


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   (29) 

Finally, we define a moderated F-statistic for interval i  as 

 

    

    

0

0 , 0

1ii

i

i i j jj j

RSS RSS C
F

RSS d f C m C d

 


   
   (30) 

which approximately follows 
01, jj

C m C dF     under the null hypothesis, 

considering the uncertainty of the mean estimate for deducing the prior variance of 

interval i  (i.e., 
,i jj
C ). iF

  has a form similar to the classical F-statistic in 
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one-way ANOVA, except that its variance estimate (i.e., the denominator) has 

incorporated additional information regarding 
2
i , which is exactly obtained by 

modeling mean-variance dependence. In practice, this incorporation of prior variances 

helps stabilizing variance estimates for individual intervals as well as increasing the 

statistical power for identifying differential signals, which can be seen from the 

increased number of denominator degrees of freedom associated with iF
 . Note also 

that iF
  is similar to the moderated F-statistic designed in limma (Smyth 2004), except 

that the latter uses a constant prior variance for all genomic intervals and does not take 

mean-variance dependence into account. As explained in Supplemental Note S1, here 

we derive the mean estimates for determining prior variances by taking the average 

signal intensities across groups of samples rather than individual samples, which is for 

avoiding biasing the mean estimates towards the groups that have more samples than 

the others. In practice, such biases typically lead to stronger statistical power for 

identifying up-regulated signals in the conditions with more samples. Taking the 

average signal intensities across groups is especially effective for alleviating the 

unbalanced statistical power when 0d  is much larger than  jj
m C . 

Accordingly, MAnorm2 gives the p-value of the statistical test for interval i  by 

  
01,1

jj
i iC m C dp F F    

   (31) 

where  
1 2,N NF   refers to the cumulative distribution function of the F-distribution 

with 1N  and 2N  degrees of freedom. 
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