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SUPPLEMENTAL METHODS

Study Design. Subjects were included in the study if the subject was 3 years old or older, in
good general health according to a medical history and clinical judgment of the clinical
investigator, and had at least 12 teeth. Subjects were excluded from the study if they had
generalized rampant dental caries, chronic systemic disease, or medical conditions that would
influence the ability to participate in the proposed study (i.e., cancer treatment, HIV, rheumatic
conditions, history of oral candidiasis). Subjects were also excluded it they had open sores or
ulceration in the mouth, radiation therapy to the head and neck region of the body, significantly
reduced saliva production or had been treated by anti-inflammatory or antibiotic therapy in the
past 6 months. Ethnic origin was mixed for healthy subjects (Hispanic, Asian, Caucasian,
Caucasian/Asian), while children with caries were of Hispanic origin. For the latter group, no other
ethnic group enrolled despite several attempts to identify interested families/participants. Children
with both primary and mixed dentition stages were included (caries group: 18 children with mixed
dentition and 6 with primary dentition; healthy group: 19 children with mixed dentition and 6 with
primary dentition). To further enable classification of health status (caries and healthy), a
comprehensive oral examination of each subject was performed as described below. Subjects
were dichotomized into two groups: caries free (dmft/DMFT = 0) and caries active (subjects with
>2 active dentin lesions). If the subject qualified for the study, (s)he was to abstain from oral
hygiene activity, and eating and drinking for 2 hours prior to saliva collection in the morning. An

overview of the subjects and associated metadata is provided in Supplemental Table S1.

Oral examination and study groups. The exam was performed by a single calibrated pediatric
dental resident (RA), using a standard dental mirror, illuminated by artificial light. The visual
inspection was aided by tactile inspection with a community periodontal index (CPI) probe when
necessary. Radiographs (bitewings) were taken to determine the depth of carious lesions. The

number of teeth present was recorded and their dental caries status was recorded using decayed



(d), missing due to decay (m), or filled (f) teeth in primary and permanent dentitions (dmft/DMFT),
according to the criteria proposed by the World Health Organization (1997) (Organization 1971).
Duplicate examinations were performed on 5 randomly selected subjects to assess intra-
examiner reliability. Subjects were dichotomized into two groups: caries free (CF; dmft/DMFT=0)
and caries active (CA; subjects with =22 active dentin lesions). The gingival health condition of
each subject was assessed using the Gingival Index (Gl) (Loe 1967). Gl data was published
previously (Aleti et al. 2019). Additionally, parent/guardian of each participant completed a survey

regarding oral health regimen.

Radiographic assessment. Bitewing radiographs were analyzed on the XDR Imaging Software
(Los Angeles, CA). Lesion depth was determined with the measuring tool, and categorized as
follows: E1 (radiolucency extends to outer half of enamel), E2 (radiolucency may extend to the
dentinoenamel junction), D1 (radiolucency extends to the outer one-third of dentin), D2
(radiolucency extends into the middle one third of dentin), and D3 (radiolucency extends into the
inner one third of dentin)(Anusavice 2005). To calculate the depth of lesion score, the following
scores were assigned to each lesion depth: E1=1,E2=2,D1 =3, D2 =4, and D3 = 5, afterwards

a total depth score was calculated for each subject.

Saliva collection. Unstimulated saliva was collected between 8:00-11:00am for the salivary
immunological marker analysis. Subjects were asked to abstain from oral hygiene activity, and
eating and drinking for two hours prior to collection. Before collection, subjects were instructed to
rinse with water to remove all saliva from the mouth. In this study, unstimulated saliva was
collected for salivary immunological marker analysis, while stimulated saliva (by chewing on
sterile parafilm) was collected for lllumina sequencing (to dilute and amount of human DNA and
material present). 2 ml of unstimulated saliva was collected from subjects by drooling/spitting

directly into a 50mL Falcon conical tube (Fisher Scientific, Pittsburg PA) at regular intervals for a



period of 5-20 minutes. Saliva samples were immediately placed on ice and protease inhibitor
cocktail (Sigma, MO, USA) was added at a ratio of 100uL per 1mL of saliva to avoid protein
degradation. Then saliva samples were processed by centrifugation at 6,000 x g for 5 min at 4°C,
and the supernatants were transferred to cryotubes. The samples were immediately frozen in
liquid nitrogen and stored at -80 °C until analysis. 2 ml of stimulated saliva was collected

immediately following collection of unstimulated saliva.

Sequencing read quality control. As reported in Aleti et al., 2019, raw lllumina reads were
subjected to quality filtering and barcode trimming using KneadData v0.5.4 (available at
https://bitbucket.org/biobakery/kneaddata) by employing trimmomatic settings of 4-base wide
sliding window, with average quality per base >20 and minimum length 90 bp. Reads mapping
to the human genome were also removed. KneadData quality control information is provided in

Supplemental Table S1.

Assembly and binning of MAGs. metaSPAdes was utilized to de novo assemble metagenomes
from the quality-filtered Illumina reads (Nurk et al. 2017). A separate assembly was performed
for each sample, as opposed to a co-assembly assembly of all samples, an alternative approach
used by some studies. The pros and cons of a co-assembly versus individual assemblies have
been discussed previously (Pasolli et al. 2019). The resulting assemblies were binned using the
MetaWRAP pipeline v1.1.5 (Uritskiy et al. 2018). The MetaWRAP initial_binning module used
Maxbin2 (Wu et al. 2016), Metabat2 (Kang et al. 2019), and Concoct (Alneberg et al. 2014).
Subsequently, the bin_refinement module was used to construct the best final bin set by
comparing and selecting the most complete and least contaminated results of the 3 binning tools.
The bin_reassembly module was then used to reassemble the refined bin set to further improve

the final bins. The quality control cutoffs for all MetaWRAP modules were >50% completeness



and <10% contamination, which are the cutoffs for Medium-Quality Draft Metagenome-
Assembled Genomes as described by the Genome Standards Consortium (Bowers et al. 2017).
This approach generated 527 metagenome-assembled genomes (MAGs) that were at least of
medium quality. Generally speaking, the samples with deeper sequencing provided more bins
meeting this threshold, with sample SC33, with 249 million non-human reads yielding 69 bins,
while sample SC26, with 1.4 million non-human reads yielding just 3 bins. The metaWRAP
classify_bins and quant_bins modules were used to respectively obtain a taxonomy estimate and

to provide the quantity of each bin in the form of ‘genome copies per million reads’.

Dereplicating to species-level genome bins. As a result of the individual assemblies, many of
the 527 MAGs were likely to represent redundant species across samples. fastANI (Jain et al.
2018) was used to compare the ANI of all 527 MAGs and generate a distance matrix that was
used to dereplicate the MAGS into SGBs using a cutoff of 95%ANI. This distance matrix was
visualized using Cytoscape (Shannon et al. 2003) (Figure 1A). Although a topic of some debate,
95%ANI has been used by several recent landmark studies as the cutoff for genomes
representing the same species (Jain et al. 2018). To taxonomically identify species-level genome
bins (SGBs), Mash v2.1 (Ondov et al. 2016) was used to query all 527 MAGs against the entire
RefSeq database with a Mash distance cutoff of 5 (corresponding to a 95% average nucleotide
identity (ANI)). All MAGs with a RefSeq hit with a Mash distance of <5 were assigned the species
name of that hit. The fact that Mash distance <5 and fastANI ANI>95% aligned almost perfectly
served as a useful internal control. There were several rare occasions in this dataset where
SGBs, as defined by the 95% ANI distance matrix, included MAGs that best matched different
(although closely related) RefSeq references. Whether this indicates that 95% ANI is not stringent
enough (e.g. these should in fact be classified as multiple species) or too stringent (e.g. they
should all be classified as the same species) is a debate beyond the scope of this work. This

approach yielded 90 known species-level-genome bins (kSGBs), representing 399 MAGs with



>95% ANI to a RefSeq genome (based on Mash), and 60 unknown SGBs (uSGBs), representing
128 MAGs (Figure 1A-G), with no genome in RefSeq with an ANI >95% (Figure 1A-G). MAG pie
charts (Figure 4B-C) were created using Microsoft Excel and MAG quality violin chart were
created using Graph Pad Prism. Statistical significance was determined using a Tukey’s multiple

comparisons post-test following a one-way ANOVA using Graph Pad Prism.

Determining taxonomy of unknown SGBs (uSGBs). Here, a strategy for classifying uSGBs
into genus-level genome bins (GGBs), which have a 85%-95% ANI to a GenBank genome, and
family-level genome bins (FGBs), which have no match >85% ANI to a GenBank genome, was
employed, similar to the method described in Pasolli et al., 2019. The predicted family for each
MAG was first inferred using the CheckM (Parks et al. 2015), Kraken (Wood and Salzberg 2014),
and classify_bins tools from within the MetaWRAP pipeline. Next, because there are publicly
available, and in many cases described, genomes in GenBank that do not appear in the RefSeq
database used by Mash, each uSGB was compared against all GenBank genomes in its predicted
family using fastANI. This process reassigned 18 uSGBs (rSGBs), representing 31 MAGs, to
kSGBs, as they had >95% ANI match in GenBank (Supplemental Table S2). For the remaining
“true” uSGBs, 20 uSGBs, representing 48 MAGs, that had 85%-95% ANI match to a GenBank
genome were termed genus-level genome bins (GGBs), as the genus can be assigned with a fair
amount of confidence, while the species appears to be not previously described. The final 22
bins, representing 49 MAGs, had no matching reference in GenBank with an ANl >85%. These
were termed family-level genome bins (FGBs), as the family or higher-level taxa can be inferred,
but the MAGs likely represent novel genera. When uSGBs contained multiple MAGs, the MAG
with the best quality score according to the formula (completion — (2x contamination)) was used

to find the best hit.



Phylogenetic placement of uSGBs. Anvi'o (Eren et al. 2015) was used to determine the
phylogeny of the Saccharibacteria kSGBs and uSGBs. The Anvi'o Snakemake (Koster and
Rahmann 2012) phylogenomics workflow utilizes muscle (Edgar 2004), trimAl (Capella-Gutierrez
et al. 2009), and IQ-TREE (Nguyen et al. 2015). PhyloPhlAn2 (Pasolli et al. 2019) was used to
determine the phylogeny of Clostridiales and Bacteroidales uSGBs. The following parameters
were used: --diversity medium —accurate. The following PhyloPhlAn2 external tools were used:
diamond (Buchfink et al. 2015), mafft (Katoh and Standley 2013), trimAl (Capella-Gutierrez et al.
2009), fasttree (Price et al. 2009), and RAXML (Stamatakis 2014). Resulting phylogenetic trees
were visualized using iToL 4(Letunic and Bork 2019). Anvio was utilized to examine
Saccharibacteria phylogeny because its pipeline was more amenable to the highly reduced
number of single copy marker genes found in Saccharibacteria genomes. PhyloPhlAn2 was used
to examine Bacteroidales and Clostridiales phylogeny because, compared to Anvi'o, it requires
less preprocessing of the reference and sample genomes prior to actual phylogenetic analysis,
making the pipeline more appropriate for these queries that have hundreds or thousands of
genomes. Labels on the Bacteroidales and Clostridiales trees in Figure 2A-B indicate the genus
of the GGB, and the family and most-closely related genus of the FGBs, as determined by fastANI
against all Bacteroidales or Clostridiatles in GenBank. The Saccharibacteria clades were based
upon the phylogeny and reference genomes published in (Figure 2C)(McLean et al. 2020).
Differences in the phylogeny reported here compared to (McLean et al. 2020) are likely to result

from a different set of marker genes used to construct the phylogeny.

Pangeomics and functional enrichment. Individual assembled genomes were annotated with
Anvi'o (COG Functions) and eggnog-mapper v2 (Huerta-Cepas et al. 2017; Huerta-Cepas et al.
2019). Anvi'o was utilized to perform pangenomics analysis (Delmont and Eren 2018). This
pipeline also utilized HMMSEARCH (Eddy 2011) and INFERNAL (Nawrocki and Eddy 2013).

tRNAs were predicted using Anvi'o and 16S rRNA genes were predicted using the cmsearch



function of INFERNAL. 16S rRNA sequences were identified using the HOMD 16S rRNA
Sequence ldentification page of the expanded Human Oral Microbiome Database (eHOMD,
http://www.homd.org/, (Escapa et al. 2018). To examine strain-level differences between caries
and health-associated isolates, SGBs with at least 4 representatives from healthy subjects and 4
representatives from caries subjects were considered. 13 SGBs met these criteria: Atopobium
sp. ICM42b, Eubacterium sulci, Haemophilus parainfluenzae, Candidatus Lachnospiraceae
FGB2, Mogibacterium diversum, Megasphaera micronuciformis, Prevotella histicola, Prevotella
ICM33, Porphymonadaceae bacterium KA00676, Prevotella pallens, Prevotella salivae,
Peptostreptococcus GGB1, and Candidatus Solobacterium GGB1. Pangenomes of these SGBs
and significantly enriched functional pathways between caries and health-associated isolates
were examined using Anvi'o. There were no significantly enriched gene clusters in caries
compared to health, or vice versa, within these pangenomes. Meanwhile, a pangenome of the
Saccharibacteria genomes and several reference strains was examined, and there was a large
amount of functional pathway enrichment between Saccharibacteria clades (Figure 3B-C,
Supplemental Fig.S3A-B). KEGG KO Functional pathway occurrence frequency across the
Saccharibacteria clades was exported using Anvi’'o, and used to create the metabolic network in

Supplemental Fig. S5B using KEGG Mapper (https://www.genome.jp/kegg/mapper.html).

Inference of actively replicating taxa. iRep was utilized (Brown et al. 2016) to estimate which
taxa identified in the metagenomics analysis were alive and metabolically active, and to compare
this data between health- and caries-associated microbiomes. iRep infers replication rates based
upon differential sequencing coverage of genomic regions with respect to the origin of replication
(Brown et al. 2016). iRep requires 75% completeness, <175 contigs per 1mb, and looks at contigs
> 5000bp with a > 5 average coverage. iRep was able to compute replication rates for 183 of 527
MAGs. The replication rate of all bacteria was not significantly different among the taxa derived

from the saliva of healthy children compared to the saliva from the children with caries



(Supplemental_Fig_S6.pdf). At the individual SGB level, there were only 8 SGBs with sufficient
(at least 3) MAGs, which passed the requirements for iRep, from both the healthy and the caries
groups. None of these 8 SGBs had statistically different rates of replication between the healthy

and caries groups (Supplemental_Fig_S6.pdf).

Genome-based taxonomic abundance analysis. Overall, the taxonomy of the assembled
MAGs largely reflected the taxonomy of the communities predicted by MetaPhAn2. One notable
exception was the lack of Streptococci among the assembled bins. Difficulty assembling quality
Streptococcal genomes from metagenomics datasets has been noted previously (Espinoza et al.
2018), and is thought to occur because the high promiscuity of Streptococcus k-mers (due to high
intra-genera diversity within Streptococcus, particularly from oral samples). Assembly biases
such as this are examples that support use of unassembled reads for taxonomic abundance
profiling and similar analyses, as performed by MetaPhlAn2 and the downstream tools in this
study. However, the taxa in the MetaPhlAn2 database do not match exactly with the taxa of the
genomes assembled from these microbiomes, and it was difficult to determine whether any of the
novel taxa assembled here are detected by MetaPhlAn2. To examine the abundances of the taxa
with assembled genomes in this study, a BWA index was created using a database consisting of
the best quality (completion — (2 x contamination)) genome from each SGB in this study. The
post-QC sequencing reads were mapped to the database using BWA-MEM (Li et al. 2009; Li
2014). This was used to create taxonomic abundance table, which was analyzed by DEICODE
(Supplemental Fig. S6C). Many of the overall trends were preserved compared to the DEICODE
analysis of the unassembled reads, and several novel taxa (Candidatus Nanosynbacter GGB3
and GGB4, and Candidatus Gracilibacteria FGB1) appeared to be associated with caries
(Supplemental Fig. S6C). However, the authors recommend utilizing unassembled reads for

abundances purposes to avoid biases introduced by the assembly process. A significant



difference in beta divsersity between the healthy and caries groups was observed by

PERMANOVA performed using the QIIMEZ2 diversity plugin.

Read-based taxonomy. Filtered reads were then analyzed using MetaPhlAn2 v2.7.5 (Truong et
al. 2015) to determine relative abundances of taxa. The predicted total number of reads for each
sample was multiplied by the relative abundances of each taxa within the sample to obtain an
estimated number of reads of each taxa. The resulting OTU table was utilized for downstream
diversity and correlation analysis. Unlike 16S sequencing, metagenomic sequencing detects
viruses and eukaryotes in addition to bacteria. 12 viruses were detected in this study, including
several human herpesviruses and several bacteriophage (Supplemental Fig. S4A,B,D). The
viruses were detected at relatively low frequency and did not appear to be significant drivers of
beta diversity in this study group (Figure 4A). The fungal pathogen, Candida albicans is known
to be involved in pathogenesis in many cases of dental caries (reviewed in (Pereira et al. 2018)),
therefore it was surprising that it was not detected by MetaPhlAn2 in this study. Mapping Illumina
reads directly to the C. albicans genome indicated the presence of C. albicans in the samples,
but the number of reads was small, and thus any fungal pathogens present in the study group
were likely to be below the threshold of detection employed in taxonomic quantification by
MetaPhlAn2 (data not shown). This is likely in part due to the use of DNA extraction methods

designed for bacteria, not fungi.

Diversity analyses. The taxonomic abundance table (i.e. OTU table) generated from
MetaPhlAn2 was used as input for QIIME2 (Bolyen et al. 2019). The QIIMEZ2 diversity plugin was
used to calculate alpha diversity (within sample diversity) (Bolyen et al. 2019). The QIIMEZ2 plugin,
DEICODE (Martino et al. 2019), was used to calculate beta diversity with feature loadings.
DEICODE utilizes matrix completion and robust Aitchison principal components analysis (PCA),

providing several advantages over other tools, including the ability to accurately handle sparse



datasets (e.g. in most microbial communities, most taxa are not present in a majority of samples),
scale invariance (negating the need for rarefaction) and preservation of feature loadings (i.e.
which taxa are driving the differences in PCA ordination space)(Martino et al. 2019). The resulting
ordination was visualized using the QIIMEZ2 plugin Emperor (Vazquez-Baeza et al. 2013). Taxa
ranks driving differences in ordination space along axis 2 (the axis with the most difference in
disease status) were visualized using Qurro . A significant difference in beta diversity between

the caries and healthy groups was observed with a PERMANOVA using the QIIME2 diversity

plugin.

Taxa associated with disease. The OTU table generated by MetaPhlAn2 was used as input for
Songbird (Morton et al. 2019b), to rank species association with disease status. Songbird utilizes
reference frames to rank the association of taxa with a given metadata category, and alleviates
many of the issues caused by the compositional nature of sequencing data. Because this method
is sensitive to sparsity, only species observed in at least 10 samples and having over 10,000 total
predicted counts were analyzed. The following parameters were used in the songbird multinomial
script: number of random test examples: 5, epochs: 50,000, batch size: 8, differential-prior: 1,
learning rate: 0.001. Taxa ranks were visualized using Qurro. Log ratios of Prevotella to Rothia,
Haemophilus, or Neisseria were extrapolated using Qurro, and graphed using Graph Pad Prism.
Significance was determined using a Welch’s t-test between groups, performed by Graph Pad

Prism.

Functional profiling and diversity. HUMANN2 (Franzosa et al. 2018) was used to provide
abundance information about the functional pathways present in the metagenomes, which was
also stratified by species. QIIME2, DEICODE, Songbird, Emperor, and Qurro were utilized to
analyze the unstratified functional pathway data in a manner similar to that described for the

taxonomic abundance information as described above. Significant differences in alpha and beta



diversity between the healthy and caries groups was observed with a Kruskal-Wallis test and a
PERMANOVA, respectively, using the QIIME2 diversity plugin. Contributional diversity, as plotted
in Figure 5C, was examined across the 69 core pathways that were present in each sample, and
had at least 3 taxa contributing to the pathway. Contributional alpha and beta diversity of these

pathways were calculated using QIIME2.

Species-immunological marker co-occurrences. The co-occurrences of species and
immunological markers was estimated using neural networks via mmvec (Morton et al. 2019a).
mmvec uses neural networks for estimating microbe-metabolite interactions through their co-
occurrence probabilities. The following parameters were used: number of testing examples: 5,
minimum feature count: 10, epochs: 1000, batch size: 3, latent dim: 3, input prior: 1, output prior:

1, learning rate 0.001. The QIIME2 Emperor plugin was used to visualize the resulting ordination.
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Supplemental Fig. S1: Overview of study design and bioinformatics methods. (A) Flow
chart illustrating the steps taken to get from clinical specimen to bioinformatics data. (B) Flow
chart illustrating the computational methodology utilized in this study. Input data is in yellow
boxes, intermediate data is in blue boxes, and final data is in green boxes. For each step, the
tool(s) or package(s) used are provided in italics. The ‘Final bins with taxonomy’ box is color-
coded to match the metagenome-assembled genome (MAG) average nucleotide (ANI) network

in Fig. 1.
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Supplemental Fig. S2: Phylogenetic placement of unknown species-level genome bins
(uSGBs) within Bacteroidales, Clostridiales, and Saccharibacteria. Bacteroidales and
Clostridiales trees were generated using PhyloPhlAn2 (Pasolli et al. 2019) and the
Saccharibacteria tree was generated using Anvi'o. All trees were visualized using iToL (Letunic

and Bork 2019). (A) Bacteroidales (B) Clostridiales and (C) Saccharibacteria
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Supplemental Fig. S3: Fucntional pathways encoded by oral Saccharibacteria clades G1,
G3, and G6. (A) Differences in encoded COG functions pathways across human-
associated Saccharibacteria. Heatmap illustrating the presence of various genes across 4
major clades of human-associated Saccharibacteria. Rows and columns were clustered using
the Jaccard distance and the “complete” clustering method. Only COG functions that were
significantly different between clades are shown (adjusted g-value < 0.05). (B) Metabolic circuit
indicating the metabolic pathways encoded by Saccharibacteria clades G1, G3, and G6.
KEGG KO pathways present in the Saccharibacteria clades, using the TM7x,

TM7_KMM_G3_HOT351, and TM7_G6_1_HOT870 genomes as representatives.
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Supplemental Fig. S4: (A) Species abundance. Phylogenetic tree illustrating the species
present across the saliva metagenomes. The relative abundance of each taxa is represented by
the bar graph at the end of each leaf, with the relative abundance in the healthy group in blue and
the caries group in red. Taxa of interest are highlighted with colored leaves on the tree:
Streptococcus mutans and Streptococcus sobrinus = yellow; Prevotella spp.= red; and Rothia
spp. = green. (B) Heatmap illustrating species-level taxonomic abundances in the caries
versus healthy groups. Plot was generated using the ComplexHeatmaps R package (Gu et al.
2016). Abundances were determined using MetaPhAn2 (Truong et al. 2015). Rows and columns
were clustered using a Bray-Curtis distance matrix and the “complete” clustering method. Only
taxa appearing in at least 10 samples are included in this figure. (C) Heatmap illustrating
species-level functional pathway abundances in the caries versus healthy groups. Plot
was generated using the ComplexHeatmaps R package (Gu et al. 2016). Abundances were
determined using HumanN2 (Franzosa et al. 2018). Rows and columns were clustered using a
Bray-Curtis distance matrix and the “complete” clustering method. Only pathways included in at
least 10 samples are included in this figure. (D) Heatmap illustrating centered log ratio (cir)-
transformed species-level taxonomic abundances in the caries versus healthy groups.
Same data as panel B except the data is clr-transformed (as is performed in DEICODE). (E)
Heatmap illustrating clr-transformed functional pathway abundances in the caries versus
healthy groups. Same data as panel C except the data is cIr-transformed (as is performed in

DEICODE).
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Supplemental Fig. S5: Contributional diversity of functional pathways of interest in caries
versus health. Stacked bar chart illustrating the relative abundance and contributional diversity
of arginine biosynthesis across the samples. (A) Arginine synthesis via L-ornithine (B) Aerobic

respiration (C) Branched-chain amino acid biosynthesis (D) Urea cycle.
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Supplemental Fig. S6: iRep and genome-based taxonomic abundance. Replication rates
of all taxa (A) and most abundant taxonomic groups (B). Replication rates were determined
using iRep (Brown et al. 2016). Replication rates were not significantly different between healthy
and caries groups for any taxonomic groups shown here for overall (A). (C) Beta diversity of
taxa using quantification of assembled genome bins. 3D PCA plot generated using
DEICODE (robust Aitchison PCA) (Martino et al. 2019). Data points represent individual subjects
and are colored with a gradient to visualize DMFT score, indicating severity of dental caries.
Feature loadings (i.e. taxa driving differences in ordination space) are illustrated by the vectors,

which are labeled with the cognate species name.
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