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Supplemental Methods 
 
Identification of loops from HiChIP data 

We collected four HiChIP datasets: K562-YY1, HCT116-YY1, K562-H3K27ac, and 

GM12878-H3K27ac for prediction, the raw reads in fastq format were downloaded from GEO. We 

employed HiC-Pro (v2.11.1) (Servant et al. 2015) to align the paired-end reads and used hichipper 

(v0.7.7) (Lareau and Aryee 2018) to produce loops. Briefly, in the pipeline of HiC-Pro, the raw 

fastq HiChIP data were aligned to hg19 reference with “--very-sensitive” and “end-to-end” option. 

Then the alignment results as well as the restriction enzyme cut sites file (hg19 Mbol digest) were 

imported into hichipper, the chromatin loops were called by combining all the replicates and using 

all read density. We only considered the uniquely mapped reads with false discovery rate (FDR) 

< 0.05, the loops with at least 2 PETs supported and length larger than 5kb were retained. The 

vast majority of the loops (91.7% for K562-YY1,90.3% for HCT116-YY1, 96.3% for K562-

H3K27ac, 95.9% for GM12878-H3K27ac) met above conditions and used for subsequent analysis. 

 



Identification of regulatory elements for all the anchors 

Firstly, we extracted anchors from loops, then we utilized ChromHMM (v1.21) (Ernst and 

Kellis 2017) annotations to identify the promoters and enhancers for the anchors from K562 and 

GM12878, and ENCODE Segway (Hoffman et al. 2012) for the anchors from HCT116 cell type. 

We also checked the transcribed activity of promoters by using the RNA-seq expression data from 

ENCODE (The ENCODE Project Consortium. 2012), if the FPKM> 0.5, then retained the promoter. 

 

Super enhancer analysis 

We employed the “-style super” option of findPeaks function in HOMER package (v4.10) 

(Heinz et al. 2010) to identify the super enhancer regions, the peaks found within 12.5 kb were 

merged together into large regions, the slope threshold was set to 1000. 

 

GO analysis for enhancer anchors 

GO analysis for enhancer anchors was taken by Metascape (v3.5) (Zhou et al. 2019) with 

the minimum overlap of 3, and minimum enrichment of 1.5. 

 

Motif analysis for enhancer anchors 

Firstly, the anchor regions from loops were overlapped and trimmed with the 

corresponding ATAC-seq peaks, then the trimmed anchors were used to detect motifs by HOMER 

package (v4.10) (Heinz et al. 2010) with size of 200, the transcription factors with –log2(p-value)> 

100 were chosen. Then the RNA-seq expression data from ENCODE was scaled by FPKM, the 

chosen transcription factors were ranked by the gene expression. 

 

Coincidence between different loop sets 

We first used 500bp as a threshold to merge the nearby anchors into a valid anchor, if 

both of the valid anchors of one loop appear in another loop set, and there was an interaction 

between them, the loop is regarded as coincidence. 

 

Multi-omics datasets processing 

 Multi-omics datasets were prepared for the prediction, including ChIP-seq/CUT&RUN, ATAC-



seq, in functional genomics, RRBS in epigenomics, and RNA-seq in transcriptomics. For ChIP-

seq/CUT&RUN data, the peak files were downloaded from ENCODE if accessible, or used 

Bowtie2 to align the raw reads to reference with default settings, and uniquely mapping reads 

were used to identify enrichment regions. The sequence alignment was then transformed into 

platform independent data structure by makeTagdirectory package of HOMER (v4.10), and 

findPeaks package was used to detect peaks with False discovery rate (FDR) <0.001, for 

transcription factor datasets, the peak size was set to 200bp, for histone marker datasets, the 

peak size was set to 500bp. The chromatin accessibility was profiled by ATAC-seq data, we 

filtered out some uninformative reads after the alignment with mapQuality<30, and “isProperPair” 

was set to only retain the proper paired reads, then the reads aligned to chrM were removed, 

MACS2 (Zhang et al. 2008) was used to call peaks. The methylation profile of RRBS data were 

downloaded from ENCODE. The gene expression data were downloaded from ENCODE, or 

aligned the raw reads to reference by using STAR (2.7.2a) (Dobin et al. 2013) with 2 mismatches 

at most, the raw read counts were normalized by FPKM.  

 

Features generation 

 For anchor type predictor (ATP), which is a minimal classifier, we trained the model with as 

few features as possible while ensuring the accuracy near optimal. Here, we only generated the 

features for the anchor regions. The R package GenomicRanges (Lawrence et al. 2013) was 

used to extract the profile values of specific regions. For ChIP-seq/CUT&RUN and ATAC-seq 

datasets, the peaks within anchor regions were extracted, and the mean value of peak signals 

were calculated as functional genomics features. For RRBS data, we calculated the methylation 

signals by multiplying methylation percentage by read counts for each profiled position within the 

anchor regions. The weighted mean values of methylation signals were used as epigenomics 

features. For RNA-seq data, we extracted the FPKM value of genes whose transcription start site 

locate within the anchors, then the mean FPKM value were used as transcriptomics features.  

 For Confidence predictor (CP), we constructed a powerful regressor to predict the score of 

loops accurately which required more features as input. We added left-flanking, in-between, right-

flanking regions for each anchor pair to generate features, so there are five regions waiting for 

the feature generation including two anchor regions. The left-flanking regions were the 2kb 



extension from the start site of left anchor, the in-between regions were the intermediate parts of 

anchor pairs, the right-flanking regions were the 5kb extension from the end site of right anchor. 

The features generation method for anchor regions is consistent with ATP. For left-flanking, in-

between, and right-flanking regions, we calculated mean values as well as standard deviations 

for every region following the same method for ATP.  

 

Training sample preparation 

 Four loop sets identified from HiChIP data were used as positive samples, the feature of each 

sample was generated as described above, and the annotations of regulatory elements for 

anchors were used as the target of samples, we only retained four types of targets for the 

prediction: promoter-enhancer, promoter-promoter, enhancer-enhancer, and none. The type of 

promoter-enhancer indicated one of the two anchors is promoter, and the other is enhancer, 

promoter-promoter and enhancer-enhancer indicated both of the anchors are promoters or 

enhancers. The type of none-none represented the loops are informative, including either of two 

anchors or both anchors are non-regulatory elements. Negative samples were produced by 

randomly selecting chromatin regions, avoiding ±2kb regions around TSS of any gene. The 

targets of negative samples were none-none, and the amount of negative sample was consistent 

with positive sample. 

 We combined positive and negative samples, and split the samples into 7:3 for training and 

testing, 5-fold cross validation was used in every training process. 

 

Classifier selection for anchor type predictor (ATP) 

 We tested the F1 scores of four standard classifiers: LinearSVC, LogisticRegression, 

KNeighbors, and RandomForest in four HiChIP datasets, four classifiers were constructed by 

using scikit-learn (Pedregosa et al. 2012) with default parameters. The testing results is shown in 

Fig. 3A, RandomForest outperformed the other classifiers, which was selected for the 

construction of ATP. 

 

A hybrid Random Forest classifier based on multi-task framework 

 Random Forest is a powerful classifier which uses all the given features to perform the 



prediction. As we need to train different classifiers for different HiChIP datasets, which is time 

consuming and tedious to select the important features to feed into model. Therefore, what we 

faced is how to select the most important features to minimize the input set while ensure the 

accuracy of prediction.  

Multi-task learning is an approach which allows tasks training in parallel, and transforms 

information between related tasks, the inductive transformation would help each task learning 

better (Ruder 2017). Group LASSO is one of the sparse learning approaches, which utilizes the 

coefficients of features to construct the prediction model (Meier et al. 2008). In this study, we 

combined the feature selection ability of Group LASSO and the prediction power of Random 

Forest to construct a hybrid classifier. Then we built the hybrid Random Forest classifier on the 

framework of multi-task. Firstly, Group LASSO was used to explore the sparsity constraints of 

prediction, we defined the general classification task as 𝑉" = 𝑚%𝐹%, i represents the number of 

sub-tasks, for the i-th task, 𝑉% is the labels vector for the task, and 𝑚%	is the regression coefficient 

for i-th task, 𝐹%  is the feature matrix of task i, we assume there are N sub-tasks in total, M 

represents a N’*N matix, in which N’ is the number of common features among all the tasks, the 

objective function is defined as 

𝑀 = 𝑉% − 𝑚%𝐹%
2
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We applied the feature selection module before fitting Random Forest, the multi-task framework 

was implemented by scikit-learn. Then the hybrid classifier was integrated in ATP, we tested the 

performance of ATP in four HiChIP datasets by 5-fold cross validation, the importance of features 

was ranked for the prediction, which shows in Fig. 3E, and the F1 score performance of increasing 

feature numbers in Fig. 3C shows that ATP only needs 12 features as input to obtain near optimal. 

 

Features correlation evaluation 

 Firstly, we used Pearson’s method to calculate the correlation-based distance matrix for all 

the features, then applied hierarchical clustering on the matrix, which used the method of 

“average”. The correlation heatmap was implemented by using R packages “stats” and “gplots” 

(v3.0.4). 

 



ChIP-seq peaks density for YY1 and ELF1 

 The bed file of YY1 ChIP-seq peaks were used as the target regions, and the alignment file 

of YY1 and ELF1 in bigwig/bam format were used to plot the density heatmap, which was 

implemented by R package Genomation (v1.20.0) (Akalin et al. 2014). 

 

ROC curve and precision-recall curve evaluation for ATP 

Except for F1-score, we also utilized Receiver Operating Characteristic (ROC) metric and 

precision-recall curve to evaluate the classification quality of ATP. Regular ROC curves are used 

to evaluate the binary classification output, while our problem has four class labels. We therefore 

used the extension setting “Multiclass” in scikit-learn (v0.20.3) (Pedregosa et al. 2012) to draw 

the ROC curve for each label. In addition, two kinds of measures were used to evaluate the 

general classification: “micro-averaging” considers each kind of label in the indicator matrix as a 

binary classification problem; “macro-averaging” allocates equal weight to each label in the 

classification task. 

 

Quantification of features in different regions 

 We gathered features for CP according to different loop-associated regions: two neighbors, 

two anchors and inter-anchor window. Then binned the features by the distance of 100bp, and 

the mean value and standard deviation of each region were calculated. We utilized z-score 

normalization to scale the signal of features, and then plotted the distribution of each region using 

boxplot from ggplot2 package (3.3.2) (Valero-Mora 2010). 

 

An adaptable Gradient Boosted Regression Trees (GBRT) regressor  

Gradient Boosted Regression Trees (GBRT) is a kind of inductively generated tree 

ensemble model, which trains a new tree against the negative gradient of loss function for each 

step. The motivation of GBRT is to combine multiple weak learners to generate a powerful 

regressor. The additive model of GBRT was built in greedy function (Friedman 2001). 

𝐹2 𝑥 = 𝐹24/ 𝑥 + 𝜈𝛾2ℎ2(𝑥) 

The tree newly added in each step was represented by ℎ2, which tried to minimize the loss L, 

and GBRT used a type of negative gradient loos function for current model 𝐹24/, 𝛾2 was step 



length, which was calculated by line search 

𝛾2 = 𝑎𝑟𝑔	𝑚𝑖𝑛 = 𝐿(𝑦%, 𝐹24/ 𝑥% − 𝛾
𝜕𝐿(𝑦%, 𝐹24/(𝑥%))
𝜕𝐹24/(𝑥%)

)
C
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and 𝜐 was used to scale step length, which called learning rate, learning rate impacted the 

training error cooperating with the number of weak learners. In addition, GBRT considered the 

strategy of stochastic gradient boosting (Friedman 2002), which combined gradient boosting with 

bagging, for each iteration, GBRT trained the base model on a fraction of training sample, and 

the value of fraction also impacted the performance of regression. Therefore, it’s crucial to 

determine the combination of learning rate, weak learner number and subsample fraction. Our 

problem is how to tune the model parameters for four different HiChIP datasets, meanwhile 

automatically adapt to the unknown datasets input by users. To solve the problem, we developed 

an adaptable module for GBRT to generate different combination of parameters to fit the model 

iteratively, then selected the optimal one to train the dataset and performed prediction. 

 

Evaluation of regression 

We evaluated the performance of Confidence Predictor (CP) by calculating adjusted R-

square value, Mean Absolute Error (MAE) and Root-Mean Squared Error (RMES). Adjusted R-

square compares the explanatory power of regression models that contain different numbers of 

predictors, which is more objective than R-square to measure the multi-variable regression model. 

For R-square, the Sum of Squared Regression Error (RSS) and Sum of Squared Total Error were 

calculated, the calculation of adjusted R-square was based on R-square, which has been adjusted 

for the number of predictors in the model, and it is always lower than the R-square (Shieh 2008). 

𝑅F = 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆

 

𝑅IJKF = 1 − (1 − 𝑅F)
𝑁 − 1

𝑁 − 𝑀 − 1
 

MAE measures the average magnitude of errors in a set of predictions without considering 

the direction. RMSE is a quadratic scoring function which measures the average magnitude of 

error by calculating the square root of the average between prediction and actual observation. 

The scatter plot of the predicted values versus the real values indicate the accuracy of prediction 



directly, the closer the slope of reference line to 1, the better the prediction. 

 

Validation of predicted loops 

We used the same method with “Coincidence between different loop sets” to identify the 

overlapping loops. The proportion of loop counts by distance was calculated by R package diffloop 

(v1.16.0) (Hnisz et al. 2016), and the differential analysis between loop sets was implemented by 

R package HiCcompare(v1.10.0) (Stansfield et al. 2018). The visualization of H3K27ac ChIP-seq 

track and interactions was implemented by WashU Epigenome (Li et al. 2019). For calculating 

the distribution of aggregated loop numbers around TSS, we first annotated the anchor regions 

by ChIPpeakAnno (v3.22.2) (Zhu et al. 2010), the distances between anchors and TSS were 

retrieved, and binned the loops by distances, then the number of loops for each bin was counted. 

The conformation plots of predicted loops were generated by Sushi (v1.26.0) (Phanstiel et al. 

2014). 

 

Conservation level evaluation for loops 

 The anchor regions of loops were overlapped and trimmed by the corresponding ATAC-seq 

peaks, then the phastCons60 scores for trimmed anchors were extracted by GenomicScores 

(v2.0.0) (Puigdevall and Castelo 2018). 

 

Loop proportions within TAD boundary 

 The Hi-C TAD coordinates were predicted from Dixon et al. Nature 2012 (Dixon et al. 2012), 

we annotated the active states of TAD by integrating the ChIP-seq datasets of active histone 

marks (Matthews and Waxman 2018) 

 

Genome Build Used in This Study 

For human genomics analysis, we utilized reads mapped to the GRCh37 (hg19) genome for 

practical considerations. Firstly, part of the improvements made in the GRCh38 (hg20) genome 

build regard the incorporation of alternative sequences to adequately represent single 

nucleotide variability. The alignment strategies we utilized in this study would not be affected by 

these changes. The GRCh38 build also improves the mapping of centromeres, however, 



centromeres possess a very low gene density and are generally transcribed at very low levels. 

Moreover, they contain large numbers of repetitive sequences (e.g. α-satellites), and so 

standard Next Generation Sequencing mapping pipelines are unlikely to align to these regions. 

Hence, they would not be enriched sources of enhancer-promoter contacts that would affect the 

analysis performed herein. Overall, we don’t believe re-aligning reads to GRCh38 would 

significantly affect the conclusions made in this manuscript.   

 

Published Datasets Used in This Study 

ChIP-seq/CUT&RUN datasets: GSE29611 (The ENCODE Project Consortium. 2012), GSE35583 

(Thurman et al. 2012), GSE31755 (The ENCODE Project Consortium. 2012), GSE127432 (The 

ENCODE Project Consortium. 2012), GSE32465 (Gertz et al. 2013), GSE30263 (Wang et al. 

2012), GSE31477 (The ENCODE Project Consortium. 2012), GSE96253 (The ENCODE Project 

Consortium. 2012), GSE92075 (The ENCODE Project Consortium. 2012), GSE135286 (Xiao et 

al. 2019), GSE63255 (Sanij et al. 2015). ATAC-seq datasets: GSE108513 (Calviello et al. 2019), 

GSE47753 (Buenrostro et al. 2013), GSE10197 (The ENCODE Project Consortium. 2012) 5 

(Kelso et al. 2017), GSE135286 (Xiao et al. 2019). RNA-seq da (The ENCODE Project 

Consortium. 2012) tasets: GSE88473, GSE90276 (The ENCODE Project Consortium. 2012), 

GSE33480, GSE72860 (Djebali et al. 2012).  RR (The ENCODE Project Consortium. 2012) BS 

datasets: GSE27584 (The ENCODE Project Consortium. 2012), GSE27584, GSE27584 (The 

ENCODE Project Consortium. 2012). 
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