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Supplemental Results

Regions near the RET locus identified by MARVEL as significantly associated with S-HSCR
The enhancer-based tests identified 32 significant enhancers, including 23 enhancers near RET (within
200kbp from the RET TSS). The top S-HSCR-associated enhancer (Chr10:43086011-43087012) contains the
well-known HSCR-associated common SNP rs2435357. Another RET-locus enhancer (Chr10:43064374-
43065375) has VDR binding loss more frequently in cases than in controls (odds ratio: 7.93, 95%Cl: 5.88
to 10.70, P<0.0001). VDR is a vitamin-D receptor that has been shown to directly regulate RET expression
(Pertile et al. 2018). The promoter-based tests identified only three significant promoters, all of which are
promoters of immediate neighboring genes of RET (CSGALNACTZ2, RASGEF1A and RP11-351D16.3). The
gene-based tests identified 20 significant genes, including RET itself and 15 genes near it (within 700kbp
from the RET TSS).

Comparing the results of MARVEL with those of existing methods

We compared the enhancer-based results with three commonly used single-variant and region-based
association tests using the variants in the hNC enhancers as input. The single-variant Wald test identified
160 variants above the 0.95 confidence interval of the null in the quantile-quantile plot (Supplemental Fig
S4a), including 69 variants having an association FDR < 0.1. Comparing the locations of these 160 variants
and the 200 loosely-associated enhancers identified by MARVEL, we found 66 of the Wald variants
overlapping with 31 of the MARVEL enhancers (Supplemental Fig S4b). Therefore, the Wald test did not
identify any S-HSCR-associated variants in the remaining 200-31=169 MARVEL enhancers, including 11
enhancers identified by MARVEL to be significantly associated with S-HSCR. As for the 160-66=94 Wald
variants not residing in any of the MARVEL enhancers, 46 of them did not overlap with any sequence
motifs. Furthermore, 20 of these 46 variants were in linkage disequilibrium with some loosely associated
variants that overlapped sequence motifs, suggesting that they may not be functional themselves. As for
the region-based association tests CMC and SKAT-O, none of the hNC enhancers were found to be either
significantly or loosely associated (Supplemental Fig S4c-d). These results show that MARVEL can identify
S-HSCR associated regions missed by these commonly used methods.

Stage-specific expression of known HSCR genes and genes loosely associated with S-HSCR
We clustered the known HSCR genes and genes loosely associated with S-HSCR based on the mouse trunk
NC scRNA-seq data. These genes can be roughly divided into two groups, namely genes with higher
expression in neural tube as compared to other stages (mainly in the top cluster in Figure 3C), and genes
with higher expression in the migratory stage and autonomic neuron stage (mainly in the bottom cluster).
Some genes in these two clusters are involved in NC and HSCR related pathways.

In the top cluster, Slit1 and Pax3 are important NC regulators (Szabé and Mayor 2018; Lang and Epstein
2003). Nkd1 and Draxin, both loosely associated with S-HSCR and have similar expression patterns with
Pax3, are antagonist in the Wnt-signaling pathway (Ishikawa et al. 2004; Hutchins and Bronner 2018).
Furthermore, Draxin has been shown to mediate appropriate levels of Wnt signaling for precise regulation
of cranial neural crest EMT (Hutchins and Bronner 2018).



The bottom cluster contains two well-known HSCR genes, Ret and Phox2b. Plcg2, identified in our gene-
based analysis, has a similar expression pattern with another known HSCR gene, Sox10. The human
ortholog of Plcg2 was previously proposed to be a potential candidate of HSCR (Carrasquillo et al. 2002).
In addition to these examples, several other known ENS genes (Ednrb, Erbb3, Nrp2, Robol, Sema3d, Slit3)
and genes loosely associated with S-HSCR (Grb10, Myc, Tcf12) also have similar expression patterns in the
marked stages. Some of these loosely associated genes have been shown to play important roles
(Supplemental Table S2) in the pathways in Figure 3A.



Supplemental Discussion

Site-based and region-based methods for studying noncoding genetic variants

Site-based methods (reviewed in Cheng et al. (2020)) aim at prioritizing the variants according to their
potential functional effects, based on information such as evolutionary conservation, sequence patterns
and epigenomic signals. Such information has been recorded in various annotation databases (Boyle et al.
2012; Ward and Kellis 2016; Watanabe et al. 2017; Khurana et al. 2013), including cell/tissue-specific
information indicative of the functional potential of noncoding regions such as chromatin accessibility,
histone modifications and transcriptional activities (The ENCODE Project Consortium 2012; The Roadmap
Epigenomics Consortium 2015; The FANTOM Consortium and the RIKEN PMI and CLST (DGT) 2014;
Andersson et al. 2014). In contrast, region-based methods consider genomic regions of potential
functional significance as the basic units, such as enhancers (Luo et al. 2017), promoters (An et al. 2018;
Rheinbay et al. 2017), contact regions in the three-dimensional genome architecture (Sallari et al. 2017,
Wu and Pan 2019), and combinatorial categories (An et al. 2018). The functional potential of these regions
is usually quantified by either the frequency of genetic variants (burden test and its derivatives) or more
complex measures, involving sequence kernel association test (Lee et al. 2012), convolutional neural
network (CNN) kernels that resemble transcription factor (TF) binding site motifs (Zhou and Troyanskaya
2015; Zhou et al. 2018, 2019), or gene expression models (Gusev et al. 2016; Lou et al. 2019; Zhou et al.
2018).

Cell types for epigenomic profiling

We performed epigenomic profiling using hNCs because HSCR is a kind of neurocristopathies, a disease
attributed to the defects in the development of neural crest. We also considered using hNPs, but since
hNP cells are quite heterogeneous, containing various intermediates along the neuronal differentiation
path (Lau et al. 2019), we focused on the more homogeneous population of hNCs. Additionally, since most
noncoding SNPs only have a small effect size, those genetic variants affecting the “earliest” stage of ENS
development (i.e. hNC) likely have greater biological impacts than those affecting the late-stage of
neuronal differentiation.

Single-cell time-series epigenomic data obtained at different stages of NC development will provide
additional information for a more comprehensive evaluation of the functional effects of genetic variants.



Supplemental Methods
Additional details of the MARVEL framework

Required inputs

MARVEL requires two main inputs from the user, namely 1) a list of genetic variants from each subject,
which can include single-nucleotide variants and small insertions and deletions, and 2) a set of target
regulatory elements. The target regulatory elements required are the enhancers for an enhancer-based
analysis, promoters for a promoter-based analysis, and both enhancers and promoters for a gene-based
analysis. In the enhancer-based and promoter-based analyses, each regulatory element is considered a
target region, while in the gene-based analysis, all the regulatory elements of a gene are considered
together as a single virtual target region.

Reconstruction of sample-specific sequences

For each target regulatory region, the genomic sequence of each subject is reconstructed by merging the
supplied genetic variants of this subject into the human reference sequence. Specifically, the
reconstructed sequence will contain the variant allele if the variant is either homozygous or heterozygous
with one of the two alleles being the reference one. For a heterozygous variant with both alleles different
from the reference one, one of them is included in the reconstructed sequence arbitrarily.

Motif scores calculation and aggregation

Based on the reconstructed sequence of each target regulatory element, the match (log odds) scores of
771 motifs from the HOCOMOCO (Kulakovskiy et al. 2016) human TF motif database (v11) are computed
using MOODS (v1.9.3), with the score set to 0 if the P-value does not pass the default threshold of 107,
When computing these scores, the nucleotide frequency background is taken from all the sequences in
the set of target regulatory elements. If a motif has multiple occurrences in a regulatory element, their
match scores are added up to give a single score for this motif. For a gene-based analysis, the scores of a
motif in different regulatory elements (including both promoters and enhancers) are further aggregated
by a weighted sum, where the weight indicates the strength or confidence of each regulatory element in
regulating the gene. For example, if high-throughput chromosome conformation capture data are
available, the contact frequencies between the promoter of a gene and different enhancers can be used
to define the weights of these enhancers, with a stronger weight given for an enhancer with a higher
contact frequency with the promoter.

Validation of MARVEL using simulated data

We simulated 3 motif score profiles to evaluate the performance of GLM-LARS in selecting important
motifs caused by different types of genetic variants (Supplemental Fig S1). In each scenario, the data for
100 cases and 100 controls were generated.

The first profile (Supplemental Fig S1a) contained 4 motifs (x1-x4) whose match scores were associated
with the phenotype due to common genetic variants with moderate effect sizes and 200 motifs (x5-x204)
whose match scores were not affected by the genetic variants (for simplicity, here we use the same
symbol for both a motif and its score vector). Among the four associated motifs, x1 and x2 were more
associated with the phenotype than x3 and x4, and thus the former two were expected to receive larger
absolute coefficients in the regression model.



The second profile (Supplemental Fig S1b) contained 4 motifs (x1-x4) whose match scores were associated
with the phenotype due to common variants with moderate effect sizes, 1 motif (x5) whose match scores
were associated with the phenotype due to less common variants with large effect sizes, 11 motifs (x6-
x16) whose match scores were altered in <1% of individuals due to sequencing errors, and 200 motifs
(x17-x216) whose match scores were not affected by the genetic variants. In this scenario, x1 and x2 were
expected to have the largest coefficients in the regression model, followed by x5, and in turn followed by
x3 and x4.

The third profile (Supplemental Fig S1c) was generated using a procedure similar to the one used for the
second profile, except that the last motif (x216) was completely correlated with the first motif (x1), with
the match score of the former being half of the match score of the latter in every subject. Both x1 and
X216 were expected to receive the same non-zero coefficient in the regression model.

To evaluate the statistical testing procedures of the target regions, we simulated 500 motif score profiles.
Among them, 10 motif score profiles were associated with the phenotype using the same procedure as
the third profile described above. The remaining 490 motif score profiles were generated randomly with
4 motifs whose match scores were sampled from a normal distribution, 12 motifs whose match scores
were altered in <1% of individuals due to sequencing errors, and 200 motifs whose match scores were not
affected by variants.

Application of MARVEL to S-HSCR

Whole-genome sequencing and variant calling data

In our previous study (Tang et al. 2018), WGS was performed on 431 S-HSCR cases and 487 ethnically
matched controls. Quality checks and processing of the data were performed, and genetic variants were
called from the resulting data using standard methods (Tang et al. 2018). We supplied all the identified
variants as input to MARVEL, including both common and rare variants.

Production of epigenomic data
ChIP-seq targeting H3K4mel and H3K27ac and ATAC-seq were performed on the hNC and hPSC with two
biological replicates for each assay.

ATAC-seq was performed as previously described (Buenrostro et al. 2015). In brief, around 35,000 FACS-
enriched hNC or hPSCs were collected and washed in cold PBS. Transposition reaction was performed
according the manufacturer’s protocol for Nextra Tn5 transposase Nextra kit (lllumina, Cat. No.: FC-121-
1030). Transposed DNA fragments were purified by Qiagen MiniElute PCR purification kit (Qiagen). DNA
libraries were then prepared by PCR amplification using NEBNext High-Fidelity PCR kit (New England
Biolabs) in the presence of barcoded PCR primers (sequences provided in Buenrostro et al. (2015)). After
the PCR amplification, DNA libraries were purified twice by 1.8x AMPure XP beads (Bechman Coulter
A63880). The quality of the purified DNA library was assessed by a Bioanalyzer High-Sensitivity DNA
Analysis Kit (Agilent). lllumina HiSeq SBS Kit v4 was used for PE101 sequencing (lllumina).

For ChIP-seq, 2.5-5x10° FACS enriched hNC or hPSC were collected and fixed with 37% formaldehyde for
10 minutes at room temperature. Chromatin was sonicated by Bioruptor Plus UCD-300 (Diagenode,
Belgium). ChIP was performed with 5 pg of H3K4mel (Abcam, Cat. no.: ab8895) or H3K27ac antibodies
(Abcam, Cat. no.: ab4729), and normal IgG (inputs as control), respectively, by MAGnify™ Chromatin
Immunoprecipitation System (Invitrogen, USA). ChlIP-seq libraries were prepared by MicroPlex Library



Preparation kit v2 (Diagenode) and Illumina sequencing (Pair-End sequencing of 101bp) were done at The
University of Hong Kong, Centre for PanorOmic Sciences (HKU, CPOS).

Processing of epigenomic data

The raw data were processed using the ENCODE standard ChIP-seq (https://github.com/ENCODE-
DCC/chip-seqg-pipeline) and ATAC-seq (https://github.com/kundajelab/atac_dnase_pipelines) pipelines,
which included read alignment, quality control, reproducibility assessment, and reads pooling. Narrow
peaks were then called from the pooled reads using MACS2 (Zhang et al. 2008) with default settings,
involving the matched input controls in the case of ChIP-seq.

Defining target regulatory regions

ChromHMM (Ernst and Kellis 2012) (v1.20) was used to perform genome segmentation based on the ChlP-
seq and ATAC-seq peaks. We defined an initial set of enhancers as the genomic segments in chromatin
states that emitted both H3K4mel and H3K27ac marks and overlapped an ATAC-seq peak. These
enhancers were then size-normalized to 1kbp each, covering the +/- 500bp regions around the
corresponding ATAC-seq peak summits. Target promoters were defined as the +/-500bp regions around
all the TSSs of all the genes in GENCODE (v28).

For the negative control study, we collected FANTOMS5 (Arner et al. 2015; Andersson et al. 2014) phase 2
permissive enhancers from all samples, extended the length of each enhancer to 1,000 bp while keeping
the enhancer center unchanged, and kept only those having no overlap with the active hNC enhancers
defined above.

Construction of motif score profiles

For each target enhancer and promoter, we constructed the motif score profile of each subject as
described above. For the gene-based analysis, for each gene we considered all its promoters together
with all enhancers within 1Mbp from its first TSS. The weight of each regulatory element depends on its
genomic distance from the TSS (with the distance of the promoter defined as 0). Specifically, the
frequencies of chromatin contact at different distance bins from 0 to 1Mbp were collected from promoter
capture Hi-C data produced from hPSCs, obtained from ArrayExpress with accession code E-MTAB-6014
(Montefiori et al. 2018). These frequencies were normalized to have a sum of one and these normalized
frequencies were used as the weights (Supplemental Table S4).

Covariates
In the statistical testing procedure of MARVEL, following our previous work (Tang et al. 2018), we used
the first three principal components of the genetic variant matrix as the covariates.

Comparing MARVEL with existing single-variant and region-based tests

We compared the enhancer-based results of MARVEL with the results of 3 commonly used association
tests, namely the single-variant Wald test and the region-based tests CMC (Combined Multivariate and
Collapsing) (Li and Leal 2008) and SKAT-O (Optimized Sequencing Kernel Association) (Lee et al. 2012). All
three tests were performed using RVTESTS (Zhan et al. 2016) with the same covariates as MARVEL.
Following the common practice (Moutsianas et al. 2015; Lee et al. 2014; Zhang et al. 2019), Wald tests
were performed on biallelic common variants with minor allele frequency (MAF) larger than 0.01, while
the CMC and SKAT-O tests were conducted on rare variants (MAF<0.01). For both cases, only the variants
within the same set of hNC enhancers used by the MARVEL enhancer-based analysis were considered.



The P-values from each testing approach were separately corrected for multiple hypothesis testing using
the Benjamini-Hochberg method. Motif scanning was performed on +/-20bp around each variant using
MOODS based on the same motif set, P-value threshold and nucleotide background frequencies as in the
MARVEL enhancer-based test.

For the loosely associated variants identified by the Wald test, pairwise r? values were computed using
PLINK (v1.9) with the ‘~-Id’ parameter (Chang et al. 2015; Gaunt et al. 2007). The variant pairs with an r?
value higher than 0.9 were defined to be in linkage disequilibrium.

Analysis of functional pathways

This analysis involved 417 genes loosely associated with S-HSCR from the enhancer-based, promoter-
based and gene-based analysis results. For the enhancer-based results, the loosely associated genes
included all genes within 50kbp from each loosely associated enhancer, or the gene closest to it when
there were none.

The functional interactions were obtained from Reactome (Wu and Haw 2017) (v7.2.3)
(https://reactome.org/tools/reactome-fiviz), which contained manually curated functional interactions
among over 60% of human proteins. The Reactome-Flviz plugin of Cytoscape (Wu and Haw 2017) was
used to obtain and visualize the functional interactions.

To evaluate the functional connectedness of the genes, we counted the number of them having at least
one functional interaction with another gene in this set and the total number of interactions among them.
We then repeated this same procedure for 1,000 random sets of the same number of genes, and
computed the P-value as the number of random sets having a larger number of interactions than the
actual genes loosely associated with S-HSCR.

When exploring the functional pathways of these loosely associated genes, we added two sets of genes
to the network before looking for highly connected clusters. The first set contained 26 known HSCR genes,
including BACE2, DNMT3B, ECE1, EDN3, EDNRB, FAT3, GDNF, GFRA1, KIFBP, L1CAM, NRG1, NRG3, NRTN,
NTF3, NTRK3, PHOX2B, PROK1, PROKR1, PROKR2, PSPN, SEMA3A/C/D, SOX10, TCF4, and ZEB2 (Tang et al.
2018; Garcia-Barcelo et al. 2009; Amiel et al. 1996; Tilghman et al. 2019; Alves et al. 2013; Luzdn-Toro et
al. 2015). The second set contained 19 genes involved in ENS function or NC migration, including CDC42
(Szab6 and Mayor 2018), CUL1 (Liao et al. 2004), ERBB2/3/4 (Szab6 and Mayor 2018), GLI3 (Liu et al. 2015),
GNAI1 (Barlow et al. 2003), GRB2 (Zhang et al. 2011; Alberti et al. 1998), NRP1/2 (Szab6 and Mayor 2018),
PAX3 (Nelms and Labosky 2010; Lang and Epstein 2003), PLXNB1 (Memic et al. 2018), ROB0O1/2/3 (Szabd
and Mayor 2018), SLIT1/2/3 (Szabd and Mayor 2018), and TCF12 (Nelms and Labosky 2010). The final
network was formed by the genes in these three sets having at least one Reactome functional interaction
with each other.

Analysis of mouse trunk NC scRNA-seq data

Processed mouse trunk NC scRNA-seq data (Soldatov et al. 2019) were downloaded from
http://pklab.med.harvard.edu/ruslan/neural.crest.html. The expression profiles were extracted from the
‘wgm?2’ data matrix, which had been batch-adjusted and mean-variance normalized as described in the
original paper (Soldatov et al. 2019). In-house R (R Core Team 2020) (v3.6.3) scripts and the pheatmap
library (https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf) were used to produce the
expression heatmaps. To select genes with stage-specific expression for visualization, principal
component analysis was performed on the expression matrix with the genes treated as features. The 10



genes with the largest absolute loading in each of the top three principal components were included in
the visualization.

Functional studies

Cell culture

A control hPSC line (UE023A control hPSC line (UE02302) was established as previously described (Lau et
al. 2019). hPSCs were maintained in Matrigel (Corning)-coated plate in mTeSR1 medium (Stem Cell
Technologies) in a 37 °C humidified 5% CO; incubator. The hPSCs were regularly passaged by treating with
Dispase (Stem Cell Technologies).

Neural crest induction was performed according to a previously described protocol (Lai et al. 2017). In
brief, hPSCs were dissociated into single cell suspension by Accutase (Millipore) and plated on Matrigel-
coated plate in a density of 5X10* cells cm™ in ES cell medium containing 10 ng/mL fibroblast growth
factor 2 (FGF2, Peprotech). The differentiation was started by replacing ES cell medium with KSR medium
and gradually switched to N2 medium from day 4 to day 10. To differentiate hPSCs to hNC cells, the cells
were treated with 100 nM LDN193189 (Stemgent) from day 0 to day 3, 10 uM SB431542 (Abcam) from
day 0 to day 4, 3 uM CHIR99021 (Stemgent) from day 2 to day 10 and 1 uM retinoic acid from day 6 to
day 10.

For neuronal differentiation of hNCs to hNPs, hNC cells were dissociated into single cell suspension by
Accutase (Millipore) at day 10. For the study of the regulatory element in PIK3C2B intron 10, the harvested
cells were pelleted and resuspended with N2 medium containing 10 ng/mL FGF2 and 3 uM CHIR99021in
a density of 5X10° cells pl*. 25 X10* hNC cells were seeded as droplets on
polyornithine/laminin/fibronectin-coated surface. For the RET-associated study, the harvested hNC cells
were subjected to fluorescence-activated cell sorting (FACS) and hNC cells which were positive to both
HNK-1 (BD Biosciences #560845) and p75"™ (Miltenyi Biotec #130-091-917) were sorted by BD FACSAria
Il Cell Sorter. 5 X10*sorted cells were seeded as droplets on polyornithine/laminin/fibronectin-coated
surface. Neuronal differentiation was initiated by replacing the medium with N2 medium containing 10
ng/mL BDNF (Peprotech), 10 ng/mL GDNF (Peprotech), 10 ng/mL NT-3 (Peprotech), 10 ng/mL NGF
(Peprotech), 1 uM dibutyryl cAMP (Sigma-Aldrich) and 200 uM ascorbic acid (Sigma-Aldrich). The hNC
cells differentiated into hNP cells in 9 days.

Plasmid constructions

Human codon-optimized high fidelity Cas9 nuclease construct with GFP tag (pSpCas9(BB)-2A-GFP (PX458))
(Ran et al. 2013) was obtained from Addgene (#48138). Oligos for sgRNA cloning are listed in
Supplemental Table S5. The annealed sgRNA oligos were ligated with Bbsl-linearized Cas9 construct using
Blunt/TA ligation mix (New England Biolabs). For the sgRNA targeting the rs2435357 locus, the annealed
sgRNA oligo was ligated with Aflll-linearized gRNA cloning vector (Mali et al. 2013) (Addgene #41824)
using Blunt/TA ligation mix.

For luciferase assay, PIK3C2B intron 10 fragment was amplified from the control hPSC genomic DNA and
NFIA ORF was amplified from the control hNP cDNA using Q5 Hot Start High-Fidelity DNA Polymerase
(New England Biolabs). PIK3C2B intron 10 fragment was cloned into NanoLuc luciferase reporter construct
(pNL3.2[NlucP/minP]) (Promega #N1041) to generate PIK3C2B-pNL construct while NFIA ORF was cloned
into pFLAG-CMV expression plasmid to generate NFIA-FLAG construct. The A>T variant was introduced to
PIK3C2B-pNL construct by site-directed mutagenesis using QuickChange Lightning Site-Directed



Mutagenesis Kit (Agilent) to generate PIK3C2B-A>T-pNL construct. The cloning primers and mutagenesis
primers are listed in Supplemental Table S5.

Generation of new hPSC lines using CRISPR-Cas9 system

For the generation of UE-rs2435357 hPSC line, 1 X 10° UE control hPSCs were transfected with 2 pg sgRNA
construct, 20 pg ssODNs and 4 ug pSpCas9(BB)-2A-GFP construct using Human Stem Cell Nucleofector Kit
2 (Lonza). For the generation of UE-RASGEF1A-int1-KO and PIK3C2B-int10-KO hPSC lines, 2X10° UE
control hPSCs were transfected with a pair of pSpCas9(BB)-2A-GFP constructs containing the specific
sgRNAs (350 ng per construct) using P3 Primary Cell 4D-Nuclecfector X Kit (Lonza). The transfected cells
were plated in Matrigel-coated dish and cultured for 2 days. hPSCs expressing GFP were sorted as single
cells into Matrigel-coated 96-well plate with BD FACSAria Ill Cell Sorter. The sorted cells were expanded
for 2 weeks and genotyped to confirm the site-specific conversion or the deletion of the target regions.

Quantitative RT-PCR (RT-gPCR)

Total RNA from hPSCs, hNCs and hNPs was extracted by RNeasy Mini Kit (Qiagen). RNA concentration was
determined by NanoDrop 1000 (Thermo Fisher Scientific) and 100ng or 500 ng RNA was then reverse-
transcribed to cDNA using HiScript Il Q RT SuperMix (Vazyme). The expression levels of the target genes
were quantitated using real-time quantitative RT-PCR or Droplet digital PCR (ddPCR). For real-time
guantitative RT-PCR, diluted cDNA samples were amplified by Luna Universal Probe qPCR Master Mix
(New England Biolabs) using specific TagMan Gene Expression Assay (SOX13, Assay ID: Hs00232193_m1;
ELAVL4, Assay ID: Hs00956610 mH; PIK3C2B, Assay ID: Hs00898499 m1l; PPP1R15B, Assay ID:
Hs03044848 m1; RET, Assay ID: Hs01120027_m1; UBC, Assay ID: Hs00824723 _m1; 18S, Assay ID:
Hs99999901 s1) (Thermo Fisher Scientific) with PCR profiles of 95 °C (1 min) followed by 45 cycles of 95 °C
(15 s) and 60 °C (30 s). Fluorescence was measured by ViiA 7 Real-Time PCR System (Thermo Fisher
Scientific) at the end of each cycle. Droplet digital PCR (ddPCR) was used to measure RET expression in
hNPs. 1 pl cDNA samples were mixed with ddPCR Supermix for Probes (Bio-Rad #186-3010) and TagMan
Gene Expression Assay probes of RET and UBC (Thermo Fisher Scientific). The reaction mixtures were then
loaded into the sample wells of DG8 Cartridge (Bio-Rad #186-4008), followed by 70 ul of Droplet
Generation Qil for Probes (Bio-Rad #186-3005) into the oil wells. The cartridge was then placed into QX200
Droplet Generator (Bio-Rad) for droplet generation. After droplet generation, the reaction droplets were
transferred into a 96-well plate and sealed with foil PCR plate heat seal (Bio-Rad #181-4040) and
proceeded to thermal cycling with profiles of 95 °C (10 min) followed by 40 cycles of 95 °C (30 s) and 60 °C
(1 min) and then deactivation at 98 °C for 10 min. The end-point fluorescence signals from the reaction
droplets were then measured by QX200 Droplet Reader (Bio-Rad). Each individual sample was assayed in
triplicate and gene expression was normalized with UBC or 18S expression.

Gel shift assay

3X10°Hela cells were seeded to each well of 6-well plates and cultured in DMEM supplemented with 10%
fetal bovine serum and 1% penicillin/streptomycin (Thermo Fisher Scientific) 24 hours before transfection.
2 ug NFIA expression construct (NFIA-FLAG) was transfected to each well of cells by FUGENE HD
Transfection Reagent (Promega). Nuclear extracts containing the NFIA protein were extracted from 3
wells of transfected cells using nuclear and cytoplasmic extraction kit (Thermo Fisher Scientific). 1 mM
ssODNs (PIK3C2B: 5’- CGC AAG AGC TCT TCA GAA ATG GAT GCC AAG TGT GTC TCC TCT TCC TGA-3’ and
PIK3C2B-A>T: 5’- CGC AAG AGC TCT TCA GAA ATG GAT GCC ATG TGT GTC TCC TCT TCC TGA-3’) derived
from the intron 10 of PIK3C2B were biotin-labeled using Biotin 3’-End DNA Labeling Kit (Thermo Scientific).



Biotin-labeled ssODNs were then annealed with reverse complimentary ssODNs to generate biotin-
labeled probes. Gel shift assay was performed by mixing the nuclear extracts with biotin-labeled probes
according to the manufacture’s protocol (LightShift Chemiluminescent EMSA Kit; Thermo Fisher Scientific).
In brief, 20 fmol biotin-labeled probes were mixed with 1 ug NFIA nuclear extract in 1X binding buffer
containing 50 ng/ul Poly (dI.dC), 0.05% NP-40, 6% glycerol, 60 mM KCIl, 1 mM EDTA and 5 mM MgCl,. The
binding reactions were incubated for 20 minutes at room temperature. For competition assays, 4 pmol
unlabeled probes were added to the mixture before adding the biotin probes. For supershift assays, 0.1
ug anti-NFIA (Sigma-Aldrich, HPA006111) were added to the mixture in the final step before incubation.
The binding reactions were resolved in 5% nondenaturing TBE pre-cast gel (Bio-Rad) using Mini-PROTEAN®
Electrophoresis System (Bio-Rad) and then transferred to Biodyne B Nylon Membrane (Thermo Fisher
Scientific) in 0.5X TBE buffer. After cross-linking, biotin-labeled probes on the membrane were detected
using Chemiluminescent Nucleic Acid Detection Module.

Luciferase assay

1.5 X10° SH-SY5Y cells were seeded to each well of 24-well plates and cultured in 1:1 MEM:F-12 mix
supplemented with 10% fetal bovine serum, 1% non-essential amino acids, 1% sodium pyruvate and 1%
penicillin/streptomycin (Thermo Fisher Scientific) 24 hours before transfection. 50 ng control firefly
luciferase construct (pGL3-control), 150 ng NanolLuc luciferase constructs (pNL3.2 or PIK3C2B-pNL or
PIK3C2B-A>T-pNL) and 25ng NFIA expression construct (NFIA-FLAG) were transfected into the cells using
jetPRIME transfection reagent (Polyplus Transfection) according to the manufacturer’s protocol.
Luciferase activities were detected with Nano-Glo Dual-Luciferase Reporter Assay System (Promega) and
measured by VICTOR Nivo Microplate Reader (PerkinElmer).
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Supplemental Tables

Supplemental Table S1 (provided in a separate file) Lists of loosely associated enhancers, promoters and
genes identified from the application of MAVEL to the S-HSCR data. Each list contains the locations of the
elementsin hg38, gene symbols (if applicable), MARVEL association P-values, corresponding FDR Q-values,
the TF motifs selected by the procedure, and the AUROC score. For each selected motif, its coefficient in
the model is also provided, where a positive value corresponds to an increase of disease risk with a gain
of the motif match score, and a negative value corresponds to an increase of disease risk with a loss of
the motif match score.



Supplemental Table S2 List of genes relevant to the functional categories identified from the analysis of
Reactome functional interactions. The last four columns indicate whether each gene was identified from
our enhancer-based (E), promoter-based (P) or gene-based (G) analysis, and whether it passed the
FDR<0.1 threshold in at least one of these analyses.

Functional Relevant genes  Relevance E P G FDR<

loosely 0.1

category

associated with
S-HSCR

Chemotaxis and RET Major HSCR gene; receptor of GNDF; RET signaling Vv vy
cell-cell regulate enteric NC migration
signaling
FGF3/4/19 FGF-FGFR signaling
PLXNB2 Semaphorin-Plexin signaling; Semaphorin has been
linked to HSCR (Kapoor et al. 2015; Gunadi et al. 2016;
Tang et al. 2016)
EPHA2/8 Ephrin signaling (McLennan and Krull 2002; Flanagan
and Vanderhaeghen 2002)
Cell adhesion, JAM3 Junctional adhesion protein
migration and
. . ACTN1, ACTG1 Subunit of actinin and actin
integration
SHTN1 Involved in the CDC42-regulated generation of internal
asymmetric signals required for neuronal polarization
and neurite outgrowth (Kubo et al. 2015).
ITGB7 beta-Integrin; important for cell-ECM interaction
PI3K/PKC/MAP  PIK3C2B Subunit of class Il PI3K; hub of PI3K pathway
K signaling (Dinsmore and Soriano 2018)
MAPK11/12 Hub of MAPK/ERK signaling pathway (Dinsmore and
Soriano 2018)
PRKCZ PKC-zeta, subunit of PKC; hub of PKC pathway
E3 Ubiquitin FBX02/6/15/44  Subunit of SCF E3 Ubiquitin Ligase (Liao et al. 2004)
Ligase complex
Transcriptional MYC Premigratory NC pool size regulator (Kerosuo and
regulatory Bronner 2016)
factors
ZBTB17 Premigratory NC pool size regulator (Kerosuo and
Bronner 2016)
RARG Retinoic acid receptor gamma; Retinoic acid regulates

NC migration (Uribe et al. 2018; Li et al. 2010)




Supplemental Table S3 Recurrent TFs whose motif match scores are significantly more frequently altered
in the enhancers loosely associated with S-HSCR than the background of all enhancers. P-values were
corrected by the Benjamini-Hochberg method.

TF FDR Q-value TF FDR Q-value TF FDR Q-value
ZNF816 0.001285 ZNF768 0.011565 SMAD4 0.0367455
SMAD1 0.001285 ETV3 0.011565 HMGA2 0.0367455
ZNF770 0.001285 ZNF784 0.0148032 MXI1 0.0409594
ZNF219 0.001285 KLF16 0.0156859 GLI1 0.0419602
HAND1 0.0033043 E2F3 0.0156859 ZNF350 0.0419602
PLAGL1 0.0034267 RARG 0.0156859 JUNB 0.0419602
GLI2 0.0034267 SP4 0.02056 ZNF274 0.0419602
ELK4 0.0056073 CTCF 0.02056 E2F2 0.0448582
NHLH1 0.0056073 TEAD2 0.02056 ZNF140 0.0448582
POUSF1 0.0068533 ZNF136 0.02056 CREB3 0.0448582
SP1 0.0068533 TEAD4 0.0220286 ZNF467 0.04626
TFAP2B 0.0068533 SP3 0.0227017 GLI3 0.04626
E2F4 0.0068533 THAP1 0.0250054 Z1C2 0.04626
ETV1 0.0068533 VEZF1 0.0257676 ZNF354A 0.04626
ZNF148 0.00771 SMAD?2 0.0281415 THRA 0.04626
ZBTB17 0.0088114 SP2 0.0281415 ZSCAN22 0.04626
SMAD3 0.0088114 ZBED1 0.0287715 HOXC6 0.0478261
SP1 0.011565 ZNF317 0.034438 MECOM 0.0480392

Supplemental Table S4 Weights of regulatory elements used in the gene-based analysis of the S-HSCR
study with respect to their distance from the gene TSS.

Bin (distance from TSS) Weight Bin (distance from TSS) Weight
Okb - 50kb 0.132258 500kbp - 550kbp 0.022819
50kbp - 100kbp 0.133288 550kbp - 600kbp 0.017064
100kbp - 150kbp 0.135888 600kbp - 650kbp 0.013075
150kbp - 200kbp 0.126787 650kbp - 700kbp 0.010261
200kbp - 250kbp 0.107039 700kbp - 750kbp 0.007829
250kbp - 300kbp 0.085864 750kbp - 800kbp 0.006324




300kbp - 350kbp 0.066000 800kbp - 850kbp 0.004990

350kbp - 400kbp 0.051969 850kbp - 900kbp 0.004070
400kbp - 450kbp 0.038727 900kbp - 950kbp 0.003359
450kbp - 500kbp 0.029764 950kbp - 1000kbp 0.002626

Supplemental Table S5 List of primers and oligos used for cloning, genotyping and mutagenesis. *:
Sequences in small letters represent the complementary overhangs or restriction enzyme sites for the
purpose of cloning.

Primer name Sequence (5’ to 3’)* Purpose

For cloning of 5’ sgRNA for

PIK3C2B-int10-KO-5'gRNA-F caccgCACCTACACACTCTAGCAAC deletion of PIK3C2B intron 10

For cloning of 5’ sgRNA for

PIK3C2B-int10-KO-5'gRNA-R 2aacGTTGCTAGAGTGTGTAGGTGc deletion of PIK3C2B intron 10

For cloning of 3’ sgRNA for

PIK3C2B-int10-KO-3'gRNA-F caccgTTGAGAGCCCAGGCCAGTAA deletion of PIK3C2B intron 10

For cloning of 3’ sgRNA for

PIK3C2B-int10-KO-3'gRNA-R a2aacTTACTGGCCTGGGCTCTCAAC deletion of PIK3C2B intron 10

For genotyping of the deletion
PIK3C2B-int10-KO-seq-F CTTCCCACTGAAGGCTGACA of PIK3C2B intron 10 and RT-
PCR of PIK3C2B

For genotyping of the deletion

PIK3C2B-int10-KO-seq-R AGAGCAGTTCCCTTACCTCG A A
PIK3C2B-exon12-R AGGGCTTCCACGACCTTCT For RT-PCR of PIK3C2B
NFIA-FL-FLAG-F TTGgaattcaATGTATTCTCCGCTCTGTCTCACC  FOF cloning of NFIA expression
NFIA-FL-FLAG-R TTTgtcgacTTATCCCAGGTACCAGGACTGTG For cloning of NFIA expression
PIK3C2B-int10-pNL-F TTTggtaccGAAGAGAGGGATACTGTCAGGTAAC igrtg'%mg of PIK3C2B intron
PIK3C2B-int10-pNL-R TTTctcgagAGCCAAGACACTGGGATCCTG igrtg'%mg of PIK3C2B intron
PIK3C2B-A>T-pNLF AGGAAGAGGAGACACACATGGCATCCATTTCTG ;(I)\lerutagenesis of PIK3C2B-
PIK3C2B-AT-pNLR TTCAGAATGGATGCCATGTGTGTCTCCTCTTCC ;(I)\lerutagenesis of PIK3C2B-

For cloning of sgRNA for
conversion of rs2435357 from
T

TTTCTTGGCTTTATATATCTTGTGGAAAGGACGA

RET-r2435357-T-allele-gRNA-F 1\ -7 CCGCCTGTGGATGACCATGTAA

For cloning of sgRNA for
conversion of rs2435357 from
T

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCT

RET-r2435357-T-allele-gRNA-R - s p A CTTACATGGTCATCCACAGGC




RET rs2435357_C>T_ssODN

RASGEF1A-int10-KO-5'gRNA-F

RASGEF1A-int1-KO-5'gRNA-R

RASGEF1A-int1-KO-3'gRNA-F

RASGEF1A-int1-KO-3'gRNA-R

RET-int1l-seq-F
RET-intl-seq-R

RASGEF1A-intl-seq-F

RASGEF1A-intl-seq-R

AGGCCTGGCTGAACAGGACTGGCCACCCAAGT
GGCCTGTGGATGACCATGTAAGGGTCACTGGCC
CCCTTGGCTGCAGGGCTGTAGAGTCTGCCCCAG
CcT

caccgTGGACTCCTGCCGGCAACCA

2aacTGGTTGCCGGCAGGAGTCCAc

caccgCGACCCAGCCTCTGACCTAC

2aacGTAGGTCAGAGGCTGGGTCGc

CAGGGCCAGTGAACAATGTA
ACCACCCACACTTCCATACC

GTTGACCTGGGGAGAGATGT

AAGAATCTTTCCCCGCTGCA

Single oligonucleotides for
conversion of rs2435357 from
T

For cloning of 5’ sgRNA for
deletion of RASGEF1A intron 1

For cloning of 5’ sgRNA for
deletion of RASGEF1A intron 1

For cloning of 3’ sgRNA for
deletion of RASGEF1A intron 1

For cloning of 3’ sgRNA for
deletion of RASGEF1A intron 1

For genotyping of rs2435357
For genotyping of rs2435357

For genotyping of the deletion
of RASGEF1A intron 1

For genotyping of the deletion
of RASGEF1A intron 1
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Supplemental Fig S1 Simulated motif score profiles for testing the feature selection procedure of MARVEL.
(A-C) The three motif score profiles reflect situations in which the match scores of some motifs are
affected by phenotype-associated independent common variants with moderate effect sizes (A),
independent common variants with moderate effect sizes and less common variants with large effect sizes
(B), and variants that are correlated (C). Details of the simulation procedure are given in Methods. In each
panel, the left scatterplots show the match scores of the motifs affected by phenotype-associated variants
and some of the motifs that are not. Random jitters are added to reduce overlapping of points. The
phenotype-associated motifs were designed to be x1-x4 (A), x1-x5 (B), and x1-x5 and x216 (C). The middle
graphs show the coefficient values of different motifs when the magnitude of the coefficient vector is set
to different values. Only motifs with non-zero coefficients are shown. The right graphs show the change
of deviance at different magnitude values of the coefficient vector.
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Supplemental Fig S2 Verification of the statistical testing procedures of MARVEL based on simulated data.
(A) Quantile-quantile plot of simulated motif score profiles. Motif scores were generated for 500
regulatory regions, each with 216 motifs, 100 cases and 100 controls. For 10 of these regions, their motif
score profiles were generated using the same way for generating the third motif score profile for testing
the feature selection procedure of MARVEL. For the remaining 490 regions, their motif score profiles were
generated randomly. Each dot in the plot corresponds to one regulatory region. The yellow shaded area
shows the 95% confidence interval according to beta error distribution. (B) Comparison of the AUROC
value distributions of the loosely associated regions identified by MARVEL with the other regions.

Supplemental Fig S3 Quantile-quantile plot of the association P-values of the background set of enhancers.
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Supplemental Fig S4 Comparing the results of MARVEL and three commonly used association tests when
applied to the hNC enhancer variants. (A) Q-Q plot of the association P-values produced by the single-
variant Wald test. (B) Venn diagram showing the overlap between the variants identified by the Wald test

and the enhancers identified by MARVEL. (C-D) Q-Q plots of the association P-values produced by the
region-based tests CMC (C) and SKAT-O (D).



