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Supplemental Text 1. PEPPAN: Phylogeny Enhanced 

Prediction of a PANgenome 

Here we describe the detailed steps of the PEPPAN pipeline in Supplemental Fig. 

S1. 

1.1 Identifying representative gene sequences 

1.1.1 Iterative clustering of genes  

The default input for PEPPAN is a set of pre-computed gene annotations in GFF3 

format (Ensembl Release 98 2019). PEPPAN then extracts all annotated CDS 

features from that input set. PEPPAN can also include other annotated features such 

as ncRNAs in its analysis if they are specified using the ‘—feature’ option. PEPPAN 

can also use externally curated gene sets as reference gene sequences for its re-

annotation step, such as those from a wgMLST scheme. 

PEPPAN runs Linclust (Steinegger and Soding 2018) iteratively on the entire set of 

input genes to identify representative gene clusters for the input gene set, starting 

with clusters of 100% nucleotide sequence identity, and iteratively lowering the 

identity threshold in ten 1% steps to 90% sequence identity. In each round, 

sequences with less than 80% coverage across the aligned region are excluded from 

the cluster. After each iteration, only the longest sequence is retained for each 

cluster, and these are then used as input to the next clustering round. The output 

from the final step consists of a set of one representative gene sequence for each 

90% sequence homology cluster, which is then used for downstream analyses.  

1.1.2 Minimum spanning trees from all-against-all comparisons of 

representative genes 

BLASTN (Altschul et al. 1990) and DIAMOND (Buchfink et al. 2015) are used to 

compute all-against-all comparisons of all representative gene sequences, and 

scores for the quality of pairwise alignments of gene sequences. PEPPAN then 

calculates a collection of discrete minimum spanning trees (MSTs) from scores in 

which ≥40% of the codons (in the shorter gene) were aligned, and which shared 

≥40% identity across the alignment.  
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1.1.3 Genetic distances between genomes  

PEPPAN extracts a set of the most common genes across all the genomes to 

calculate a proxy for the average genetic distances between genomes. That proxy is 

used in section 1.3.2 to evaluate pairwise genetic distances of individual genes. This 

goal requires excluding paralogs. To this end, all genes are removed from MSTs in 

which multiple sequences in the cluster originated from a common genome, leaving 

only single copy genes from different genomes. As a result, the greater the number 

of remaining single-copy genes per MST, the most likely they are to constitute part of 

the core genome. PEPPAN identifies the MSTs with the greatest number of genes, 

up to a maximum of 1000 MSTs, and uses that set as a proxy for the core genome. 

for an estimate of average genetic distance between genomes.  

Pairwise genetic distances of individual genes from each MST are calculated based 

on their membership within the representative gene clusters identified in section 

1.1.1: (1) for two genes belonging to the same 90% identity cluster, the genetic 

distance equals one minus the largest clustering threshold that was needed to 

cluster them; (2) for two genes from different 90% identity clusters, the genetic 

distance equals the value of the most distant edge in the MST connecting these two 

clusters (section 1.1.2). Pairwise genetic distances of individual genes are 

summarized over all MSTs and a log-normal distribution is fitted for each pair of 

genomes, yielding an estimate of average genetic distance (𝐷ഥ) and standard 

deviation (𝜎) for each pair of genomes.  

1.2 Identifying all gene candidates in all genomes  

In order to identify genes independently of individual genome annotations, each 

representative gene sequence is aligned to all genome sequences using BLASTN 

and DIAMOND. DIAMOND alignments are then back-translated into nucleotide 

alignments. Alignment scores from both tools are re-calculated with a scoring 

scheme of +3 and -1 for each matched and mismatched site and -6 and -1 for gap-

opening and extension penalties. When a representative gene is aligned to the same 

region of a genome by both tools, only the highest-scoring alignment is kept. 

Otherwise both alignments are kept. By default, PEPPAN considers all alignments 

as putative gene candidates if they span at least 50% of the length of a 

representative gene with 50% nucleotide sequence identity. This identity threshold is 

much lower than the average nucleotide identity (68-85%) for 144 genera between 



3 
 

genomes from the same genus (Barco et al. 2020), and thus allows the identification 

of most of the gene candidates from an entire genus. All gene candidates for each 

representative gene sequence are retained that pass these filtering rules. Each 

putative gene candidate is scored by comparing it with the representative gene as 

well as according to the gene annotations in the original GFF3 file. PEPPAN 

calculates this score s as:  

𝑠 ൌ ሺ𝑙 ∗ 𝑖ሻ ∗ ට𝑙 ∗ ሺ𝑟௤ ∗ 𝑟௥ሻଵ/ଶ 

where 𝑙 is the length of the open reading frame of the putative gene candidate, i is 

the fraction of identity between the gene candidate and the representative gene, rq is 

the aligned length of the gene candidate relative to the representative gene and rr is 

the length of the portion of the gene candidate that overlaps an annotated gene in 

the original GFF3 annotation divided by the total length of the gene candidate. If a 

gene candidate does not overlap an annotated gene by at least 0.1 of its length, rr is 

set to 0.1. These scores are saved for subsequent use during the filtering of 

conflicting gene candidates in section 1.3.4.  

1.3 Identifying clusters of orthologous genes 

1.3.1 Gene candidate alignment and phylogeny estimation 

Pseudo-sequences that are easy to handle are generated for each gene candidate in 

order to facilitate accurate multi-sequence alignments. These consist of a copy of the 

corresponding representative gene sequence except that the polymorphic sites are 

replaced by the nucleotide variants from the gene candidates, and the sites that are 

missing in the alignments are replaced by “-“. This procedure results in pseudo-

sequences whose lengths are identical to that of the reference allele and yield the 

desired multiple alignment without further processing. RapidNJ (Simonsen et al. 

2011) is then used to build a gene tree from the multiple alignment for each set of 

gene candidates (Supplemental Fig. S1F). These alignments and trees are used in 

the next section for identification of paralogous genes by comparing them with the 

average genetic distances between the genomes.  

1.3.2 Phylogeny-based paralog splitting  

Each branch in a gene tree separates the genes into two sub-clusters. Genes are 

scored as orthologs when the branch between them is compatible with a descent 
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from a common ancestor (Supplemental Fig. S1E-H). This decision is reached by 

comparing the branch lengths separating two sub-clusters of genes with the average 

genetic distance between their genomes of origin.  

Consider the simple scenario a sub-cluster of two gene candidates, i and j,. PEPPAN 

calculates the paralogous score for these two gene candidates as:  

𝑝௜,௝ ൌ
𝑑௜,௝

𝑒஽ഥ೔,ೕାଷ∗ఙ೔,ೕ
 

where di,j is the genetic distance between the two genes, and 𝐷ഥ௜,௝ and 𝜎௜,௝ are the 

distance and variance for the log-normal distribution of the genetic distance between 

the two genomes carrying these genes (section 1.1.3), except when both gene 

candidates are co-present in a common genome in which case it is arbitrarily set to 

𝐷ഥ=0.005 and 𝜎=2. A value of pi,j>1 indicates that the genes represent a pair of 

paralogs that most likely diverged prior to the common ancestor of their genomes, 

because the cumulative sequence differences between the genes are greater than 

3ơ of the average genetic distance of their genomes (equivalent to a p-value of < 

0.0028). These genes are therefore classified as paralogs. Otherwise they are 

putative orthologs. 

This calculation can be extended to two sub-clusters of genes (M and N) by 

calculating a weighted average of the paralogous scores for all genes in the two 

groups as:  

𝑝 ൌ
∑ ∑ 𝑝௜,௝ ∗ 𝑒ି஽ഥ೔,ೕ

௝ఢே௜ఢெ

∑ ∑ 𝑒ି஽ഥ೔,ೕ
௝ఢே௜ఢெ

 

The p scores are weighted by the inverse of the genetic distances of the respective 

genomes, because paralogous genes are more easily identified by comparing 

closely related genomes than more divergent ones. Each gene tree is split iteratively, 

starting at the branch with the greatest 𝑝 value if 𝑝 >1 (Supplemental Fig. S1H). 

Branches in each of the sub-trees are scored and subjected to further splits until all 

branches have a value of 𝑝 ≤1. Each of the resulting sub-trees thus represents a 

putative ortholog group.  
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1.3.3 Resolve conflicting gene candidates 

The locations of multiple putative orthologs can overlap in some genomes according 

to genomic annotations. Such conflicts can come from two sources, which each 

needs a distinct approach for its resolution.  

(1) Inconsistent gene predictions for a corresponding genomic region across multiple 

genomes. In order to resolve such conflicts, a summed information score 𝑠̂ is 

calculated for every ortholog group as: 

𝑠̂ ൌ ෍ 𝑠௚

௚∈ீ

 

where 𝑠௚ is the information score for every gene candidate g in the ortholog group G 

that was calculated in section 1.2. PEPPAN retains the ortholog group with the 

greatest summed information score, and discards other groups.  

(2) Some orthologous genes that are assigned to distinct homology groups by 

hierarchical clustering (section 1.1.1) may be linked in a common gene MST (section 

1.1.2) even though their sequence identities are <90% or their alignment coverage 

<80%. Gene candidates from such linked representative genes may result in 

overlapping regions in some genomes. To identify this type of conflict, PEPPAN 

compares the information scores of pairs of overlapping ortholog groups, and 

merges the pairs when more than 1/3 of the mappings of the gene candidates in 

each ortholog group overlap, and their representative genes are from the same gene 

MST (section 1.1.2).  

1.3.4 Use synteny to identify and remove recent duplicates 

Paralogous genes with ≥99% identity are likely to have recently arisen by gene 

duplications, and cannot be detected by phylogeny-based paralog analysis. 

However, the neighboring genes will differ between duplicated gene candidates in 

distinct regions of the genome. In order to test for such paralogs, all gene candidates 

from each genome are ordered by their genomic coordinates, and PEPPAN extracts 

up to three neighboring genes upstream and downstream of each gene candidate in 

a putative orthologs group. A minimum spanning tree is calculated based on the 

number of unique neighbors for each pair of gene candidates, and the final set of 

orthologous genes is arbitrarily restricted to those clusters of gene candidates with 

branch lengths of no more than 4 different neighboring genes.  
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1.4 Pseudogene identification and effects on estimates of strict core 

gene sizes 

Gene candidates are selected based on aligning each representative gene to all 

genomes (section 1.2), and might include pseudogenes because open reading 

frames (ORFs) are not considered in the alignment. The option ‘—pseudogene’ 

controls the minimum acceptable length of the CDS in a gene candidate relative to 

the representative gene, with a default value of 80% (Lerat and Ochman 2004). The 

integrity of each gene candidate is filtered by this cutoff separately according to four 

criteria (Supplemental Fig. S1C): (1) ≥80% coverage of the representative gene; (2) 

the open reading frame contains ≥80% of codons in the representative gene, and is 

not broken by a frameshift or nonsense mutation; (3) a start codon is present ≤60 bp 

upstream of the 5’ end of the alignment; (4) a stop codon is present at or 

downstream of the 3’ end. Candidate genes that pass all four criteria are scored as 

coding genes, and all others as pseudogenes.  
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Supplemental Text 2. SimPan: A pipeline for Simulating 

the evolution of Pangenomes 

The infinite many gene (IMG) model (Baumdicker et al. 2012) is arguably the 

simplest existing neutral mathematical model for the evolution of a pangenome. In 

this model, accessory genes are inserted and deleted at fixed frequencies at nodes 

in a phylogenetic tree. The IMG model is the basis for several existing pangenome 

simulators (Dalquen et al. 2012; Ferres et al. 2020), including the workflow in PanX 

(Ding et al. 2018). However, the IMG model does not match the U-shaped gene 

frequency distributions observed in multiple real bacterial pangenomes, and which is 

thought to result from decreased gene insertion/deletion frequencies over long-term 

evolution (Collins and Higgs 2012; Lobkovsky et al. 2013). Alternative theoretical 

models have been proposed that account for the U-shaped distribution by a recent 

expansion of population size (Haegeman and Weitz 2012), as a consequence of 

long-term purifying selection (Lobkovsky et al. 2013; Zhou et al. 2014), or as the 

result of a special gene class that tends to be lost soon after it is acquired (Collins 

and Higgs 2012; Croucher et al. 2014). However, we were not aware of an existing 

pipeline for simulation of a pangenome according to a U-shaped gene frequency 

distribution. Furthermore, none of the theoretical models account for homoplastic 

gene insertions/deletions, nor for large insertion/deletion events that span multiple 

consecutive genes. 

SimPan was developed to simulate pangenomes in a more realistic way by 

accounting for these issues. (1) SimPan infers homoplastic gene insertions/deletions 

by using SimBac (Brown et al. 2016) that includes homologous recombination events 

during the generation of local trees. (2) SimPan reshapes each local tree in a time-

dependent manner, and reduces the long-term stability of gene insertions/deletions 

by penalizing the length of basal branches. (3) SimPan allows insertions/deletions of 

multiple consecutive genes.  

2.1 Simulation of two gene classes 

SimPan first generates two gene classes according to input parameters 

(Supplemental Table S1): backbone genes (nBackbone: 4000) which are present in 

the ancestor of the population, and mobile genes (nMobile: 20,000) which are 

sources of horizontal genetic transfers. A pool of paralogous sources of 
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recombination which resulted from historical gene duplications and are now only 

distantly related to each other by 60% identity (idenParalog) is created by choosing a 

random set of 5 percent of the backbone genes (pBackbone) and 40% (pMobile) of 

the mobile genes. The phylogenies of these paralogous genes are simulated using 

SimBac (Brown et al. 2016). Furthermore, SimPan assigns the sizes of the coding 

regions from a geometric distribution with an average length of 900 bp for each gene 

(geneLen). The sizes for 5’-intergenic and 3’-intergenic regions surrounding each 

coding region are assigned by drawing two additional numbers from a second 

geometric distribution, with an average length of 50 bp for each gene (igrLen). The 

total size of the sequences in the simulation equals the total sizes of backbone and 

mobile genes (nBackbone + nMobile), multiplied by the total number of genomes 

(genomeNum: 20).  

2.2 Simulation of local trees and indel trees 

SimBac (Brown et al. 2016) simulates a clonal phylogeny of genomes, and then 

creates a local tree for every backbone and mobile gene to reflect the effects of 

random homologous recombination (rec: 0.05, recLen: 1000). SimPan reshapes 

each local tree into an indel tree for later use to simulate gene insertion/deletions by 

resizing the branch lengths in the trees according to their distances to the tips. This 

reshaping simulates an exponential increasing frequency of gene insertion or 

deletions along the branches from root to tips in the tree, which is consistent with 

observations from multiple real bacterial pangenomes (Lobkovsky et al. 2013; Zhou 

et al. 2014) and results in a U-shaped gene frequency distribution as observed in 

natural genomes (Collins and Higgs 2012; Lobkovsky et al. 2013).  

Given a reshaping factor λ=100, the new length (l’) of each branch in the indel tree is 

calculated as: 

𝑙ᇱ ൌ 𝜆 ∗ ሺ𝑒ିఒ∗௦ െ 𝑒ିఒ∗ሺ௦ା௟ሻሻ 

where l is the length of the branch in the local tree and s is its distance to the tips.  

2.3 Simulation of insertion and deletion events 

Each deletion or insertion event is simulated by choosing a random indel tree and a 

random branch in that tree. In the case of a deletion, the genome descending from 

that chosen branch is subjected to the deletion of a random block of backbone genes 
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(default average block length (deletionBlock): 3 genes), which is propagated to all 

descendent genomes. Further random branches in random indel trees are subjected 

to deletion events until the core genome contains less than a user-defined number of 

genes (nCore: 3500). Subsequently random insertions of consecutive mobile genes 

(default average block length (insertBlock): 10) are performed on random branches 

of random indel trees until the average genome exceeds a user-defined maximum 

number of genes (aveSize: 4,500).  

2.4 Simulation of gene and genomic sequences 

Coding and intergenic regions of the genes are simulated according to the M1 and 

HKY models, respectively, with the program INDELible (Fletcher and Yang 2009) 

using the local trees initially generated by SimBac. Additional short insertions and 

deletions (shortIndelLen: 10 bp) are also simulated with INDELible at a rate of 0.01 

per mutation (shortIndelRate: 0.01). INDELible does not simulate start and stop 

codons. Therefore, the first and last codons of each coding region are replaced by a 

random bacterial start and stop codon according to the empirical distributions of start 

(ATG: 83%; GTG: 14%; TTG: 3%) and stop (TAA: 63%; TGA: 29%; TGA: 8%) 

codons in E. coli K-12 (Blattner et al. 1997). All gene sequences are then 

concatenated into genomic sequences, and stored as files in FASTA format for the 

generation of annotated genomes in GFF (Ensembl Release 98 2019) format.  
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Supplemental Text 3. Using PEPPAN for whole-genome 

MLST schemes 

We have used PEPPAN to create whole genome multi-locus sequence typing 

(wgMLST) schemes for multiple genera in EnteroBase 

(http://enterobase.warwick.ac.uk). These schemes have been used to identify 

genomes of Salmonella which contain a rare accessory gene (Chen et al. 2019) and 

to select subsets of conserved core genome loci for cgMLST genotyping schemes 

(Alikhan et al. 2018; Zhou et al. 2020). Here, we describe the manual curation steps 

of PEPPan generated pangenomes that are needed to establish a reliable wgMLST 

scheme.  

3.1 Selection of a reliable set of reference genomes 

PEPPAN re-annotates all genomes to ensure the consistency of gene annotations. 

By default, input genes are iteratively clustered and the longest sequence within 

each cluster is chosen as representative for that orhtolog cluster (section 1.1.1). 

The representative genes determine the start and end coordinates of the final pan 

genes. This approach works well on input genomes that have been automatically 

annotated without manual curations. However, genome sets that are used to build 

wgMLST schemes often contain reference genomes whose annotations have been 

curated by experts and that include gene names that are widely accepted by the 

community (Blattner et al. 1997; Sebaihia et al. 2006). In other cases, annotations 

have been checked experimentally (Kröger et al. 2012). These manual annotations 

are likely to be more reliable than those predicted automatically. PEPPAN therefore 

allows users to incorporate such prior knowledge in the pangenome, by defining a 

flexible priority order for input genomes using the “-P” (Priority) parameter. For 

example, we assigned each of the representative Streptococcus genomes into one 

of five priority levels before constructing the pangenome (Supplemental Table S2), 

based on a combination of its “RefSeq category” (Tatusova et al. 2014) and 

assembly status. The five priority levels were: 5: a manually selected ‘gold standard’ 

reference genome with high-quality RefSeq annotation; 4: a complete 

representative genome; 3: a draft representative genome; 2: other complete 

genomes; 1: other draft genomes. When genomes of different priority levels are 

clustered, genes from genomes with the greatest priority are preferably selected as 
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representatives of the gene cluster. In the case of multiple genomes with identically 

low priorities, the longest gene will be selected. For our Streptococcus dataset, 

these priority levels resulted in the representative genes for 753 of the 754 relaxed 

core genes having originated from genomes in priority level 1 (Supplemental Table 

S3).  

3.2 Identification of genes that are too similar 

Each pan gene identified by PEPPAN is assigned to a group of orthologs that has 

been screened for paralogs according to phylogeny- and synteny-based approaches. 

However, this approach is too complicated for assigning sequences from newly 

assembled genomes to loci and alleles by an MLST nomenclature server. Instead, 

the EnteroBase nomenclature server calls MLST loci and alleles in a novel genome 

by aligning a predefined set of representative sequences to that genome (Zhou et al. 

2020). Due to sequence diversity and horizontal gene transfer, novel genomes may 

include sequence variants that align to multiple similar pan genes, resulting in some 

cases to gene assignments to multiple representative gene sequences. The 

existence of such problematical representative pan genes can be identified by the 

MLSTdb function in the EnteroBase EToKi package 

(https://github.com/zheminzhou/EToKi). EToKi MLSTdb runs an all-against-all 

comparison on all representative gene sequences generated by PEPPAN, and 

removes sets of genes with ≥70% identity at either the nucleotide or amino acid 

level. All wgMLST schemes in EnteroBase were subjected to this final cleaning stage 

before being made publicly available.  
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Supplemental Text 4. Pangenomes of Streptococcus 

ANI95% clusters 

The genomic analyses presented here identified 29 ANI95% clusters of 

Streptococcus which contained at least 10 genomes. A median frequency of 5.4% of 

their CDSs (range 3.2-12.9%) were scored as pseudogenes by PEPPAN, and the 

average numbers of pseudogenes per genome ranged from 220 (12.9% of all CDS) 

in the primary yoghurt fermentation bacterium (Bolotin et al. 2004; Goh et al. 2011; 

Hols et al. 2005), S. thermophilus (MG_21), down to 58 (3.2%) in a pathogen 

responsible for bovine mastitis) (Hossain et al. 2015; Ward et al. 2009), S. uberis 

(MG_66).  

The pan- and core genome sizes also varied between the 29 ANI95% clusters 

(Supplemental Table S5). For example, 321 genomes of S. suis (MG_11) yielded a 

pangenome of 9,947 pan genes with 989 core genes whereas 441 genomes of S. 

pyogenes (MG_1) defined a pangenome of only 4,246 pan genes with 1,249 core 

genes. This may reflect sampling bias or differences in population size or 

demographics of individual species, but we have not pursued this issue.  

To calculate the growth rates of the pangenomes for each of the 29 ANI 95% 

clusters, we used PEPPAN_parser to fit a power law curve to rarefaction curves of 

the estimated size of the pangenomes with increasing numbers of genomes (Tettelin 

et al. 2008) (Supplemental Table S5). The power-law parameter, α, gives an 

estimate of the growth trend of the pangenome. A lower α suggests a faster growth 

rate of the pangenome, whereas a higher value suggests a slower growth rate. In 

particular, the size of pangenome is considered to be finite (closed pangenome) 

when α >1 and infinite (open pangenome) when α ≤1. We infer that the pangenome 

of the Streptococcus genus is open, as are the pangenomes of 28 ANI95% clusters 

within Streptococcus. However, the pangenome of S. sobrinus (MG_41) is closed, 

with an average α value of 1.04. S. sobrinus also had the smallest pangenome of all 

Streptococcus species clusters, which is consistent with a closed pangenome. Yet S. 

sobrinus also contains an average of 198 pseudogenes per genome (10.4% of 

CDSs). One explanation of this small, closed pangenome might have been extreme 

sample bias and a small population size (Park and Andam 2020) because most S. 

sobrinus genomes in this study were isolated from a single country (Brazil). 
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However, instead of extremely low genetic diversity, the diversity of S. sobrinus 

genomes was greater than that of several other Streptococcus species 

(Supplemental Table S5), and a phylogeny based on their core SNPs revealed high 

genetic diversity in S. sobrinus (Achtman and Zhou 2020). The S. sobrinus genomes 

are of relatively low quality (Supplemental Table S2A). Low quality genomes can 

also reduce the size of the pangenome and increase the number of pseudogenes. 

Alternatively, the reduced pangenome size and the high number of pseudogenes in 

S.sobrinus may be related to its association with dental caries (Bowen et al. 2018). 
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