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Supplemental Methods

Our analyses were predominantly completed using R (R Core Team, 2018) and the Unix command
line. Further analysis details can be obtained through a publicly available repository of vignettes and
associated scripts (https://github.com/WarrenDavidAnderson/manuscriptCode/tree/
master/sexDifferencesAdipose_code, see also Supplemental Code).

Analyses of sex differences in gene expression

FEvaluation of differential gene expression in human subcutaneous adipose tissue: We downloaded the
deCODE and AAGMEx data from GEO using R. The deCODE data were approximately normally
distributed for a given gene. Sex annotation was not available for deCODE, so we defined sex based on
an assessment of the bimodal distribution of XIST expression values (Supplemental Fig S1A). XIST is a
non-coding transcript from the X chromosome, implicated in X-inactivation, and is exclusively expressed
in females. Therefore, it is common to assess XIST expression to operationally define sample sex or
rule out sample annotation errors (Toker et al., 2016; Broman et al., 2015; 't Hoen et al., 2013). The
AAGMEx data were accompanied by sex annotation, however, the gene expression distributions were
not approximately normal. The general absence of normality was determined by an assessment of the
expression quantiles (https://www.ncbi.nlm.nih.gov/geo/geo2r/). Hence, we log2 transformed
the AAGMEx data. In general, for all of our analyses, we routinely inspected sample-to-sample
correlations and removed individual samples from pairs with aberrantly high correlations. We verified all
sex annotations by examining XIST expression and we removed samples with questionable XIST levels
(Supplemental Fig S1B,C).

We processed the v8 GTEx gene expression data following the publicly available analysis pipeline
from the GTEx Consortium (https://github.com/broadinstitute/gtex-pipeline) (GTEx
Consortium et al., 2017) and our previous work (Civelek et al., 2017). The data were downloaded
in the transcripts per million (TPM) format. We verified the reported sex annotations by analyzing
XIST expression, as described above. We verified that quantile normalization exerted minimal effects
on the TPM data and we omitted sample-based normalization. We inverse-normal transformed the
data by mapping the expression ranks of each gene onto a standard normal cdf and applied the inverse
transformation, thereby generating a normal distribution of expression levels for each gene. Note that data
normalization approaches such as the inverse-normal transform can impose constraints on the observed
fold changes for comparisons between two groups. Below we describe an analysis of the inverse-normal
transformation, in the context of identifying differential expression fold changes, to illustrate the impact
of normalization on the interpretation of differential expression effect magnitudes (Supplemental Fig S2).

To correct for both known and unknown covariates, we utilized surrogate variable analysis (SVA)
(Leek and Storey, 2007). We estimated surrogate variables that were distinct from sex, age, RNA integrity
number (RIN), and platform. That is, we identified SVs from the residuals obtained by linearly regressing
the gene expression levels against sex, age, RIN, and platform, where sex and platform were coded as
dummy variables or factors. This analysis identified 36 latent factors (i.e., the SVs). To adjust the data,
we implemented multivariate linear regression of the inverse transform normalized gene expression levels
with respect to age, RIN, platform, and the 36 latent factors. We retained the residuals for downstream
gene expression analysis. We applied principal components analysis (PCA) to verify that this approach
effectively corrected the data for both explicitly modeled and un-modeled covariates, while accentuating
sex differences in gene expression (Supplemental Fig S3).

We applied the Linear Models for Microarray Data (Limma) analysis to evaluate differential gene
expression between males and females (Ritchie et al., 2015). According to this method, the standard
t-test was applied for each gene. Then the function eBayes() was used to adjust the t-statistics for gene to
gene variance fluctuations. The p-values corresponding to the moderated t-statistics were then subjected
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to correction for multiple testing using the Benjamini-Hochberg method for determining false discovery
rates (FDRs) (Ritchie et al., 2015; Benjamini and Hochberg, 1995).

We evaluated tissue specificity by performing sex-based differential gene expression analysis to GTEx
samples from the following tissues: visceral adipose tissue (320 males, 149 females), liver (146 males, 62
females), skeletal muscle (469 males, 237 females), cardiac atrial appendage (253 males, 119 females),
cardiac left ventricle (264 males, 122 females), whole blood (441 males, 229 females), and 13 brain regions
(78-151 males, 33-64 females). We completed all analyses as described above for the subcutaneous adipose
tissue GTEx samples.

We evaluated the obesity-specificity of gene expression sex differences by performing sex-based
differential gene expression analysis of samples from subcutaneous adipose tissues of obese gastric bypass
patients (Mass General Hospital, MGH, main text Table 1) (Greenawalt et al., 2011). The microarray
gene expression data were processed and normalized as described previously (Greenawalt et al., 2011).
Annotation for subject sex was not publicly available, so we operationally defined sex based on XIST
expression. We completed the differential expression analysis using Limma (Ritchie et al., 2015), as
described above.

Gene set enrichment analysis (GSEA): The GSEA method evaluates enrichments for gene set annotations
(e.g., signaling pathways) in genes that tend to be differentially expressed, without applying a statistical
constraint on the degree of differential expression. Rather, GSEA determines permutation-based FDRs
related to the degree of overlap for the annotations and the most highly differentially expressed genes
(Subramanian et al., 2005; Mootha et al., 2003). We implemented GSEA using a modified version
of publicly available R code (https://www.gsea-msigdb.org/gsea). We evaluated functional
enrichment in genes with elevated expression in females relative to males using the signal to noise ratio,
(up — par)/(oF + opr) (@ = mean, o = standard deviation, M = male, F = female). According to
this formulation, positive enrichment scores are indicative of functional enrichments for genes elevated
in females, whereas negative enrichment scores are indicative of functional enrichments for genes
elevated in males. We evaluated enrichments for annotations from the hallmark gene set collection
(Liberzon et al., 2015), as well as additional gene sets. The additional gene sets included transcription
factor binding targets (ENCODE Project Consortium, 2012), receptors along with associated ligands
(Kadoki et al., 2017), and trans-eQTL genes associated with KLF1/ (Small et al., 2018; Civelek et al., 2017).

Functional enrichment analysis with Fisher’s Exact Test (FET): The FET facilitates the calculation of an
exact p-value corresponding to the significance of deviations from random expectation in a contingency
table (Fisher, 1922). This test is used to determine whether particular input gene sets (e.g., differentially
expressed genes that satisfy specific statistical criteria) are enriched for specific functional annotations
(e.g., cellular components or cell signaling pathways). The Enrichr tool was developed to integrate an
expansive repertoire of functional annotations with an automated calculation of the corresponding FET
p-values and associated FDRs for a given input gene set, with a background consisting of all human
genes (Kuleshov et al., 2016; Chen et al., 2013). We completed our FET analyses using the enrichR
library for R (https://cran.r-project.org/web/packages/enrichR). In general, the FET
provides an independent alternative to GSEA for evaluating gene set enrichments. In particular, the FET
analysis is constrained to specific input gene sets, whereas GSEA takes all genes into account, based on
their respective degrees of differential expression.

Binding Analysis for Regulation of Transcription (BART): BART refers to a data-driven method for
inferring transcription factors with predicted regulatory influences on gene sets of interest. First, this
approach entails identifying putative regulatory regions of DNA associated with a gene list, and estimating
the corresponding degrees of regulatory influences, using histone-3 lysine-27 acetylation (H3K27ac)
chromatin immunoprecipitation sequencing (ChIP-seq) data (Wang et al., 2016). This approach generates
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a cis regulatory profile for each gene. Second, the cis regulatory profiles of gene-proximal regions are
integrated with transcription factor ChIP-seq data. The overlaps between cis regulatory regions and
factor binding regions are taken as ‘true positives’ for predictions of binding based on regulation. The
area under the receiver operating characteristic curve, or the AUC for the ROC curve, is the dependent
measure for a factor’s regulatory influence on a given gene. Statistical analyses yield Wilcoxon rank-sum
test statistics and associated p-values for comparisons between AUCs for individual factors with AUCs
from a null data set (Wang et al., 2018). We computed FDRs from these p-values (Benjamini and
Hochberg, 1995). A novel attribute of this approach is the utilization of active enhancer mark H3K27ac
genomic distribution data to identify and quantify regulatory regions in a data-driven manner, in tandem
with veritable transcription factor binding data from ChIP experiments. In contrast, previous approaches
to identify putative regulatory transcription factors were exclusively based on either consensus motifs or
ChIP data (Lachmann et al., 2010; Vadigepalli et al., 2003).

STARNET gene expression analysis: We evaluated gene expression measurements from the Stockholm-
Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) cohort of healthy individuals
from Estonia (main text Table 1). For this cohort, subcutaneous adipose tissue biopsies were obtained
from subjects that underwent extensive clinical phenotyping (Franzén et al., 2016). Details regarding
sample acquisition and RNA sequencing have been published (Franzén et al., 2016). For our analyses, we
focused on the 162 genes identified from our differential expression analyses of the AAGMEx, deCODE,
and GTEx cohorts (see main text Fig 1). We log2 transformed the expression data and adjusted the
expression for body mass index using linear regression. We performed differential gene expression analysis
using Limma.

FEvaluation of differential gene expression in murine adipose tissue: We evaluated sex-based differential
gene expression in the Hybrid Mouse Diversity Panel (HMDP) of inbred mouse strains (GEO accession:
GSE64769) (Lusis et al., 2016; Civelek et al., 2017). We considered 98 strains for which there were both
female and male epididymal adipose tissue gene expression data. Microarray analysis and normalization
has been described previously (Civelek et al., 2017). We completed the differential expression analysis
using Limma (Ritchie et al., 2015).

Analysis of sex-by-genotype interactions in human

Cis eQTL analysis for sex-by-SNP interactions: We obtained genotype data for the multi-ethnic GTEx
cohort from dbGAP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000424.v8.p2). We filtered the whole genome sequencing genotype data based on
minor allele frequency (MAF; excluding SNPs with MAF < 0.05), Hardy-Weinberg equilibrium (HWE,
excluding SNPs with HWE exact test p-value < 1 x 107%), and the proportion of missing data (maximum
missing samples = 2%) using VCFtools (Danecek et al., 2011). We excluded any sites that did not pass
the filters implemented in the original GTEx analysis.

Similar to our expression data processing methods for differential gene expression analysis (Fig S3),
we identified covariates that could be used for adjusting the data to augment the sensitivity for detecting
eQTLs. We considered three genotype principal components (PCs) to account for the effects of population
structure in our eQTL analyses (Price et al., 2006; Patterson et al., 2006). We identified residuals for a
linear model of gene expression as a function of three genotype PC score vectors, platform (factor), RIN,
age, and sex (factor). Hence, these residuals contained minimal influences of sex. Given these residuals,
we applied the probabilistic estimation of expression residuals (PEER) analysis to identify latent factors
(i.e., PEER factors) independent of the elements in the aforementioned regression model from which
we obtained the residuals (Stegle et al., 2012). Following previous approaches (Civelek et al., 2017), we
empirically determined that interaction eQTL detection sensitivity was optimized for an analysis using 32
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PEER factors as covariates. We verified that the PEER factors were not correlated with either RIN or
age, as these variables were ‘regressed out’ before identifying PEER factors from the residuals.

To determine whether adjusting for PEER factors could facilitate the identification of sex differences in
genetic associations with gene expression, we obtained residuals from a linear model with gene expression
as a function of three genotype PCs, platform, RIN, age, and 32 PEER factors. We subjected the
residuals to PCA and visualized the PC scores in the first two dimensions. The first two PCs captured
little variability (1-3%. Supplemental Fig S4), indicating that the PEER correction abrogated much of the
existing structure in the data, as was the case for surrogate variable-based correction (Supplemental Fig
S3). We annotated the data for covariates that were explicitly modeled, as well as those that were not.
The explicit adjustment for age and RIN apparently nullified the influences of these covariates on the
first PC. The effects of death circumstance (Hardy scale metric) were also removed, thereby suggesting
that PEER effectively corrected for such consistent influences on the data structure by identifying latent
factors. However, as the data were corrected for the categorical sex variable before implementing PEER,
correcting for the PEER factors left the influence of sex both intact and poignant. Sex could account for
the prominent separation of two data clouds along the first PC, indicating that sex was a key variable
contributing to the systematic variation in the adjusted data (Supplemental Fig S4). This analysis
revealed that adjusting the expression data for set of covariates and PEER factors removed confounding
sources of variation while accentuating sex differences (Supplemental Fig S4).

We evaluated sex-by-genotype interactions underlying subcutaneous adipose tissue gene expression,
using the GTEx expression data, by associating genotypes at specific SNPs with the expression of genes
within 1Mb of the transcription start sites. We used linear models with sex-by-SNP interactions (Gilks
et al., 2014; Yao et al., 2014). We performed the expression quantitative trait locus (eQTL) analysis
using Matrix eQTL (Shabalin, 2012). We implemented this interaction eQTL analysis according to
three approaches in which we accounted for distinct sets of covariates in the the linear models. We
incorporated main effects for sex and SNP geneotype, as well as sex-by-SNP interactions, in all models.
First, we implemented linear models regressing the inverse normal transformed gene expression data
against three genotype PCs, platform, RIN, and age. Second, we implemented linear models regressing
the inverse normal transformed gene expression data against three genotype PCs, platform, RIN, age, and
36 surrogate variables (SVs) identified as described above for our differential expression analysis. Third,
we implemented linear models regressing the inverse normal transformed gene expression data against
three genotype PCs, platform, RIN, age, and 32 PEER factors. All main text analyses are based on the
PEER approach, whereas the other approaches were only considered for our eQTL replication analyses.

In preliminary analyses, we evaluated whether explicitly accounting for population structure using
the genetic similarity matrix in a linear mixed model could increase the sensitivity for detecting
interaction eQTLs (Listgarten et al., 2010). We implemented the linear mixed models with the ‘leave
one chromosome out’ approach to correct for population structure using Fast-LMM (Civelek et al.,
2017; Lippert et al., 2011). We compared the results to those of complementary analyses using Matrix
eQTL to correct for genotype PCs. Our analyses showed that the linear mixed model approach
did not enhance sensitivity for detecting interaction eQTLs from the GTEx subcutaneous adipose
tissue data set (v6p). Based on this analysis, we completed our study using Matrix eQTL (Shabalin, 2012).

Replication analyses: To maximize the sensitivity for replicating associations from the GTEx cohort, in
addition to the PEER based eQTL analysis reported in the main text, we also evaluated sex-by-SNP
interactions with expression data corrected for hidden factors identified from SVA, as well as correcting
only for known covariates. We considered the union of the associations identified with the three approaches
for the eQTL replication analysis. We replicated our sex-by-SNP interaction eQTL analysis using data
from the STARNET and MGH cohorts (main text Table 1). Subject recruitment and tissue collection in
the STARNET data were performed as previously described (Franzén et al., 2016). Briefly, patients with
CAD who were eligible for open-thorax surgery at the Department of Cardiac Surgery, Tartu University



Hospital in Estonia as well as control subjects without CAD were enrolled after informed consent. Venous
blood was drawn and DNA was isolated for genotyping using the Illumina Infinium assay with the human
OmniExpressExome-8v1 bead chip. Data were analyzed using GenomeStudio 2011.1 (Illumina) which
produced 951,117 genomic markers. Quality control was performed using PLINK (Purcell et al., 2007)
and IMPUTE2 (Howie et al., 2011) was used for genotype imputation to increase the power of analysis. To
obtain transcriptome data, biopsies from subcutaneous fat (SF) were obtained and RNA was extracted as
described. Cis- regulated expression quantitative trait loci (eQTLs) were identified with Matrix eQTL
(Shabalin, 2012). Only bi-allelic markers were included and all cis-regulatory SNPs located within 1Mb
of the gene were tested using a linear model with a sex-by-SNP interaction term as described above.
Interaction eQTLs with minimum nominal p-values < 0.05 per gene were retained for further analysis.

For the replication of the eQTL interaction analysis using the MGH obese subcutaneous adipose tissue
data, we implemented the following analyses. We filtered the genotypes for MAF > 0.05 and removed
indels. The gene expression normalization methods were described previously (Greenawalt et al., 2011).
We performed eQTL analysis using three genotype PCs, age, and pre-operation BMI as covariates, along
with sex times SNP genotype as an interaction term, as described above using Matrix eQTL (Shabalin,
2012).

We estimated the null replication probability with a permutation test. We specifically addressed
the probability of replicating the 2,408 sex-specific eQTLs. We randomly and independently permuted
all of the association p-values and and effect sizes 1000 times. For each of the 1000 permutations, we
determined the number of replicated associations (P < 0.05, identical effect direction). The average null
replication rate was 2.5% (range 1.66-3.74%).

Determining linkage disequilibrium (LD): We generated the LD relationships for the unfiltered GTEx
genotype data using version 1.9 of PLINK (Purcell et al., 2007). We evaluated LD within 2 Mb and
excluded variant pairs with more than 999,999 intervening SNPs. We focused on SNP pairs with LD
r2 > 0.8 for our analyses.

Overlapping eQTLs with genome-wide association study (GWAS) variants: We download GWAS summary
statistics, for an expansive range of published disease or trait association analyses, from the GWAS
catalog in December of 2019 (https://www.ebi.ac.uk/gwas/downloads) (Buniello et al., 2019).
We filtered the GWAS catalog data for associations with genome-wide significance (P < 5 x 107%). To
determine whether sex-specific eQTL SNPs matched sex-specific associations with body fat distribution,
we considered the results from two recent GWAS studies (Rask-Andersen et al., 2019; Pulit et al., 2019).
The genome-wide significant sex-specific associations from Rask-Andersen et al. (2019) were obtained
from their Table 2 (Bonferroni-corrected p-value < 3.57 x 10=% = 0.05/n where n is the number of tests).
The genome-wide significant sex-specific associations from Pulit et al. (2019) were obtained from their
Supplementary Table 8 (Bonferroni-corrected p-value < 3.3x 1075 = 0.05/n where n is the number of tests).

ChromHMM analysis: We overlapped the the sex-specific eQTL SNPs with genomic annotations identified
with ChromHMM (Ernst and Kellis, 2012). The genomic annotations were identified from Epigenetics
Roadmap ChiP-seq data from adipose-derived cultured mesenchymal stem cells (pre-adipocytes, epigenome
ID E025) and mesenchymal stem cell-derived cultured adipocytes (epigenome ID E023) (Roadmap
Epigenomics Consortium et al., 2015). BED coordinates for the genomic annotations were downloaded
from https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final/. The ChromHMM data were obtained from the
15-state model based on five chromatin marks (H3K4me3, H3K4mel, H3K36me3, H3K27me3 and
H3K9me3). We aggregated state descriptions as follows (main text Fig 3D): TSS (transcription start site)
includes ” Active TSS”, ”Flanking Active TSS”, and ”Bivalent/Poised TSS” (states 1,2,10); transcribed
includes " Transcr. at gene 5’ and 3’7, ”Strong transcription”, and ” Weak transcription” (states 3,4,5);
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enhancer includes ” Genic enhancers”, ”Enhancers”, and ”Bivalent Enhancer” (states 6,7,12); repressed
includes ”Heterochromatin”, ”Repressed PolyComb”, and ”Weak Repressed PolyComb” (states 9,13,14);
quiescent includes ”Quiescent/Low” (state 15); other includes ”ZNF genes & repeats” and ”Flanking
Bivalent T'SS/Enh” (states 8,11).

Chromatin contact analysis of HiC data: We evaluated promoter-capture (pc) Hi-C data from human
pre-adipocytes (Pan et al., 2018). We overlapped the pcHi-C bait coordinates with GENCODE gene
annotations (Frankish et al., 2019). In a strand specific manner, we defined ranges for transcription start
sites (T'SSs) of annotated genes by taking the coordinates encompassing all first exons for a given gene.
After annotating the pcHi-C bait regions with the TSS regions from GENCODE, we overlapped the pcHi-C
bait coordinates with sex-specific eQTL genes and we overlapped the pcHi-C capture coordinates with
sex-specific eQTL SNPs. For each eQTL locus, we considered a range encompassing SNPs in linkage (LD
r2 > 0.8). We performed a permutation test to estimate the probability of intersecting a random set
of eQTL associations, irrespective of the association p-value, with the pcHi-C coordinates. For each of
1000 permutations, we randomly selected 2,408 associations. For each association, we considered a 60 kb
interval centered on the lead SNP to account for linkage when overlapping the locus with the pcHi-C
targets (Reich et al., 2001). The average percentage of random associations for which both the eQTL SNP
and gene matched the pcHi-C capture and bait coordinates, respectively, was 1.6% (range: 1.0-2.5%).

Analysis of gene expression dynamics during adipogenesis

We download the adipogenesis timeseries gene expression data from GEO (main text Table 1). We
considered human SGBS data, human abdominal pre-adipocyte data, and murine 3T3-L1 data.
The human SGBS microarray data (Nassiri et al., 2016) and the human adipose-derived stromal
cell (ASC) microarray data (Ambele et al., 2016) were evaluated for dynamic expression by fitting
linear models with respect to time and applying the likelihood ratio test (LRT) to compare the
time-dependent models to time-independent null models (intercept only). The 3T3-L1 murine
RNA-seq data were matched for orthologs of the human genes of interest using the biomaRt R
package and the LRT was implemented using DESeg2 after normalizing the data based on sequencing
depth-related size factors (Love et al., 2014). For all three data sets, we estimated the transcriptome-wide
expression percentiles for genes of interest in mature adipocytes at the time point of terminal differentiation.



Supplemental Results

Normalization constrains fold change assessment

Here we show that, given an inverse-normal transform, the maximal fold change is constrained by the
sample size (n) and relative numbers of females and males in the sample (ny, n,,). Consider a case in
which we apply the inverse-normal transformation for a specific gene:

eiwrm = (b_l <T’L> (eql)

n+1

where €., is the normalized expression level of a given gene for the ith sample, 7; is the rank for the
ith sample, n = ny + nyy, is the number of samples, and ® refers to the cumulative distribution function of
the standard normal distribution, A/(0,1). Then e,qn will be normally distributed with the following
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such that erf(.) is the error function. For illustrative purposes, consider a gene for which expression
is greater in females. According to the inverse-normal transform, the greatest possible fold change will
be achieved when the normalized expression values for all of the females are greater than the highest
normalized expression value over all of the males (min(ey) > max(e,,), ey € R™, e, € R"™). That
is, the ranks of the expression values for the males are {1,2,...,n,,} and the ranks for the females are
{nm + 1, + 2, ..., + nyr}. Assuming the data are subjected to a standard differential expression
analysis, and are therefore in the ‘log space’, the fold change is defined as follows (Ritchie et al., 2015):

fC _ 2mean(ef)7mean(em) — QHf—Hm (eq4)

Correspondingly, the log fold change is defined as py — ;. Under the stated assumptions, the respective
expression means are defined as follows (see (eq2)), considering the truncated normal distribution (Foulley,
2000):

$(—00) — (2~ (Nim))

i = E(em| — 00 < e < ®7H(N,,)) = B@E1(N,.)) = (o) (eqb)
pr = Bef| 27 (Nm) < ey < 00) = ggi_) EAZI:EBIB:(?\(Z:S)) (eq6)

where N, = r,,/(n + 1) such that r,, refers to a particular rank related to the fraction of males in the
sample. Then the log fold change is as follows:
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assuming that ® o ®~!(x) = 2. As shown in Supplemental Fig S2 (see below), the relation given by (eq7) is
relatively flat over a range for the fraction of males in the sample. Substantial fold change differences are
observed as the entire sample approaches either all males or all females (Supplemental Fig S2A). However,
an ideal sampling procedure will ensure roughly equal numbers of males and females and a large sample



size, in which case r,,/(n 4+ 1) approaches 0.5 (i.e., N,,, — 0.5). Therefore, for an experimental design
with ideal sampling, the upper bound on the log fold change is as follows (given that erf~1(0) = 0):

4
L e ol 1.6 (eq8)

We simulated normally distributed gene expression with random samples from AN(0,1) and varied
the total sample size and fraction of males. To evaluate the maximal fold change, we assumed that the
highest male expression level was lower than the lowest female expression level, as described above. We
compared the observed data to the theoretical expectations from (eq7) and (eg8) (Supplemental Fig S2).
The results show that the largest fold changes are observed when the samples are either nearly all males
or nearly all females (Supplemental Fig S2A). The optimal upper bound for evenly sampled data is given
by (eg8), which is the limit of (eq7) as the sample size goes to infinity and the fraction of males goes to
50%. To approximate the upper bound on the fold change, we varied the sample size between 100 and
100,000. For each element in the sample size range, we varied the fraction of males and computed the
maximal observed and expected log fold change. This analysis shows that, for inverse normal transformed
data subjected to a differential expression analysis, the predicted upper bound on the log fold change is
approximately four, whereas the optimal upper bound is approximately 1.6 (Supplemental Fig S2B).
Importantly, this analysis highlights the impact of normalization in constraining the observable fold
changes in a differential expression analyses. If a data set is strictly normal (N(0,1)), with identical male
and female sample sizes, it is not possible to observe a log fold change above the upper bound given
by (eg8). In general, caution should be exercised in comparing fold changes from data sets for which
normalization approaches are distinct.

GSEA of race-stratified GTEx data (multi-ethnic cohort)

Our results showed that the enrichments for fatty acid metabolism and KLF14 targets from African
American AAGMEx cohort were negative, whereas those for GTEx and deCODE cohorts were positive
(main text Fig 2B). To address whether this difference in directionality could be attributed to race, we
stratified the multi-ethnic American GTEx cohort into African American and non-African American
subsets and implemented GSEA. The results from the race-stratified multi-ethnic American GTEx cohort
analysis did not match those of the African American AAGMEx cohort (Supplemental Fig S7). To
determine whether a deficit in statistical power could account for the discrepancy between the African
American cohort and the other two cohorts, we evaluated the fold changes correlations amongst cohorts
for gene sets underlying the enriched annotations (see main text Fig 2C).

Sex-specific eQTL replication analysis

To determine the generality of the sex-specific eQTLs identified through our analyses, we replicated these
analyses using subcutaneous gene expression data from two additional cohorts: the STARNET healthy
cohort (Franzén et al., 2016) and the obese MGH cohort from the US (Greenawalt et al., 2011). Our
replication criteria were P < 0.05 and consistent directionality for the interaction effect size. For the
STARNET cohort, we observed 50 replicated loci out of 2,220 complementary associations (2.3%; P=0.75,
permutation test). For the MGH cohort, we observed 64 replicated loci out of 1,538 complementary
associations (4.2%; P=0, permutation test). Replication data are provided in the Supplemental Table S8).
The low rate of replication could be due to phenotypic differences in the cohorts (e.g., the MGH cohort
consisted of obese patients), geographic/ethnic differences (e.g., the STARNET cohort was from Estonia),
or differences related to the nuances of the data processing.
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Overlap of sex-specific eQTLs with human GWAS variants

We first considered recent sex stratified GWASs of adipose tissue distribution (Rask-Andersen et al.,
2019; Pulit et al., 2019). We did not find any overlaps between adipose tissue sex-specific eQTLs and
genome-wide significant GWAS loci (p < 5 x 1078, LD r2 > 0.8). We next overlapped the sex-specific
eQTL SNPs with disease- or trait-associated SNPs identified through human GWAS analyses available in
the GWAS catalog (Buniello et al., 2019). We performed an analysis to determine whether sex-specific
eQTLs could be colocalized with the GWAS traits, however, no such evidence was observed (maximal
probability of single variant colocalization = 0.65). This is likely related to the fact that the GWAS
catalog only contains SNPs with P < 9 x 1076, As a result, there were <8 variants for a given eQTL locus
(LD 72 > 0.6) and GWAS trait combination, therefore underpowering the colocalization analysis and
preventing the application of other related approaches such as summary-based Mendelian Randomization
analysis (Civelek et al., 2017).

Overlapping sex-specific eQTLs with chromatin contacts

We evaluated whether sex-specific eQTLs, as well as SNPs in high LD (r? > 0.8), overlapped with
adipose tissue chromatin contacts inferred from promoter-capture (pc) Hi-C data obtained from human
pre-adipocytes (Pan et al., 2018). We identified chromatin contacts between eQTL SNPs and eQTL genes
for 39 out of 2,408 associations (1.6%, P = 0.58, permutation test). None of the 162 sex-biased genes
were identified in this analysis. The absence of a substantial overlap between the sex-specific eQTLs and
the chromatin contacts identified in cultured pre-adipocytes could be due to differences between in vitro
and in vivo conditions, differences between pre-adipocytes and adipocytes, or differences between the
eQTL analysis population and the single donor in the pcHi-C study.

Non-sex-specific eQTL overlap with open chromatin regions

We downloaded the non-sex-specific eQTL data from the GTEx portal https://www.gtexportal.
org/home/. As with our sex-specific eQTL analysis, we considered the lead SNPs from associations with
P <1 x10~*. We overlapped all unique SNPs with four sets of open chromatin peaks: (1) pre-adipocyte
peaks, (2) adipocyte peaks, (3) the union of pre-adipocyte, adipocyte, and adipose tissue peaks, and (4)
the intersection of pre-adipocyte, adipocyte, and adipose tissue peaks. Out of 14,906 SNPs, 6% were in
the intersection of all peak classes, 14% were in pre-adipocyte peaks, 17% were in adipocyte peaks, and
18% were in the union or all peak classes.

Analysis of sex-specific eQTL SNP enrichment in TF binding motifs within
open chromatin peaks

To determine whether sex-specific eQTL SNPs were enriched in TF binding motifs within open chromatin
peaks, we quantified the counts of loci overlapping TF binding motifs and open chromatin regions from
the four sets of peaks. We observed a trend of association between sex-specific eQTL SNPs within TF
binding motifs and open chromatin peaks. However, the results were not statistically significant (all odds
ratios > 1.07, FDR > 0.55, Fisher’s exact test). This finding could be related to the fact that the presence
of consensus TF motif does not necessarily entail functional binding, therefore highlighting the importance
of evaluating functional data when investigating associations with genomic features. These results could
also occur if the mechanisms underlying sex-specific allelic effects on gene expression are predominantly
related to allelic effects on TF binding in proximity, but not directly overlapping, the associated SNPs
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(Deplancke et al., 2016). Furthermore, these results could be related to numerous differences between the
ATAC-seq samples and the samples used for the eQTL analysis. Nevertheless, 0.7%, 3.5%, 4.6%, 5.2%, of
the sex-specific eQTL loci overlapped TF binding motifs that were within intersect peaks, pre-adipocyte
peaks, adipocyte peaks, and union peaks, respectively. These analyses identified functionally relevant loci
for which sex-specific allelic effects on gene expression could be explained by TF binding to consensus
motifs within open chromatin regions.

Our findings presented thus far reveal loci for which binding of differentially expressed TFs could
potentially explain sex-specific eQTLs, but we also found that sex-specific loci overlapping TF binding
motifs were not significantly enriched in open chromatin regions. To address this potential discrepancy,
we integrated and further examined the aforementioned data. First, we identified all sex-specific eQTL
loci that were both overlapping a TF binding motif and within open chromatin regions from the union of
pre-adipocyte peaks, adipocyte peaks, and adipose tissue peaks. The overlapping TF motifs corresponded
to TFs implicated in adipogenesis, as described above (e.g., PPARG, KLF5, EGR1, EGR2, SREBF2;
Supplemental Table S9). We identified five open chromatin loci overlapping PPARG motifs. For
example, an open chromatin locus associated with BRD/ expression overlapped a consensus motif for the
PPARG-RXRA dimer (main text Fig 4F,G). These results support the functional relevance of sex-specific
eQTL overlapping putative TFBSs in open chromatin regions.

Gene expression dynamics in human and mouse adipogenesis

For these analyses we focused on FADS1, MAP1B, HSPA12A, CLIC6, MMD, and PDZD2 (along with the
respective murine orthologs). We first evaluated gene expression in the SGBS human adipocyte cell line
(Nassiri et al., 2016). In differentiated SGBS adipocytes, the six aforementioned genes were within the
upper expression quartiles (percentile > 0.5). To determine whether the expression of these genes varied
throughout the process of adipocyte differentiation, we analyzed adipogenesis time-series data in SGBS
cells (Nassiri et al., 2016). We evaluated the dynamics of gene expression by fitting linear models to the
gene expression profiles, with and without associations with differentiation time, and applying a Likelihood
Ratio Test (LRT) to compare the models. Our analysis was consistent with the temporal dependences of
FADS1, MAP1B, HSPA12A, CLIC6, MMD, and PDZD2 during adipogenesis (FDR < 2.7 x 10~%, main
text Fig 7).

To further evaluate whether FADS1, MAP1B, HSPA12A, CLIC6, MMD, and PDZD2 are expressed
in adipocytes acutely isolated from human subcutaneous adipose tissue, we evaluated time-series gene
expression data from adipogenesis experiments with human adipose-derived stromal cells during adipocyte
differentiation (Ambele et al., 2016). These data included samples from three females and one male, hence
it was not possible to evaluate sex-differences due to statistical power limitations associated with the low
sample sizes. Our analyses were generally consistent with dynamic expression during adipogenesis (FDR
< 0.052, LRT, Fig 7). As observed for SGBS cells, the genes of interest were largely within the upper
expression quartiles. These data are consistent with the robust functional expression of differentially
expressed sex-specific eQTL genes in human subcutaneous adipocytes. The pronounced augmentation
of FADS1 early in adipogenesis in consistent with a role of the FADS1 enzyme in coordinating the
differentiation process.

To evaluate the conservation of FADS1, MAP1B, HSPA12A, CLIC6, MMD, and PDZD2 expression
dynamics in murine adipogenesis, we examined time-series adipogenesis data from 3T3-L1 cells
(Siersbak et al., 2017). Consistent with the human adipocyte data, our analysis revealed that Fadsi
and Map1b were in the upper expression quartiles for mature adipocytes, and showed dynamic
expression during adipogenesis (FDR < 5.6 x 1079, LRT; Fig 7). However, the Fads! dynamics
followed a distinct kinetic profile as compared to the rapid FADS! response observed for human adipocytes.
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Supplemental Discussion

Sex differences related to mitochondrial function

Data from both mice and humans are consistent with elevated mitochondrial oxidative metabolism in
females (Keuper et al., 2019; Norheim et al., 2019; Bayindir-Buchhalter et al., 2018; Silaidos et al., 2018;
Gaignard et al., 2018; Vijay et al., 2015; Rodriguez-Cuenca et al., 2002). It was previously reported
that sex differences were not observed in measures of oxygen consumption rate from human adipocytes,
however, it does not appear that this study was adequately powered to for such an analysis (N = 15, (Yin
et al., 2014)). Another study reported sex differences in oxidative metabolism in human pre-adipocytes,
but not mature adipocytes, from obese donors (N = 20, Keuper et al. (2019)). Again, these findings could
be due to either power limitations or the fact that the donors were obese. Further work is needed to
establish whether gene expression sex differences propagate to sex differences in the oxidative metabolism
of adipose tissues.

Sex differences related to adipogenesis

Previous reports have documented sex differences in adipogenesis (Blouin et al., 2010), and sex hormones
are known regulators of adipocyte differentiation (Blouin et al., 2010; Gupta et al., 2008; Singh et al.). Other
studies have shown the absence of sex differences in adipogenesis (Contreras et al., 2016; Tchoukalova et al.,
2010). Methodological details regarding pre-adipocyte isolation and the quantification of adipogenesis
may be critical to the interpretation of the existing results. In general, adipogenesis is a process that
involves the proliferation followed by the differentiation of progenitor stem cells that are committed to
the adipocyte lineage (i.e., pre-adipocytes, Ghaben and Scherer (2019)). Human and rat pre-adipocytes
from females showed enhanced proliferation following estradiol treatment in comparison to those from
males (Anderson et al., 2001; Dieudonne et al., 2000). Dihydrotestosterone was shown to inhibit adipocyte
differentiation of human male pre-adipocytes (Gupta et al., 2008). Testosterone and dihydrotestosterone
inhibited adipocyte differentiation in male murine 3T3-L1 cells (Singh et al.). A related study showed
that androgens inhibited human adipocyte differentiation, with an elevated effect in females as compared
to males (Blouin et al., 2010).

Results from measurements of radioactive carbon isotope incorporation into subcutaneous adipose
tissue DNA supported the conclusion that adipogenesis occurs in human adults to maintain a constant cell
number with an 8% cell turnover per year (Spalding et al., 2008). However, it should be noted that this
conclusion was derived from analyses of partial differential equation models of the data. Thus, limitations
related to the model assumptions, specification, and fit may influence this interpretation (Bernard et al.,
2010). Further, the model analysis was based on abdominal adipose tissue (Spalding et al., 2008), whereas
evidence consistent with sex differences in human adipogenesis in vivo was shown to be more prominent
in the femoral subcutaneous depot (Tchoukalova et al., 2010). Available in vitro data, based on the
assessment of PPARG expression in differentiated pre-adipocyte cultures from abdominal subcutaneous
adipose tissue biopsies, do not support elevated adipogenesis in females (Tchoukalova et al., 2010). These
in vitro results rendered the in vivo findings ambiguous. Irrespective of sex, multiple view points exist as to
whether adipogenesis contributes to adipose tissue mass in adult humans, with contributions to health and
disease (Vishvanath and Gupta, 2019), or whether adipocyte numbers are relatively fixed (Spalding et al.,
2008), and there are a number of important caveats regarding the existing data (Arner and Spalding, 2010).
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Study limitations

This study has several limitations that represent opportunities for further investigation. A general
caveat of adipose tissue-scale analyses of sex differences is that the differences could be due to sex-biased
expression in adipocytes, sex-biased expression in non-adipocytes (e.g., adipose tissue macrophages or
vascular cells (Rosen and Spiegelman, 2014)), and/or sex-differences in the proportions of cell types across
which expression variation is present (see Khramtsova et al. (2019)). However, it has been shown that
gene expression profiles from human adipose tissue largely reflect adipocyte expression patterns, such
that subject-to-subject differences substantially exceed tissue-to-adipocyte differences (see Fig S3 in Hu
et al. (2019)). Another important caveat is that we used a permissive p-value cutoff for our sex-specific
eQTL analysis (i.e., 1 x 107%). Our rationale was that we could apply permissive eQTL discovery criteria
and subsequently impose rigorous statistical criteria in downstream analysis. That is, we applied a
sensitivity filter followed by specificity filters. Importantly, we implemented interaction models for our
eQTL analysis, which are preferable for detecting sex-by-genotype interactions (Gilks et al., 2014), at the
cost of reduced power for detecting interactions (Brookes et al., 2004). Nevertheless, we acknowledge that
our choice in significance threshold led to a greater extent of interaction eQTL discovery as compared
to other studies (Yao et al., 2014). Another approach would be to assess main effects for genotype in
sex-stratified analyses (Norheim et al., 2019), however, such approaches have reduced reliability (Brookes
et al., 2004). As an alternative to an unbiased genome-wide eQTL analysis, one could perform feature
selection prior to association mapping (Ho et al., 2019), to limit the false discovery burden. For instance,
the analysis could be performed only for SNPs within open chromatin peaks or transcription factor
binding sites. Such an approach would be biologically motivated by studies demonstrating that veritable
cis-regulatory variants are enriched within open chromatin regions (DNAse hypersensitivity sites), active
promoters/enhancers (H3k4me3, H3k27ac ChIP-seq) and transcription factor binding sites (ChiP-seq)
(Tewhey et al., 2016). In general, our analyses were designed to prioritize specificity over sensitivity.
We combined data from a variety of resources (e.g., distinct ethnicities and cell line data). Focused
comparisons (e.g., between ethnicities) would not be justifiable due to the absence of systematic data
collection and initial processing procedures. Nevertheless, the findings we report here are robust to
a plethora of potentially confounding factors. Therefore, we consider the sensitivity limitation of our
study to be a positive attribute in the form of enhanced specificity and robustness. To resolve many
limitations of our study, analyses of adipocytes from a large cohort of human donors could be advantageous.

Functions of FADS1, MAP1B, HSPA12A, CLIC6, MMD, and PDZD2

Fatty Acid Desaturase 1 (FADS1) is a fatty acid metabolism enzyme involved in the metabolism of
poly-unsaturated fatty acids. FADS1 activity produces arachidonic acid and eicosapentaenoic acid. FADS1
was previously implicated in sex-differences in general metabolism, as well as adipose tissue sex-differences
(Guo et al., 2017). FADSI is a well known regulator of adipose function (Gromovsky et al., 2018; Guo
et al., 2017; Viguerie et al., 2012), adipocyte biology (Gromovsky et al., 2018; Zhang et al., 2016; Ralston
et al., 2015), and mitochondrial function (Gromovsky et al., 2018). The Microtubule Associated Protein
1B (MAP1B) is involved in transport along microtubles. This gene has been implicated in adipose tissue
function in an unbiased gene expression analysis (Dahlman et al., 2010), and was also implicated in
mitochondrial function (Jiménez-Mateos et al., 2006). Heat Shock Protein Family A (Hsp70) Member
12A (HSPA12A) is a regulator of the heat shock pathway. This gene is known to contribute to adipocyte
biology and adipogenesis, in which interactions with PPARG regulate both differentiation and diet induced
obesity (Zhang et al., 2019). In general, HSPA12A is a well documented contributor to adipose biology
(Cheng et al., 2019; Tareen et al., 2018; Perfilyev et al., 2017). Chloride Intracellular Channel 6 (CLIC6)
is a membrane chloride ion transporter that has been implicated in adipose tissue (Elbein et al., 2011;
Lé et al., 2011) and adipocyte biology (Min et al., 2019). Monocyte To Macrophage Differentiation
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Associated (MMD) exhibits sex-biased expression in human skeletal muscle (Maher et al., 2009), and has
been identified in unbiased gene expression analyses of human adipose tissue (Dahlman et al., 2005). PDZ
Domain Containing 2 (PDZD2) is known to be involved in inflammatory signaling and has been identified
as a sex-biased gene in murine studies of rheumatoid arthritis (Kudryavtseva et al., 2012). This gene
has also been implicated in adipose tissue biology (Chen et al., 2018; Tareen et al., 2018), adipogenesis
(Gérard et al., 2019), adipocyte biology (Min et al., 2019; Lo et al., 2013), and mitochondrial function
(Arroyo et al., 2016).
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Supplemental Code

The supplemental codes are included in the online Supplemental Material as .R and .sh files for respective
analyses in R and in the command line.

Supplemental Tables

The supplemental tables are included in the online Supplemental Material as tab-delimited text files for
either analysis or inspection in the spreadsheet format. Each supplemental table file has a header with a
table legend.
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Figure S1: Sex annotation and differential expression analysis. (A) The deCODE XIST expression
distribution was considered for defining sex annotation. Samples with XIST expression levels below the first
vertical red line were annotated as males. Samples with XIST expression levels above the second vertical red
line were annotated as females. (B) Annotated sex was consistent with low/negligible XIST expression for
males and relatively high XIST expression for females from the deCODE cohort. Annotated sex was generally
consistent with low/negligible XIST expression for males and relatively high XIST expression for females
from the AAGMEx cohort. Two male subjects with XIST expression levels above the horizontal black line
were removed from the AAGMEx analysis. (C) Gene expression log2 fold changes with respect to sex are
plotted as a function of average expression level for the three cohorts. (D) To assess the gene expression
variance explained by sex, we fitted the normalized gene expression profiles, used for the differential expression
analysis, with linear models as functions of sex. The proportion of variance explained by sex is greater on
average for the differentially expressed genes as compared to the averages over all genes. We performed a
permutation test the evaluate the significance of the average variance explained by randomly selecting 162
genes from each data set over 10,000 iterations. For each of the three data sets, there was a zero probability
of identifying an average variance explained as high as that observed for the mean variance explained for the
162 differentially expressed genes from the respective data set.
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maximal expected fold change shows an asymptotic limit at approximately four for sample sizes up to 10,000.

The simulated data were generated from random normal distributions and the expectation traces were
generated from equation 7. The optimal upper bound was based on equation 8. See Supplemental Results for

further details.
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Figure S3: Correction for surrogate variables highlights sex differences in gene expression. (A)
Principal component plots illustrate the systematic effects of collection site (top left), RNA integrity number
(RIN, top middle), age (top right), batch type (bottom left), Hardy scale representing death circumstances
(bottom middle), and sex (bottom right) on gene expression. (B) Principal component plots complementary
to those in (A) are shown for PC projections of the residuals obtained after adjusting the data for age, RIN,
platform, and the 36 latent factors from surrogate variable analysis (SVA). Note that the visible effects of
collection site, RIN, age, batch type, and Hardy scale are not apparent following covariate correction. In
contrast, the sex differences are accentuated following the covariate adjustment (compare bottom right of (B)
with the bottom right of (A)). Ellipses denote 75% confidence intervals for bivariate normally distributed
data.
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Figure S4: Correction for PEER factors highlights sex differences in gene expression. Principal
component plots are shown for PC projections of the residuals obtained after adjusting the data for age, RIN,
platform, and the 32 latent factors from the PEER analysis. Note that the visible effects of RIN, age, and
Hardy scale are not apparent following covariate correction. In contrast, the sex differences are accentuated
by the adjustment for PEER factors (compare with panel (A) of Supplemental Fig S3). Ellipses denote 75%
confidence intervals for bivariate normally distributed data.
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correlation analysis in mice. We clustered the Pearson correlation matrix based on Euclidean distance.

The analysis revealed three prominent clusters. We inspected the cluster constituents and selected body fat
percentage, insulin resistance, and body fat growth as representative phenotypes.
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Figure S6: Fold change distributions for differentially expressed genes. We found that 162
genes were differentially expressed in subcutaneous adipose tissue, with consistent directionality, across three
geographically and ethnically diverse human cohorts (|fold change| > 1.05, FDR < 0.05). For symmetry with

respect to fold change directionality, we plot negative log fold changes as —1/2°92(/%) (e.g., for logs(fc) = -2,
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Figure S7: Race-stratified gene set enrichment analysis (GSEA) of the GTEx data. We
separated the subcutaneous adipose tissue GTEx data into African American (n=71; 25 females, 46 males)
and non-African American samples (n=510; 169 females, 341 males). The GSEA results show that the effect
size directionality differences between the multi-ethnic GTEx cohort and the AAGMEx cohort, observed for
fatty acid metabolism and KLF14 targets, are maintained when the GTEx data are stratified by race. This
suggests that the difference between the GTEx and AAGMEx results is not attributable to race.
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Figure S8: Mechanistic hypotheses for sex-specific eQTLs. (A) We considered cases in which eQTL
associations are directly related to transcription factor (TF) binding at a single regulatory SNP. According to
this model, if a TF is an activator of expression, its allele-specific binding should be associated with elevated
expression. In this example, TF affinity and gene expression are relatively elevated in individuals homozygous
for the A allele. (B) We hypothesize that a sex-specific eQTL effect, with a sex-specific effect observed
only in males, can be explained by male-specific expression and enhanced binding of an activator TF to the
allele associated with elevated expression. (C) We hypothesize that a sex-specific eQTL, with a sex-specific
directionality, can be explained by instances in which the associated SNP resides within overlapping TF
binding sites for TFs with sex specific expression profiles. For example, consider a case in which TF A is
expressed only in males and binds preferentially to the A allele at an eQTL SNP, whereas TF B is expressed
only in females and binds preferentially to the G allele at the same SNP. If both TFs are activators of
expression, such an occurrence could explain the sex-specificity for the directionality of the eQTL in this
example.
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Figure S9: Sex-specific eQTL associations for sex-biased genes. Here we show the sex-specific eQTL
profiles for 7/13 genes with both association loci and differential expression (related to main text Fig 6).
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Figure S10: Differential expression profiles for genes with sex-specific eQTLs. Here we show the
sex-biased expression profiles for 7/13 genes with both association loci and differential expression (related to
main text Fig 6). The three data groupings correspond to the multi-ethnic (GTEx), Icelandic (deCODE),
and African American (AAGMEX) cohorts, from left the right, respectively.
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Figure S11: Human adipogenesis of genes with sex-biased expression and sex-specific eQTLs.
Here we show the temporal dynamics of gene expression, throughout adipogenesis, for 7/13 genes with both
association loci and differential expression (related to main text Fig 7). Data are shown for the SGBS cell
line and adipose stromal cell-derived pre-adipocytes (ASC).
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