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Supplemental Notes

Parameter setup and running commands for the mappers and assemblers

All the assemblers were tested on a server with 96 GB of RAM and a 12-core CPU. And the
parameters of each genome-guided assembler were set up as their defaults with the same
input file produced by HISAT2 and STAR as follows.

1) HISAT?2 (version 2.0.5): HISAT2 -x Index -1 fastql -2 fastq2 -S SamFile --dta;

2) STAR (version 2.5.3a): STAR --outSAMstrandField intronMotif --genomeDir Index
--readFilesIn fastql fastq2;

3) TransBorrow (version 1.2): TransBorrow -r combined.gtf -b file.bam -g genome.fa -s

strandness;



4) Scallop (version 0.10.4): scallop -i file.bam -o scallop.gtf --library type strandness;
5) StringTie (version 2.1.1): stringtie file.bam -o stringtie.gtf;
6) Cufflinks (version 2.2.1): cufflinks file.bam -o Cufflinks Out_Dir;

7) Flux-simulator (version 1.2.1): flux-simulator —p parameters-file;

8) TACO (version 0.7.3): taco_run gtf files.txt --filter-min-expr 0.001 -o TACO_Out_Dir;

9) StringTie-Merge (version 2.1.1): stringtie --merge stringtie2.gtf scallop.gtf cufflinks.gtf -T
0.001 -F 0.001 -o StringTie merge.gtf;

10) Mikado (version 2.0rc4): (i) mikado configure --daijin --list list.txt --reference genome.fa
--mode stringent --scoring species.yaml configuration.yaml; (ii) daijin mikado -nd

configuration.yaml

Reference gene annotations used for additional real datasets

In order to evaluate the performance of the assemblers on real datasets, we downloaded the
reference genome and transcriptome of the species Homo sapiens (version: GRCh37/hgl19),
Saccharomyces cerevisiae (version: SacCer Apr2011/sacCer3), Drosophila melanogaster
(version: BDGP Release 6 + ISOl1 MT/dm6), Caenorhabditis elegans (version:
WBcel235/cell), and Mus musculus (version: GRCm38/mm10) from the UCSC Genome
Browser at http://genome.ucsc.edu/cgi-bin/hgTables. As the UCSC Genome Browser does
collect the information of the two species Arabidopsis thaliana and Zea mays, the reference
genome and transcriptome of Arabidopsis thaliana and Zea Mays were downloaded from

EnsemblPlants at ftp://ftp.ensemblgenomes.org/pub/plants/release-46.

Although the applications conducted in this study used the GRCh37 assembly, the users
could freely choose other preferred assemblies, such as GRCh38. The genomic sequences of
GRCh38 and GRCh37 are actually highly syntenic, and allows almost perfect one-to-one
mapping for the majority of genomic regions, which is the basis of the widely-used UCSC
liftOver utility. For the transcribed regions, GRCh38 has about 58037 annotated genes
including ncRNA genes and pseudogenes (GENCODE v25), and 58028 of these genes can be
perfectly mapped to the GRCh37 assembly with liftOver, at a percentage of 99.98%. In
addition, we also performed a testing with GRCh38 on several data sets, which shows highly
consistent results with GRCh37. Therefore, we feel it reasonable to leave the choice of

genome assemblies to the users.
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http://genome.ucsc.edu/cgi-bin/hgTables
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ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/735/GCA_000001735.2_TAIR10.1,

Assigning edge weights of the line graphs by solving a quadratic program
The in- and out- edges (i.e. splicing junctions) for each node in splicing graph G could be
accurately connected by solving a constrained quadratic program. In detail, assume that node
v in splicing graph G has n in-coming edges and m out-going edges. In theory, there are mxn
feasible connections between these edges. It is expected to find the true connections that the
to-be-assembled transcripts pass through, based on which we designed the following
programming.

min z= z (s, — Z:w[jxij)2 + Z (¢, = Zwijxij ?
(5 21 fenep e PPen,

dox;2l j=1..m
i=l,...,n

S.L.

In the above program, s; is the weight of the in-coming edge e; at v, ¢; the weight of the
out-going edge ¢; at v; x; represents a binary variable with x; = 1 if there is at least one
transcript-representing path passing through e; and ¢; at v, and 0 otherwise, and w;; represents
the coverage value of all the transcript-representing paths passing through e; and ¢; In the

objective function, (s ;T ZW”XU > measures the deviation between the weight of the

j=l...m
in-coming edge e; and the sum of the weights of all the transcript-representing paths passing

through e;, and similarly for (¢, — Z:wi].x”)2 . We then minimize the deviations for all the
i=l,...,n

in-coming and out-going edges to find the correct connections between the in-coming and
out-going edges. In the constraints, Pg is the set of extended paired-paths, and M is the
minimum number of transcript-representing paths passing through node v that satisfy all the
above constraints. Clearly, solving this program is NP-hard. However, it is computationally
acceptable in our assembly procedure due to the specific properties of the constructed splicing

graphs.
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Assembly accuracy of the assemblers on additional RNA-seq samples

In addition to the evaluations on a simulated and four real data sets presented in the main text,
we also evaluated the performance of all the compared assemblers on an additional 101
RNA-seq samples (see Supplemental Table S1) from the species Homo sapiens,
Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus,
Arabidopsis thaliana, and Zea mays. To evaluate the performance of the assemblers, we
compared the recall and precision of the assemblers on all the data sets. At default parameters,
TransBorrow showed the highest recall among all the compared assemblers on all the 101
data sets (see Figure S1 and S2), and the highest precision on 97 of the 101 data sets (see
Figure S3 and S4). For all the data sets in this study, we also compared the F-score of the
assemblers, computed by 2*precision*recall/(precision+recall), which is the harmonic mean
of recall and precision. The higher the F-score was, the better the assembler performed. After
comparison, results showed that TransBorrow showed the highest F-score on all the data sets
(see Figure S10-S12). Therefore, TransBorrow performed better than all the compared

assemblers on all the 101 data sets.

The main advantage of TransBorrow is to effectively assemble transcripts of those genes
with complicated splicing junctions, which are usually difficult to solve. However, most
reference transcripts of Saccharomyces cerevisiae are very simple. e.g., more than 95% of
those reference transcripts contain only one exon. Therefore, based on our data sets, Scallop
showed better performance than StringTie2 in assembling simple transcripts. When
assembling complicated transcripts, StringTie2 and Scallop showed comparable performance

in recall. However, The precision of StringTie2 was higher than that of Scallop in most cases.

Assembly accuracy of the assemblers on spike-in RNA-seq data

Spike-in RNA-seq data sets provided known ground truth expressed transcripts. In order to
evaluate the performance of the compared assemblers by using spike-in RNA-seq data sets,
we ran all the assemblers by using six spike-in RNA-seq datasets (see Supplemental Table S1)
from the study (Mingfu Shao 2017) and compared their performance. After comparison, the
results showed that TransBorrow demonstrated the highest recall and precision among all the

applied assemblers on all the six data sets (see Figure S5 and S6 for details).

Assembly accuracy of the assemblers by using single-cell RNA-seq data

Single-cell RNA sequencing (scRNA-seq) has revolutionized traditional transcriptomic
studies by extracting the transcriptome information at the resolution of a single cell. However,

scRNA-seq generally brings a large amount of noise and the capture efficiency is also much



lower than traditional bulk RNA-seq. In order to evaluate the performance of TransBorrow
and the other compared assemblers on scRNA-seq data sets, we ran all the assemblers on four
scRNA-seq data sets (see Supplemental Table S1). For the protocol of the four scRNA-seq
data sets, the first two data sets RO07 and RO08 used Drop-seq, Illumina Nextseq 500 protocol;
the third data set R0O09 used BD FACSArialllu Cell Sorter (BD Biosciences), [llumina HiSeq
2500 protocol; and the fourth data set RO10 used Drop-seq, Illumina Nextseq 500 protocol.
After comparison, we found that TransBorrow also showed the best performance over all the

applied assemblers (see Figure S7 for details).

Performance of the assemblers at identifying long noncoding transcripts

Long noncoding RNAs (IncRNAs) are generally considered as non-protein coding
transcripts longer than 200 nucleotides (Dinger et al. 2008; Kung et al. 2013). In order to
evaluate the performance of the compared assemblers at identifying IncRNAs, we collected
four human RNA-seq data sets from NCBI Sequence Read Archive (SRA) with the accession
codes SRR10517380, SRR10517375, ERR2403204, and SRR10517378, which sequenced
both coding and noncoding RNAs. Then we ran all the assemblers on the four data sets and
compared their performance at assembling IncRNAs. Results showed that TransBorrow
performed better than all the other compared assemblers at identifying IncRNAs (see Figure

S8 for details).

Performance comparison between TransBorrow and Mikado

Mikado attempts to identify the most useful or best set of transcripts from multiple transcript
assemblies. It tries to recover good gene models from the various options, regardless of which
one has the most read support, starting from a preconception of how a gene model should
look like. As demonstrated in the Mikado paper, the Mikado pipeline groups transcripts from
multiple assemblies into loci and determines a representative transcript for each locus (i.e.,
the transcript that best fits the qualities relating to CDS, exon, intron, or UTR features) as
output. Therefore, Mikado was designed for a quite different purpose from TransBorrow.
Even though, we still made a comparison between the two tools on the simulated data and the
four real data sets in the main text, and results showed that the recall and precision of Mikado
on the simulated data was 30.57% and 42.17% based on HISAT2 mapping, respectively,
which were much lower than those of TransBorrow (55.89% and 53.51%). Then the recall of
Mikado on the four real data sets based on HISAT2 mapping was 9.12%, 8.91%, 10.31%, and
10.21%, versus 19.17%, 17.72%, 18.93%, and 18.13% by TransBorrow. Regarding the
precision of the two tools on the four real data sets, Mikado achieved 28.1%, 28.58%, 30.26%,
and 28.73%, versus 27.07%, 30.7%, 34.08%, and 32.16% by TransBorrow. For STAR
mapping, the recall and precision of Mikado on the simulated data were 35.08% and 45.38%,



still much lower than those of TransBorrow (57.12% and 60.32%). Then the recall of Mikado
on the four real data sets was 8.63%, 8.52%, 9.91%, and 9.68%, versus 18.02%, 16.51%,
18.01%, and 17.02% by TransBorrow. Regarding the precision of the two tools on the four
real data sets, Mikado achieved 26.42%, 27.14%, 28.74%, and 26.99%, versus 26.91%,
29.77%, 32.95%, and 30.51% by TransBorrow. Its precision was slightly lower than that of

TransBorrow, while its recall was much lower than that of TransBorrow.

Supplemental Figures
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Figure S1. Recall of the assemblers on the additional RNA-seq data sets based on HISAT2 mappings.
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Figure S2. Recall of the assemblers on the additional RNA-seq data sets based on STAR mappings.
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Figure S3. Precision of the assemblers on the additional RNA-seq data sets based on HISAT2

mappings.
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Figure S4. Precision of the assemblers on the additional RNA-seq data sets based on STAR mappings.
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Figure S10. F-score of the assemblers on the additional RNA-seq datas from R001 to R042.
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Figure S11. F-score of the assemblers on the additional RNA-seq datas from R043 to R084.
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Figure S13. Accuracy comparison between TransBorrow (by using the assemblies from StringTie,

Scallop, and Cufflinks ) and StringTie2 in terms of recall on (A) simulated data set, and (B-E) real data



sets R1, R2, R3, and R4, and in terms of precision on (F) simulated data set, and (G-J) real data sets R1,
R2, R3, and R4.
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Figure S14. Recall/precision curves of the assemblers on (A) simulated data set, and (B-E) real data
sets R1, R2, R3, and R4.
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Figure S15. Recall/precision curves of the assemblers on the additional RNA-seq datas from R001 to

R042, where horizontal (vertical) axis represents precision (recall).
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Figure S16. Recall/precision curves of the assemblers on the additional RNA-seq datas from R043 to

R084, where horizontal (vertical) axis represents precision (recall).
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Figure S17. Recall/precision curves of the assemblers on the additional RNA-seq datas from R085 to

R101, where horizontal (vertical) axis represents precision (recall).
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Figure S18. Accuracy comparison of TransBorrow with an approach which simply combined the
assembled transcripts from different assemblers in terms of recall on (A) simulated data set, and (B-E)
real data sets R1, R2, R3, and R4, and in terms of precision on (F) simulated data set, and (G-J) real
data sets R1, R2, R3, and R4.
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Figure S19. An IGV screenshot showing the read alignment evidence and gene structures reported by
the different assemblers, where TransBorrow outperformed all the alternatives. This gene underwent
complicated splicing junctions, and TransBorrow correctly assembled all the five transcripts. However,
one transcript was erroneously predicted by StringTie2, and two by Scallop. Cufflinks only assembled
three transcripts and all of them were false positives. StringTie-merge also predicted three transcripts

and one of them was erroneously assembled. TACO output six transcripts and only four of them were

correctly assembled.
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