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Supplemental Methods 
1. Bias-corrections, digestion signals, and derivatives
To generate biased-corrected read counts in a genome with length N  (1.1), we first performed bias correction based on model and bias values reported in He et al. (2014). A separate set of raw reads were used to count raw digestion signal () as they better conserved overall read count number difference among different peaks. Only 5’ loci were used to count digestion signals in both cases. 
                                                                                                            (1.1)
                                                                                                            (1.2)
The raw digestion signals were then normalized by the mean of non-zero read counts inside a surrounding 10kb window  (1.3) and smoothed using the local regression function LOESS from R with a degree of the local polynomial = 2 and a small span to allow 30 surrounding points in the fitting. The resulting signals were saved as a read count file that was used in TRACE.
                                                                                                  (1.3)
      We also applied within-dataset normalization (1.4) on the bias corrected signals by using the surrounding 10kb window, as well as between-dataset normalization (1.5) based on kth percentile  and standard deviation  of the ATAC/DNase-seq peak  or region of interest that contains . R function LOESS was then applied on the normalized signal  for local regression. 
                                                                                                (1.4)
                                                                                                 (1.5)
The normalized and smoothed bias-corrected signals were then used to calculate derivatives using the Savitzky-Golay filter from the python package Scipy. This method fits data into a second order polynomial with a window size of 9. The values were stored in a deviation file and used as input data in TRACE.

2. Hidden Markov Model for footprinting 
2.1 Model parameters 
Hidden Markov models (HMM) are widely applied in bioinformatics. It can represent probability distributions over a sequence of observations   generated by a hidden state path . In TRACE, observations are our processed data and hidden states are different chromatin labels, such as footprints and small peaks. Observed features at each genomic position t () include cut count, derivative of ATAC/DNase-seq cut counts, and PWM score. HMM parameters also include emission distribution , initial states probability  , and transition probability .

2.2  Model details
Our model was built based on the idea of a generalized HMM, in which each motif consists of n states, each representing one position in its PWM (n is the length of PWM.). Each state in a motif can only transition to the next state in that motif, and the last state in this motif will transition to the state of the small peak. Thus, each motif can still be considered as an individual large state, but its parameters at each base pair can be captured separately. There are also footprint states representing generalized footprints which do not match any motif in included in the model. Fig. 1B shows this in a simplified structure of TRACE model. 
      Two Background states represent starting and ending positions for each region of interest. Small peaks that surround footprints are divided into UP, TOP, and DOWN states with a one-direction connection. The DOWN state will either transit to a footprint state or the end of an open chromatin region state (Background state). Only the last state in the motif states, or start of the region (Background state), can transit to an UP state. 
      To better predict transcription factor (TF) functional binding sites, we included two sets of states for each motif to represent active and inactive binding sites. For each TF, TRACE will differentiate and predict its functional binding sites, and those regions with a matching motif but are not necessarily bound by that TF.

2.3  Model learning
Given sets of observed features, the Baum–Welch algorithm was applied to find the maximum likelihood estimate of the parameters . Forward probability  (2.1) is the probability of observing the partial sequence such that the state  is . Backward probability  (2.2) is the probability of observing the partial sequence  such that the state  is .
 Forward algorithm induction:                                                                                                    (2.1)
· Initialization:                     
· Induction:            
· Termination:  
 Backward algorithm induction:                                                                                                 (2.2)
· Initialization: 
· Induction:  
The Baum–Welch algorithm iteratively updates the model parameters . It combines the entire observation  and the forward/backward variables to obtain the probability of being in state  at time  , and in state  at time  as  (2.4), and the probability of being in state  at time  given the observation sequence as  (2.5).   and  is used for the calculation of  (2.6) and  (2.7) to update . These newly estimated  replace the previous  and used in the next iteration until the increase of  is smaller than a minimal threshold. 
   (2.3)
                                                                                      (2.4)                                                                                               
                                                                                                                              (2.5)
                                                                                                               (2.6)                                                                                                                                               
The emission distribution () (2.1) for each hidden state  is modeled with a multivariate normal distribution, with a  D-dimensional mean vector  and full covariance matrix . D is the number of features included as input data. Emission parameters that are estimated in the Baum-Welch algorithm include  for each state . 
                          (2.7)
                                                                                                                       (2.8)                        
                                                                                                    (2.9)                                                                                                                                                                                           
The Viterbi algorithm was implemented to find the best hidden path  that maximizes the likelihood  from observation  and estimated model . It finds the most probable hidden path  recursively by determining , the highest probability path ending in state , then backtracks to obtain the best path. Since one of the features in our TRACE model is PWM score, an optional bit score threshold can be included to reduce false positive calls. When a threshold is provided,   for state i at position t will be set to a minimal value if PWM score at t is below the threshold.

3. Bait motif selection
In addition to the TF of interest states, our TRACE model also includes other motifs which serve as bait motifs. Adding bait motifs can potentially reduce the false positive labels of regions with footprint-like digestion patterns, but a weak sequence match with the TF of interest. These footprint-like regions might have a higher sequence preference for the bait motifs. This binding competition can increase the accuracy of identifying TF binding sites.                                                                                                                                                                                                                                                                                          
To include useful information from the bait motifs in the model, these motifs should not have similar binding preference, otherwise they will only contain repetitive sequence information and be treated as the same states by TRACE. We obtained hierarchical clustering information of position frequency matrices (PFMs) from the JASPAR database using the RSAT matrix-clustering tool to ensure all motifs included in the model are different. The motifs at the root of each tree encompass all the position-specific scoring matrices (PSSMs) of a cluster. These root alignments are the only PWMs that should be added to the TRACE model as baits. The root motif from the cluster that contains the TF of interest should also be excluded from the model. We scanned each root motif across the genome and ranked their numbers of occurrences to determine which motifs to be added in the model. For a N-motif model for a certain TF, the bait motifs will be (N-1) the most abundant root motifs from the clusters that do not contain the TF of interest.                    

4. Existing footprinting methods evaluation
To assess the performances of existing computational footprinting tools including DeFCoM, BinDNase, CENTIPEDE, PWM score only, DNase2TF, HINT, FLR, CENTIPEDE, PIQ, Wellington and the original Boyle method, we followed the motif-centric evaluation approach and used chr1 in the test. For motif-centric methods, candidate binding sites overlapping with DNase-seq peaks were used as testing sites and included in the evaluation. The same group of DNase-seq peaks selected for the motif-centric methods was used as test regions for the de novo methods. 
       All sites and their scores from motif-centric methods are included and assessed in the evaluation. For de novo methods, only predicted footprints that overlapped at least 10% of a motif site were included. Any missing candidate binding sites from the input DNase-seq peaks were incorporated and assigned a minimum score. For a majority of the existing methods, we used their default settings, and those that required modifications or clarifications are listed below:

DeFCoM and BinDNase
Since these are supervised methods, we trained the model on chr19 and tested on chr1. Motif sites overlapping DNase-seq peaks in chr1 and chr19 were used as the testing set and training set, respectively. We used the default parameters specified by Kähärä and Lähdesmäki (2015) and Quach and Furey (2016).

CENTIPEDE
We utilized cut signal, PWM score, distance to closest TSS and conservation score as the input data. The other parameters were set as described in Pique-Regi et al. (2011). 

HINT
We applied HINT on only DNase-seq or ATAC-seq data with the default setting, and included the bias correction step. We used the newest version of HINT-ATAC for tests involving ATAC-seq data. 

Wellington
We used data from the double-hit DNase-seq protocol, as required by Wellington, and set -fdrlimit to 0. For the evaluation, the absolute value of its reported scores for each footprint were used.

Boyle method
We have a build-in option in our TRACE program to apply the Boyle method. We included read counts and slope data, and built a 6-state model, similar to the model described in Boyle et al. (2011). The resulting posterior probabilities were used in the evaluation.

PWM score only
We calculated PWM scores for all motif sites that were included in the motif-centric method’s evaluation. This includes only PWMs that overlap open chromatin sites in the current data set. Only PWM scores were used in this evaluation.

5. ATAC-seq pipeline
ATAC-seq data for GM12878 was obtained from GSE47753, and Omni-ATAC-seq data was obtained from the Sequencing Read Archive (SRA) with the BioProject accession PRJNA380283. These data were processed following the Kundaje lab's ATAC-seq pipeline. (https://github.com/kundajelab/atac_dnase_pipelines)
 
[image: ]Supplemental FiguresSupplemental Figure 1. Detailed schematic of bound and unbound CTCF state in CTCF model. Circles represent different hidden states including binding sites and peaks, lines with arrows represent transitions between different states. For simplicity, all other motifs, generic footprint states and background are represented by a dashed line circle.


[image: ]Supplemental Figure 2. PR AUC comparison between TRACE and existing methods for binding sites prediction of all TFs tested

[image: ]Supplemental Figure 3. ROC pAUC comparison between TRACE and existing methods for binding sites prediction of all TFs tested

[image: ][image: ]Supplemental Figure 4. Numbers of TFs with ChIP-seq data available in (A) A549, (B) H1, (C) K562 and (D) GM12878 among all motifs in JASPAR CORE database (non-redundant). Each pie plot has a total number of 746 TFs, orange protion represents number of TFs has ChIP-seq data in that cell line in ENCODE.
Supplemental Figure 5. Average rank of ROC pAUC across all TFs tested using ATAC-seq data for TRACE, DeFCoM and HINT-ATAC

[image: ]Supplemental Figure 6. DNase-seq and OMNI-ATAC-seq based TRACE performance comparison on PR AUC.

[image: ]Supplemental Figure 7. (A) PR AUC and (C) ROC AUC from simulation test with different prevalence. Scores for positive examples for all simulation were drawn from the same distribution N(5, 3). Each line represents a different negative example distribution with their own mean value, varying from 5 to -10. Black lines represent AUCs from random labels. (B) PR AUC increase and (D) ROC AUC increase from simulation test with different prevalence. (E, F) Score distributions for ZNF282 and NR2C2 as examples of TFs with different level of data imbalance. 

[image: ]Supplemental Figure 8. increase of footprinting methods’ best (A) ROC AUC and (B) ROC pAUC over permutation are not correlated with prevalence. Orange line is from simulation test using positive set from N(10, 8), negative set from N(0, 7).  

[image: ]Supplemental Figure 9. Heatmap of PR AUC of all TFs tested using DNase-seq and ATAC-seq data, sorted by prevalence.


[image: ]Supplemental Figure 10. Performance improvement of TRACE model over permutation for each TF in GM12878, colored by its best PR AUC from DNase-seq or ATAC-seq data. Orange line is from simulation test using positive instances drawn from N(12, 9), and negative instances from N(0, 9) to demonstrate expected PR AUC trend as binding prevalence changes.


[image: ]Supplemental Figure 11. Comparison of footprinting performance increase on TFs with (A) short, (B) intermediate and (C) long residence time. 

[image: ]Supplemental Figure 12. TRACE performance comparison on DNase-seq and ATAC-seq with comparable level of read depth. DNase-seq data used in this analysis has fewer reads than the one in Figure 3.





Supplemental Table
(A)
	
	1-motif model
	10-motif model
	

	Size of training set (kilobases)
	Number of states
	Computational time
	Memory
	Number of states
	Computational time
	Memory
	Number of cores

	71.9
	28
	<1min
	0.21G
	310
	4min
	1.4G
	40

	180.6
	34
	1min
	0.59G
	316
	9min
	3.5G
	40

	238.3
	52
	2min
	0.98G
	334
	17min
	4.8G
	40

	883.1
	32
	4min
	2.8G
	296
	62min
	15.6G
	40

	1308.6
	48
	7min
	4.2G
	316
	90min
	20.2G
	40


	
	1-motif model
	10-motif model
	

	Size of testing set (kilobases)
	Number of states
	Computational time
	Memory
	Number of states
	Computational time
	Memory
	Number of cores

	71.9
	28
	<1s
	0.2G
	310
	3s
	1.1G
	40

	180.6
	34
	<1s
	0.5G
	316
	7s
	2.9G
	40

	238.3
	52
	1s
	0.9G
	334
	9s
	4.0G
	40

	883.1
	32
	2s
	2.3G
	296
	29s
	12.8G
	40

	1308.6
	48
	4s
	3.5G
	316
	39s
	16.8G
	40



(B)
Supplemental Table 3. Computational time and memory TRACE requires for (A) training and (B)Viterbi step, with different sizes of model and training set. Each row shows the time and memory needed to finish a TRACE run for an example TF on a certain number of kilobase length of training data, using models with different numbers of hidden sates depending on motif size. CPU: Intel Xeon E5-2696 v4 @ 3.7GHz
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Supplementary Figure 3. Average rank of ROC pAUC across all TFs tested using ATAC-seq data for TRACE, DeFCoM and
HINT-ATAC.










