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1 - Public data used in this study
All accession IDs for files used in this study are in Supplemental Table S1. ENCODE’s ENCF IDs were downloaded at https://www.encodeproject.org/. GEO’s GS IDs were downloaded at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Syn IDs were downloaded from the ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge website at (http://dreamchallenges.org/project/encode-
dream-in-vivo-transcription-factor-binding-site-prediction-challenge/). The GM12878 ATAC-seq dataset was originally published in broadPeak format (Buenrostro et al. 2013) and processed as narrowPeak format by the Buenrostro lab. For iPSCs, there was no iPSC clone 19.11 CTCF ChIP-seq dataset available on ENCODE, so we used the CTCF ChIP-seq dataset from the iPS cell line GM23338. The Accession IDs for the benchmarking datasets used in Fig. 1-3 and 6 are in Supplemental Table S1.1, the large set of DNase-seq ENCODE data used in Fig. 4 and 5 are in Supplemental Table S1.2, and the immune system DNase-seq datasets used in Supplemental Fig. S10 are in Supplemental Table S1.3.
We obtained k-mer representations from our published Glossary (Mariani et al. 2017), which integrated the PBM data for the binding specificity of 671 metazoan TFs from UniPROBE (Hume et al. 2015). The Glossary’s TF specificity modules used in this study encompass (i) 13 motifs used in the benchmarking analysis (Fig. 1-2, 6) and (ii) 108 motifs used in the analysis of the large ENCODE set (Fig. 4-5).
We obtained PWM representations from CIS-BP version 1.02 (Weirauch et al. 2013), except for RFX4 primary and secondary PWMs, which were generated with Seed-and-Wobble and obtained from UniPROBE (http://thebrain.bwh.harvard.edu/uniprobe/index.php) under accession ID UP00056 (Hume et al. 2015). The CIS-BP PWM IDs (Supplemental Table S1.4) encompass (i) 13 PWMs (labeled as ‘Benchmarking’) used both in the benchmarking analysis (Supplemental Fig. 1) and in the coTRaCTE, AME, and HOMER comparisons (Fig. 2D, Supplemental Fig. 5), (ii) 99 PWMs (labeled as ‘Explorative’) used in the large ENCODE analysis (Fig. 4-5), and (iii) 15 PWMs (labeled as ‘Lymphoid Lineage’) used to analyze the lymphoid datasets (Supplemental Fig. S10). 
For a panel of TFs (Fig. 3B), we used a published set of digital footprints (DFPs) for H1-hES, K562, and GM12878 DNase-seq data computed using HINT with a corresponding set of motifs and validated by the co-presence of ChIP-seq peaks for the associated TFs (Li et al. 2019).


2 - Data pre-processing
2.1 - Benchmarking ENCODE DNase-seq: For each cell type, we merged two DNase-seq replicates (Supplemental Table S1.1) and considered just 150 bp peaks that were present in both replicates with a reciprocal overlap of 50% using the command “intersectBed” in bedtools (Quinlan 2014). Chromosomal positions were averaged for overlapping reads; the entire peak file was subsequently merged (“mergeBed”) so that no genomic position was counted in more than one peak region to avoid double counting any motifs found therein. The 150 bp region around the midpoint of each region (i.e., midpoint ± 75 bp) was taken and assigned the mean signal value of the original peaks it came from. There was only one replicate of DNase-seq peaks for iPSC clone 19.11 available, so these peaks were filtered for 150bp regions, merged to avoid double counting, and trimmed to 150bp around the midpoint as above. 
2.2 - Explorative DNase-seq: DNase-seq narrowPeak datasets (Supplemental Table S1.2) were downloaded from the ENCODE matrix with the filters: DNA accessibility; DNase-seq; Released; hg19; bed narrow peaks; John Stamatoyannopoulos, UW; removed all red and orange warnings. This resulted in 610 datasets for 188 unique cell types. We took only those regions that were 150 bp as with the benchmarking ENCODE DNase-seq datasets. We took these peaks without further post-processing instead of merging replicates since they might not have come from the same experiment, and there were often various numbers of replicates.
2.3 - ENCODE-DREAM DNase-seq: The ENCODE-DREAM DNase-seq data were downloaded in narrowPeak file format (Supplemental Table S1.1) and used as a reference set to be subtracted from the DNase-seq input sets during the MEDEA filtering of peaks. Since ENCODE-DREAM DNase-seq data came from the merge of replicates and we wanted to use all their peaks at their full size to obtain the most cell-type-specific peaks of the input sets, no further processing was applied. 
2.4 - ATAC-seq: ATAC-seq datasets for the 12 benchmarking cell lines (Fig. 1-2) were often missing in ENCODE, so we expanded our search to GEO (Supplemental Table S1.1). If distributed in hg38, replicates were converted to hg19 via liftOver (Speir et al. 2016). For H9-hES cells, there was only one replicate, so it was just trimmed to 150 bp. There were 4 replicates for GM12878 and 3 replicates for A549 and K562, so the “intersectBed” command used for the 2 replicates of DNase-seq data was insufficient. We therefore used “multiIntersectBed” (Quinlan 2014) to merge peaks, keeping those regions that overlapped all replicates and were larger than 75 bp; signal values were averaged. The resulting regions were trimmed to 150 bp around each merged region center (i.e., center ± 75 bp). 
2.5 - scATAC-seq: scATAC-seq datasets for three of 12 benchmarking cell lines (GM12878, H1-hES, and K562) were previously published by the Buenrostro lab (GEO ID GSE65360) (Supplemental Table S1.1). Since there was no ranking information available on the individual peaks in the deposited post-processed data, we obtained the raw count matrices for the single cell peaks from the Buenrostro lab. These files consisted of the top 50000 peaks trimmed to 500 bp around the peak summit (i.e., summit ± 250 bp) and a binary count for the presence of each peak in each single cell. We retrimmed peaks to 150 bp (i.e., summit ± 75 bp) and ranked them based on their frequency among the single cell populations.
2.6 - FAIRE-seq: FAIRE-seq datasets with replicates already merged were downloaded from ENCODE (Supplemental Table S1.1). Peaks were trimmed to 150 bp around the peak summit (i.e., summit ± 75 bp). 
For all the assays, we found the top peaks (typically top 500) by ordering signal values in a descending order. 

3 - MEDEA Filtering: Step 1 of the MEDEA suite
The same benchmarking ENCODE DNase-seq datasets from Fig. 1A were used as input. As a DNase-seq reference set, we used the relaxed peaks curated by the ENCODE-DREAM Challenge in the same set of cell types (labeled as “DNase-seq REF” in Supplemental Table S1.1). To pairwise subtract the accessibility peaks of each reference dataset from the benchmarking datasets, we used “subtractBed” with the -A option for each cell type separately. We took out whole processed peaks that overlapped with any reference set peak (-A option) to get only the most cell-type-specific peaks of the input and to avoid breaking up the 150 bp peaks. Each benchmarking dataset thus resulted in a series of 11 MEDEA-filtered peak subsets, as we avoided comparing a cell type with itself (e.g., A549 not in A549). For example, the A549 dataset had resulting output files: A549 not in GM12878, A549 not in H1-hES, etc. (Supplemental Fig. S4). Each MEDEA subset was sorted by signal value and only the top 500 peaks were considered in the MEDEA AUROC analysis (see also the section “Motif enrichment analysis; MEDEA AUROC (Step 2 of MEDEA suite)”).

4 - Background sequence sets for motif enrichment analysis (Fig. 1-2, 4, 6)
4.1 - GENRE: We downloaded the Glossary-GENRE suite (Mariani et al. 2017) from http://thebrain.bwh.harvard.edu/glossary-GENRE/download.html. Genomic background sequences were generated using GENRE software with the default human setting (promoter overlap, repeat overlap, GC content, CpG dinucleotide frequency) and fixing their lengths to 150 bp to correspond to the DNase-seq peak length of the datasets used.
4.2 - ENCODE-DREAM: When the ENCODE-DREAM DNase-seq peak datasets were used as a background for AME (Supplemental Fig. S5C) and for AUROC (Fig. 2C) methods, we ensured that they did not overlap the foreground peaks by subtracting out the full peak sets of DNase-seq foregrounds from the full peak sets of ENCODE-DREAM backgrounds for each pairwise combination. We then determined the best 500 peaks by signal value, and trimmed to 150 bp around the peak (i.e., peak ± 75 bp). 
4.3 - Dinucleotide shuffle: As default background, AME (McLeay and Bailey 2010) permutes the sequence while keeping the dinucleotide frequencies constant.
4.4 - HOMER default background: As default background, HOMER (Heinz et al. 2010) does a GC-matching step and autonormalization of 1-, 2-, and 3-mer frequencies. 

5 - Motif enrichment analysis (Fig. 1-2, 4, 6)
5.1 - AUROC: Motif enrichment was evaluated by AUROC for the presence of a motif in a foreground set of DNA sequence (i.e., genomic regions) as compared to a background set, similarly to previous studies (Mariani et al. 2017). We downloaded the Glossary-GENRE suite (Mariani et al. 2017) from http://thebrain.bwh.harvard.edu/glossary-GENRE/download.html. The Glossary program for AUROC quantification was used with two different backgrounds: i) the default GENRE background (Fig. 1A, x-axis in Fig. 4A, Supplemental Fig. S1, S6A) and ii) the ENCODE-DREAM DNase-seq datasets (Fig. 2C, y-axis in Fig. 4A,  Fig. 5, Supplemental Fig. S6D) that we also used as reference sets in MEDEA. It was used with two different motif representations, either k-mers (Fig. 1A, 2C, Supplemental Fig. S1A, S6A, S6D) or PWMs (Supplemental Fig. S1B), or both (Fig. 4).
5.2 - MEDEA AUROC (Step 2 of MEDEA suite): MEDEA uses the underlying backbone from the Glossary-GENRE suite to find the AUROC motif enrichment statistics for each of the pairwise comparisons between the input dataset and the reference sets. For each input dataset, it aggregates all the pairwise AUROCs over the reference sets by taking the median (i.e., MEDEA AUROC) to ensure robustness to outlier values due to cell types that may be too similar to the cell lines in the reference set, thus avoiding peak subtractions that may take away too many shared accessible regions. It was used with two different motif representations, either k-mers (Fig. 2B, Supplemental Fig. S1C) or PWMs (Supplemental Fig. S1D), or both (Fig. 4-5).
5.3 - AME: AME from MEME suite version 5.0.3 (McLeay and Bailey 2010) was used with two different backgrounds: 1) its default dinucleotide shuffle background (Supplemental Fig. S5A) and 2) the ENCODE-DREAM DNase-seq datasets which we used as reference sets in MEDEA (Supplemental Fig. S5C). In both cases, the benchmarking ENCODE DNase-seq datasets (Fig. 1A) were used as input and scanned for the presence of the 13 benchmarking motifs represented as MEME-formatted PWMs (Supplemental Table S1.4). We set the AME option --evalue-report-threshold at 20 to make sure all motifs were reported. The results with the dinucleotide shuffle background are displayed in Supplemental Fig. S5A after the -log10(P-value) transformation was normalized to the maximum value to allow easier comparisons between methods; these results are compared to RNA-seq TF family up-regulation data in Supplemental Fig. S6B. The AUROC motif enrichment values where the ENCODE-DREAM DNase-seq was used as background were obtained by giving the --control argument as the ENCODE-DREAM pairwise subtraction sets; each input cell type required 11 AME calls, one for each ENCODE-DREAM background peak set that was pairwise subtracted from the input. The median of the pairwise series for each cell type/motif combination is displayed in Supplemental Fig. S5C; these results are compared to RNA-seq TF family up-regulation in Supplemental Fig. S6E.
5.4 - HOMER: We used the program findMotifsGenome.pl from HOMER 4.10.3 (Heinz et al. 2010) with the following arguments: input as benchmarking ENCODE DNase-seq datasets (Supplemental Table S1.1), -mknown as the 13 benchmarking motifs represented as HOMER-formatted PWMs (Supplemental Table S1.4), -genome as hg19, -size as 150, -nomotif option to avoid de novo motif searching, -dumpFasta option to have a record of the background sequences, and -N 500 to only use 500 sequences as background to stay consistent between methods. The -log10(P-value) heatmap in Supplemental Fig. S5B was normalized to the maximum value to allow easier comparisons between methods; these results are compared to RNA-seq TF family up-regulation in Supplemental Fig. S6C.
5.5 - coTRaCTE: coTRaCTE scripts were downloaded from GitHub at https://github.molgen.mpg.de/Alena/coTRaCTE (van Bommel et al. 2018). BAM files corresponding to the benchmarking ENCODE DNase-seq peaks used in Fig. 1A were downloaded from ENCODE (Supplemental Table S1.1). The first step of the coTRaCTE pipeline binned the genome into windows and calculated the read counts per window for each BAM file. The original coTRaCTE analyses used 200 bp windows, but to be consistent with the other analyses in this study, we merged these windows and rechunked them to 150 bp; to make sure we were giving coTRaCTE a fair comparison, we repeated the analyses with both window sizes and saw little difference (data not shown). Since the script provided to assign read counts per window (“count_reads.sh”) did not produce output, we used BEDOPS (Neph et al. 2012) to first convert the BAM files to BED files (“bam2bed”) and then overlapped this BED file with the window BED file (“bedmap”). The second step of the coTRaCTE pipeline (“calculate.cts-dhs.R”) determined cell-type-specific and ubiquitous DHSs but required some light debugging to provide output: we commented out a line of hyphens, changed the -tpr argument into -n since the version of optparse we were using did not accept multiple character short flags, and commented out the plotting scripts since they were throwing errors and were not needed for our analysis. The third step of the coTRaCTE pipeline used TRAP to measure the affinity of each of the 13 benchmarking motifs represented as JASPAR-formatted PWMs (Supplemental Table S1.4) to the accessible chromatin of each cell type. The last step of the coTRaCTE pipeline calculated the P-value through a Fisher’s exact test that compared the likelihood of a motif being bound in cell-type-specific versus in ubiquitous chromatin accessible regions. coTRaCTE internally corrected P-values for multiple hypothesis testing using the Benjamini & Hochberg method, and subsequently underwent a -log10 transformation. The -log10(P-value) heatmap (Fig. 2D) generated from the coTRaCTE script was reformatted and normalized to the maximum value to allow easier comparisons between methods; these results are compared to RNA-seq TF family up-regulation in Supplemental Fig. S6F.

6 - RNA-seq transcript analysis (Fig. 1, 2, 6, Supplemental Fig. S6, S15)
For the RNA-seq files (Supplemental Table S1.1), we converted the Gene IDs to gene symbols via GENCODE v19 annotations. TPM values (Transcripts Per Million) were averaged between replicates and the resulting mean TPM values were ranked. For each TF family, we compiled a list of member TFs, to which TPM ranks were assigned for each cell type (y-axis of Fig. 1B, Supplemental Fig. S2). For each TF family member in each cell type, we also calculated the TPM rank fold-change as the negative log base 2 of the ratio between the TPM rank in that cell type over the median TPM rank in the other 11 cell types (x-axis of Fig. 1B, Supplemental Fig.  S2). The TF member with the highest TPM rank fold-change in a certain cell type was chosen to represent its family as the most up-regulated TF. When the TF representative’s TPM rank fold-change was greater than 2, we highlighted them as red points in Fig. 1B and Supplemental Fig. S2. The TPM rank fold-change is the y-axis in all the scatterplots of Fig. 2E, 6C, Supplemental Fig. S6, and S15.

7 - DNase-seq and MEDEA peak overlap analysis with ChIP-seq and Digital Footprint data (Fig. 3)
For these analyses we considered both the top 500 unfiltered DNase-seq peaks (as in Fig. 1A) and the distinct series of top 500 MEDEA filtered peaks (as in Supplemental Fig. S4). 
7.1 - TF ChIP-seq: For each benchmarking DNase-seq peak set (both unfiltered and MEDEA-filtered), we measured its overlap with the indicated ChIP-seq datasets in the corresponding cell types (bottom panel in Fig. 3A, Supplemental Fig. S8) by using the bedtools command “intersectBed” (Quinlan 2014). For each MEDEA peak series, we obtained 11 overlap percentages, which are represented as mean and standard deviation in Fig. 3A and Supplemental Fig. S8. To evaluate the significance of the increase (or decrease) of the overlap in MEDEA peaks as compared to the unfiltered peaks, we bootstrapped the 11 values of each MEDEA series (100 independent re-samples) and then quantified the P-value as the probability that their mean overlap percentage was above (or below) the overlap percentage of the unfiltered DNase-seq peaks.
7.2 - Histone ChIP-seq: For each benchmarking DNase-seq peak set (both unfiltered and MEDEA-filtered), we measured its overlap with both H3K27ac and H3K4me1 ChIP-seq datasets in the corresponding cell types (top panel in Fig. 3A) by using the bedtools command “intersectBed” with 2 -b datasets (one per histone mark) as well as with -wa and -wb flags. We took the DNase-seq peaks and the label of the -b dataset overlapping peak, determined the unique mappings, and counted the number of DNase-seq peaks that overlapped both -b datasets, meaning the co-presence of both histone marks. The significance was calculated in the same way as the TF ChIP-seq datasets above.
7.3 - DNase-seq Footprints: For the indicated cell types and transcription factors, we first used the bedtools command “intersectBed” (Quinlan 2014) to evaluate the overlap percentages of TF DFPs separately with (i) the 11 overlap percentages of the MEDEA peak series and (ii) the overlap percentages of the unfiltered DNase-seq peaks. For each MEDEA subset, we computed overlap log2 fold-change as the ratio between its overlap percentage and the overlap percentage in unfiltered DNase-seq peaks, adding a pseudocount of 10 peaks to both terms to avoid large fluctuations due to division by extremely small numbers of peaks. We represented the resulting 11 values as mean and standard deviation in Fig. 3B.

8 - MEDEA Analysis of DNase-seq datasets for Hematopoietic differentiation (Supplemental Fig. S10)
Since the TF-8mer glossary lacked k-mer models for the motif of several well characterized regulators of these phenotypes (e.g., EBF1, RUNX, NFIL3) (Zhu and Paul 2008; Kamizono et al. 2009; Ramirez et al. 2010), we collected 15 PWMs from the CIS-BP database (Weirauch et al. 2014) for known master regulators of the indicated cells (Supplemental Fig. S10). We used PWMs mostly derived from biochemical assays to ensure their motif specificity upon direct DNA binding (Supplemental Table S1.4). For the DNase-seq datasets of the indicated cell types (Supplemental Table S1.3), we computed the AUROC values for motif enrichment in both unfiltered (Supplemental Fig. S10B) and MEDEA-filtered peaks (Supplemental Fig. S10C) as described above (“Explorative DNase-seq”, “MEDEA Filtering” and “Motif enrichment analysis: MEDEA AUROC”). 

9- Analysis of 610 ENCODE DNase-seq datasets with MEDEA (Fig. 4)
9.1 - AUROC: DNase-seq datasets were downloaded and processed as described above (“Explorative DNase-seq”). To encompass the known specificities of the TF mammalian repertoire in a non-redundant manner, we curated a set of 99 PWMs obtained from CIS-BP (Weirauch et al. 2014) or UniPROBE (Hume et al. 2015) from biochemical assays for in vitro TF specificity, thus ensuring the direct DNA sequence recognition of the TFs (Supplemental Table S1.4). Since k-mer models can be more specific than PWMs in motif enrichment detection, we complemented our PWM collection with the 108 TF-8mer motif modules based on 671 published PBM data for Metazoan TFs (Hume et al. 2015) and which form our published glossary (Mariani et al. 2017). We calculated AUROC values for motif enrichment in unfiltered and MEDEA-filtered peaks for the 207 motifs coming from both the 108 8mer modules and the 99 PWMs as described in “MEDEA Filtering” and “Motif enrichment analysis: MEDEA AUROC”, and collected in Supplemental Table S3.1.
9.2 - MANOVA: Given the large variability of MEDEA AUROC values (Fig. 4A, left panel), we decided to not set an overall AUROC threshold for motif enrichment, but to explore whether fluctuations in AUROC values could be explained by systematic effects due to motifs or cell types. If this is the case, we reasoned that these effects should act on the AUROC values both before and after MEDEA filtering. To test whether AUROC values grouped by motifs or cell types were statistically different, we performed multivariate analyses of variance (MANOVA) simultaneously using the AUROC values associated to both DNase-seq and MEDEA peaks in Supplemental Table S3.1 through the “manova” function in the “Anova” R-package. When grouping AUROC values by motif, the MANOVA output was: Pillai’s trace =1.03, approximated F statistics = 641, P-value < 2.2e-16. When grouping AUROC values by cell type, the MANOVA output was: Pillai’s trace =0.013, approximated F statistics = 4.2, P-value < 2.2e-16. Since the P-values were significant in both cases, the MANOVA revealed an association between the AUROC values and both the AUROC groups (i.e., motifs and cell types). However, the higher approximated F score (and Pillai score) in the motif-based MANOVA revealed that differences between motifs’ AUROC values are two orders of magnitude more than differences between cell types’ AUROC values. 
9.3 – MEDEA Thresholding, high and low pools: To determine the high pool of MEDEA values, we started by sorting the AUROC combinations according to the 207 TF specificity models (Supplemental Table S3.1). For each specificity model, we obtained a 2D distribution of AUROC values: DNase-seq peak AUROC on the x-axis and MEDEA AUROC values on the y-axis. Then, we aimed at finding a threshold along the y-axis (MEDEA Threshold) that well distinguishes the few cell types with high MEDEA AUROC from the cell types in the low bulk. For that, we applied the following iterations to each specificity model (either k-mers or PWMs). (I) For the cell types of interest, we took the distribution of the MEDEA AUROC values (y-axis in Fig. 4B and Supplemental Fig. S11) and evaluated its median value (MEDEA AUROC Median). (II) For the MEDEA peaks’ AUROC distribution (y-axis in Fig. 4B and Supplemental Fig. S11), we quantified the standard deviation (STD) and the median average deviation (MAD). Since we were not sure which between the STD and the MAD was the most representative of the deviation of the considered distributions (DEVy), we decided to take the smallest one (DEVy = max(STDy , MADy)). We repeated the same evaluation for the DNase-seq peaks’ AUROC distribution (x-axis), thus defining its deviation as DEVx = max(STDx , MADx). (III) We then defined the stochastic deviation in MEDEA AUROC values (DEVMEDEA) as the maximum between STDx and STDy. (IV) Then we set a Preliminary MEDEA Threshold at 3 DEVMEDEA above the Median (Preliminary MEDEA Threshold = Median + 3 DEVMEDEA). When less than 0.01, DEVMEDEA was given the value of 0.01 to avoid having the MEDEA AUROC be too close to the median and overselecting the high pool in distributions with small dispersion. (V) We then used the Preliminary MEDEA Threshold to create preliminary high and low pools of cell types depending on whether their MEDEA AUROC values were above (for “high pool”) or below (for “low pool”) the Preliminary MEDEA Threshold. To ensure convergence of the method, we redefined the cell types in the low pool as the cell types of interest and repeated the steps I to V until the difference between two consecutive Preliminary MEDEA Thresholds was less than 0.005. The last Preliminary MEDEA Threshold defined the MEDEA threshold collected in Supplemental Table S3.2, and the high and low pool was collected in Supplemental Table S3.3 and used in the rest of the analysis.
9.4 - F1 score in matched and unmatched cell types: With this analysis, we wanted to evaluate whether highly related cell types share their enriched motifs more than more distantly related cell types. Within the datasets in Supplemental Table S3.3, we matched nine pairs of highly related cell types: I) “fibroblast of skin of left quadriceps” and “fibroblast of skin of right quadriceps”, II) “heart left ventricle” and “heart right ventricle”, III) “large intestine” and “small intestine”, IV) “left kidney” and “right kidney”, V) “left lung” and “right lung”, VI) “left renal cortex interstitium” and “right renal cortex interstitium”, VII) “astrocyte of the cerebellum” and “astrocyte of the hippocampus”, VIII) “muscle of arm” and “muscle of leg”, and IX) “H1 Embryonic Stem Cells” and “H7 Embryonic Stem Cells”. Since cell types had replicated datasets (Supplemental Table S1.2), for the following analysis we selected one dataset for each of these 18 cell types. For these 18 datasets, we collected the specificity models whose enrichment values were found in the high pools, which ranged from 4 specificity models for the “left renal cortex interstitium” to 30 specificity models for the “large intestine”. To quantify how well two cell types share their enriched motifs, we used the F1 score, which is a typical test for the accuracy of a binary classification, and in our case was meant to evaluate whether the motifs enriched in one cell type are predictive of the motifs enriched in the other matched cell type. More precisely, with TP (True Positives) equal to the number of motifs enriched in both cell types, FP (False Positives) equal to the number of motifs enriched just in the first cell type, FN (False Negatives) equal to the number of motifs enriched just in the second cell type, we computed the F1 score as: 

F1 = 2xTP/( 2xTP + FN + FP)

We first calculated the F1 scores for the 9 pairs of related cell types (Matched F1 scores in Fig. 4E). We then calculated the F1 scores for all the combinations of cell types from different pairs, which furnished the 144 (18*16/2) Unmatched F1 scores in Fig. 4E. We used a Wilcoxon test to verify that the F1 scores for matched cell types were significantly higher than the F1 scores for unmatched cell types (P-value < 2.6e-08).
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