
Supplemental Information

Polymorphic centromere locations in the pathogenic yeast Candida
parapsilosis

Mihaela Ola1, Caoimhe E. O’Brien1, Aisling Y. Coughlan2, Qinxi Ma1, Paul D.

Donovan1, Kenneth H. Wolfe2 and Geraldine Butler1*.

Supplemental Figure S1. Expression of Cse4-HA and ChIP-PCR

Supplemental Figure S2. Dot matrix plots showing sequence conservation around C.

orthopsilosis (A) and C. metapsilosis centromeres (B).

Supplemental Figure S3. Rearrangements at putative centromeres in L. elongisporus

Supplemental Figure S4. Ancestral reconstruction.

Supplemental Code. Code used to extract intergenic regions.

Supplemental Table S1. List of primers used.

Supplemental Table S2. Coordinates of centromeres in C. parapsilosis, C.

orthopsilosis and C. metapsilosis (Excel file).

1 2 3 4 5 O
U

T

M

IgG Mock IPαHA IP INPUT

AC
T1CEN core

1 2 3 4 5 O
U

T
AC

T1CEN core
1 2 3 4 5 O

U
T

AC
T1CEN core

N1

N2

CTRL

21 3 MM

90-137

N1

N2

*

*

*

Gly69 Gly70

CRISPR-Cas9

HA HA HA

Cse4 (CPAR2_102280)

A

B

C

10

15

25
30

50
65

*

*

Repair template (modified to change PAM and add 3xHA tag)

ACCTCCCCAGTCCTTTCTCATCCCACACATGCAAGCATTGACAAATTATGGCTGATCAAC-
CAACAAATGCCACAAATCCAAGCACTACCAATGCGGCGGGTAACACCACAAGAGGTGTAG
GAGAATTAACACCTCAAGAACGCCAACTACAAGAATTGAGAAGACAAAGACAAGAACTAAG
GCGTCAACAACAACAACGGGCGCAACAACGTGCCCAACAACAAGGTTCAGCATGGGCAG
GTGCAACTGCAGGTTACCCATACGATGTTCCTGACTATGCGGGCTATCCGTATGACGTCCC
GGACTATGCAGGATCCTATCCATATGACGTTCCAGATTACGCTGGAGCAGGTTCACCAACA
CTAGCTCAATCACCGTTTGCTCGAAGAGCACAAGCAGAAGGTACAGCAACAGGCGCAATG
AGATCGCCGTTTCAGTCACCATTTGCTCGAACTAGGGATCAACAACAACAGCGACCTACAC
CTGCTCAACCAGAGAGTATACAAAGGATAAATAGAGGAGAGGGATTGGTACCACGCCCGG
GTGGTACTGGCGGAGCTGCCAGACCTTCGCCAAGGCCGGGTGCTGATATAG

D

Supplemental Figure S1. Expression of Cse4-HA and ChIP-PCR.

A. Expression of Cse4-HA in C. parapsilosis 90-137 was detected by Western blot using anti-HA antibody. Lane M: PageRuler
Plus Prestained Protein ladder (Thermo Scientifics). Sizes are shown in kD. Lanes 1 and 2: protein extract from two independ-
ent Cse4-HA tagged derivatives of C. parapsilosis 90-137 Lane 3: protein extract from untagged C. parapsilosis 90-137. The
protein size is expected to be 49.4 kD. B. Tagging Cse4 does not interfere with growth. The tag was introduced at a position
that was predicted to be unlikely to interfere with the function of Cse4. Two Cse4-tagged derivatives of C. parapsilosis 90-137
(N1 and N2) grow as well as the parental strain C. parapsilosis 90-137 on YPD. Serial dilutions of cells were spotted on YPD
agar and grown for 48 h at 30 degrees. C. ChIP-PCR from C. parapsilosis CEN1. N1 and N2 are Cse4-tagged derivatives, and
CTRL is the untagged strain. PCR amplification was carried out using 5 pairs of primers from within the core region of CEN1
shown in red (Table S1), one pair from an adjacent intergenic region on Chromosome 1 (OUT) and one pair from ACT1. IP =
HA immunoprecipitation with anti-HA; INPUT = protein extract before immunoprecipitation; mock IP = no anti-HA antibody
used. The target PCR products in the core region are marked with a white asterisk. Some smaller non-specific products were
also obtained. All primer pairs from within CEN1 amplified the expected size fragments from total chromatin (Input) from
untagged C. parapsilosis 90-137 and from two Cse4-tagged strains. Some non-specific PCR products were also amplified. The
CEN1-specific primers also amplified sequences from anti-HA chromatin immunoprecipitates in the tagged strains (N1 and N2),
but not in the control untagged strain (CTRL). The OUT and ACT1 primers amplified products from the input samples only.
Cse4 therefore localizes to the proposed CEN1. D. Sequence of repair template used to introduce HA tags.

A C. orthopsilosis centromere region

CEN1

IRR1

IRL1
mid1

IRR2A

IRL2A

mid2A

IRR2B

IRL2B
mid2B

CEN2A CEN2B CEN3

IRR3

IRL3

mid3

IRR5

IRL5
mid5

IRR6

IRL6

mid6

IRR7

IRL7
mid7

CEN5 CEN6 CEN7 CEN9

IRR9

IRL9

mid9

CE
N
1

CE
N
2A

CE
N
2B

CE
N
3

CE
N
5

CE
N
6

CE
N
7

CE
N
9

B C. metapsilosis centromere region

CEN1

IRR1

IRL1

mid1

IRR2

IRL2

mid2

IRR3

IRL3

mid3

CEN2 CEN3 CEN4

IRR4

IRL4

mid4

IRR5

IRL5

mid5

IRR6

IRL6

mid6

IRR7

IRL7

mid7

CEN5 CEN6 CEN7 CEN8

IRR8

IRL8

mid8

CE
N
1

CE
N
2

CE
N
3

CE
N
4

CE
N
5

CE
N
6

CE
N
7

CE
N
8

Supplemental Figure S2. Dot matrix plots showing sequence conservation around C.
orthopsilosis (A) and C. metapsilosis centromeres (B). Centromeres are delineated by
dark blue lines. Inverted repeats (Right, IRR and left, IRL) are separated with cyan lines.
Each dot represents identity of 25-bp. Inverted sequences are shown in red, and direct
repeats in black.

1 2 3 4 5 6 7 8 9 10 11

C. C. parapsilosis synteny
1 2 3 4 5 6 7 8

CEN5

CEN1

CEN4

CEN6

CEN3

CEN4

CEN4

CEN8

CEN8

B. L. elongisporus centromeres

X

X X

LELG_00543 mid1 LELG_00544

mid3

mid4

mid5

mid6

mid8

LELG_02617 LELG_02618

LELG_03078 LELG_03079

LELG_03938 LELG_03939

LELG_04618 LELG_04619

LELG_05010 LELG_05011

CEN1

CEN3

CEN4

CEN5

CEN6

CEN8

A. Centromeres in L. elongisporus

CEN1

mid1

mid3

CEN3 CEN4

mid4

mid5

mid6

CEN5 CEN6 CEN8

mid8

C
E

N
1

C
E

N
3

C
E

N
4

C
E

N
5

C
E

N
6

C
E

N
8

Supplemental Figure S3 Rearrangements at putative centromeres in L. elongisporus

A. Diagrammatic representation of centromeres in L. elongisporus, identified by Koren et al (2010). Only those
centromeres that are likely to be correct are shown (i.e those that lie in untranscribed regions (Donovan et al
2016)). The adjacent dotplot shows that there are no repeated sequences around the centromeres.

Synteny relationship between C. parapsilosis and L. elongisporus were identified identified using SynChro.
B. Location of hits on L. elongisporus chromosomes. The approximate location of the putative L. elongisporus
centromeres (from A) are indicated with white stars. Three candidates proposed by Koren et al (2010) (marked
with white X’s) are unlikely to represent centromeres because they are either adjacent to the rDNA (scaffold 9),
or on regions that are strongly transcribed (scaffolds 7 and 10).

C. C. parapsilosis chromosomes, colored with respect to the RBHs from L. elongisporus. The location of the
putative C. parapsilosis centromeres are indicated with a white circle. The location of syntenic L. elongisporus
centromeres (where identified) are indicated by name and with a white star.

Ancestor 1
1 2 3 4 5 6 7 8 9 10 11 12 13

C. parapsilosis
1 2 3 4 5 6 7 8

C. orthopsilosis
1 2 3 4 5 6 7 8

Ancestor 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C. metapsilosis
1 2A 3 4 5 6 7 8 9

Ancestor 1
1 2 3 4 5 6 7 8 9 10 11 12

L.elongisporus

C. metapsilosis

C. orthopsilosis

C. parapsilosis

6

7

4

(2)

(2)

1
A1

A2

Supplemental Figure S4. Ancestral reconstruction.

A. The genome structure of the ancestor of C. parapsilosis and C. orthopsilosis (Ancestor 1, A1)
was inferred using AnChro. The sytenic relationship between A1 and C. parapsilosis or C. orthop-
silosis (determined using SynChro) is shown (see Fig. 4). Centromeres are indicated as in Fig. 4.

B. The genome structure of the ancestor of A1 and C. metapsilosis (Ancestor 2, A2) was inferred
as in (A).

C. Interchromosomal breaks (ICBs) were identified by pairwise comparisons of synteny maps from
SynChro. Thirteen ICBs were identified between C. parapsilosis and C. orthopsilosis. By compar-
ing with A1, 7 were placed on the C. orthopsilosis branch, and 4 on the C. parapsilosis branch.
Two (shown in parantheses) could not be placed. Similar comparisons are shown with Ancestor
A2. The phylogenetic relationship between the species is taken from Pryszcz et al (2015).

A.

B.

C.

2B

Supplemental code

#!/usr/bin/env python3

"""
Created on Wed Apr 17 12:40:35 2019

@author: mihaela
"""

##Take in fasta file, gff file with ORF coordinates and name of first
chromosome/scaffold to be analysed
##Extracts intergenic regions and detailed information for each (i.e positions,
sequence, GC content)

import sys

fin_fasta = sys.argv[1] #input fasta file, whole genome, sequence separated by
chromosome/scaffold, given as first argument
fin_gff = sys.argv[2] #input gff with ORF coordinates, sorted by chr>>position,
given as second argument
firstChr = sys.argv[3] # first chr/scaffold name in list; given as third argument
prefix = fin_fasta[:fin_fasta.find(".")]
fout_fasta = prefix+"_chr_concat.fasta" #output fasta file with full sequences per
chromosome concatenated
fout_fasta_inter = prefix+"_intergenic.fasta" #output fasta file with sequences per
intergenic region (only the ones passing the filter)
fout_txt = prefix+"_intergenic_details.txt" #output tab delimited file with details
for each intergenic region (name, chr, start, end, sequence, length, gc-content)
filterLen = 2000 #filter for minimum size accepted

def gc_percentage(seq): #calculates the GC-content (percentage, 2 decimals)
 return round(100*(seq.upper().count("G")+seq.upper().count("C"))/len(seq),2)

def parse_fasta(file, out): #parses fasta file and creates a dictionary with chr
names as keys and sequences as corresponding fields
 sequences = {}
 sequence = ""
 name = file.readline().split()[0] #read first name
 name = name[1:]
 for line in file:
 if line[0] == ">":
 sequences[name] = sequence
 out.write("{}\t{}\n".format(name,sequence))
 name = line.split()[0]
 name = name[1:]
 sequence = ""
 else:
 sequence += line.rstrip().upper()
 sequences[name] = sequence
 return sequences

def parse_fasta_gc_content(chr_seq): #calculate GC-content for whole genome
 sequence = ""
 count = 0 #just to check it went through all the chromosome/scaffold sequences
 for chr in chr_seq.keys():
 count += 1
 sequence += chr_seq[chr].rstrip().upper()
 print("{} chromosomes/scaffolds processed for whole genome GC content.
\n".format(count))
 gc = gc_percentage(sequence)
 return gc

def parse_gff(file,chr_seq,out,inter_out): #paste gff and extract from the sequence
dictionary the intergenic regions; write them in files and save in new dictionary
for further use

 sequences = [] #list of dictionaries for all sequences
 intergenic_count = 0 #counting intergenic regions
 current_chr = firstChr #initialising first scaffold/chromosome to process
 last_position = 1 #initialising last position verified
 for line in file: # start processing gff file, line by line
 features = {} #creating one dictionary per sequence to save all details
 fields = line.rstrip().split("\t") #split gff line in fields
 # name = str(fields[3])
 chr_name = str(fields[0]) #extract chr name of current ORF
 #chr_nr = int(chr_name[-1])
 start = int(fields[3]) #extract starting position of current ORF
 end = int(fields[4]) #extract end position of current ORF
 if chr_name == current_chr: #verify if we are still on the same chromosome
 intergenic_count += 1
 features["name"] = "INTERGEN{}
{}:{}..{}".format(intergenic_count,chr_name,last_position,start-1) #create new name
for intergenic region
 features["start"] = last_position #start of intergenic region will be
last position verified, i.e. end of last ORF verified+1 or beginning of chr/scaff
 features["end"] = start-1 #end position of intergenic region will be 1
nucleotide before the current ORF
 features["chr"] = chr_name
 current_chr_seq = chr_seq[chr_name] #extract current chr sequence from
dictionary
 current_seq = current_chr_seq[last_position-1:start-1] #extract current
intergenic region sequence from the chromosome/scaffold
 features["sequence"] = current_seq
 length = len(current_seq) #length of intergenic region
 if length >= filterLen: # check if length of current intergenic region
complies to required minimum, prepare for writing, and output details
 features["length"] = length
 features["GC"] = gc_percentage(current_seq) #calculate GC content

out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(features["chr"],features["start"],f
eatures["end"],features["name"],features["length"],features["GC"],features["sequenc
e"]))

inter_out.write(">{}\n{}\n".format(features["name"],features["sequence"]))
 sequences.append(features)
 last_position = end+1

 else: #if we reached a new chromosome/scaffold, we update values and add
next intergenic region
 current_chr = chr_name
 last_position = 1
 intergenic_count += 1
 features["name"] = "INTERGEN{}
{}:{}..{}".format(intergenic_count,chr_name, last_position,start-1)
 features["start"] = last_position
 features["end"] = start-1
 features["chr"] = chr_name
 current_chr_seq = chr_seq[chr_name]
 current_seq = current_chr_seq[last_position-1:start-1]
 features["sequence"] = current_seq
 length = len(current_seq)
 if length >= filterLen:
 features["length"] = length
 features["GC"] = gc_percentage(current_seq)

out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(features["chr"],features["start"],f
eatures["end"],features["name"],features["length"],features["GC"],features["sequenc
e"]))

inter_out.write(">{}\n{}\n".format(features["name"],features["sequence"]))
 sequences.append(features)
 last_position = end+1

#open all files for reading/writting

with open(fin_fasta, "r") as fasta_in, open(fin_gff, "r") as gff_in,
open(fout_fasta, "w") as fasta_out, open(fout_txt, "w") as details_out,
open(fout_fasta_inter, "w") as inter_out:
 #create dictionary of sequences for all chr/scaffolds from input fasta
 chr_seq = parse_fasta(fasta_in,fasta_out)

 #output chromosome lengths for further construction of gff files if required
 for chr in chr_seq.keys():
 details_out.write("### {} 1..{} \n".format(chr,len(chr_seq[chr])))

 #calculate whole genome GC content if required for further comparison
 gc = parse_fasta_gc_content(fasta_in)
 details_out.write("### Overall GC content for analysed genome: {}%
\n".format(gc))
 #parse gff file and extract intergenic regions, output details in details file
and sequences in inter_out
 parse_gff(gff_in,chr_seq,details_out,inter_out)

 #close all output files
 fasta_out.close()
 details_out.close()
 inter_out.close()

Table	S1.	Oligonucleotide	sequences	used	in	this	study.	

Name	 Sequence	5’-3’	
Guide	RNA	construction:	
gRNA_CSE4_TOP	 CCATGGGCAGGTGCAACTGCTGG	
gRNA_CSE4_BOT	 AACCCAGCAGTTGCACCTGCCCA	
ChIP-PCR:	
CEN1	
chr1_midCEN1_1_fw	 CAAGATGCCCAGAGATGCAG	
chr1_midCEN1_1_rv	 ATCCTACAAGTTCCTACTCG	
chr1_midCEN1_2_fw	 GGGATATTTCGGACAAGTAG	
chr1_midCEN1_2_rv	 CCAAATCAGCAACCAGCAGC	
chr1_midCEN1_3_fw	 GAAGAATTTCGCGTTGACTG	

chr1_midCEN1_3_rv	 CAAATAGTGGTCATACCGTC	
chr1_midCEN1_4_fw	 GCCGCCAACTTAGTTATTAC	
chr1_midCEN1_4_rv	 ATGAACACTTTCTCGGCATG	
chr1_midCEN1_5_fw	 GGATGCAGTAGTATTTGGTG	
chr1_midCEN1_5_rv	 CACCGTTACTGCACCCTTAC	
OUT	region	(chr1:1948277-1955373)	
chr1_OUT_fw	 TCGGCGCTAGGATCATAACA	
chr1_OUT_rv	 TGCCATCTTGTATTGCACCC	
ACT1	
CpACT1_fw	 GAAGCTTTGTTCCGTCCAGC	
CpACT1_rv	 TGATGGAGCCAAAGCAGTGA	
Colony	PCR	and	Repair	Template	(RT)	amplification:	
CSE4_N_RT_fw	 ACCTCCCCAGTCCTTTCTCA	
CSE4_N_RT_rv	 TATATCAGCACCCGGCCTTG	
CSE4_col_inTag_rv	 TACGGATAGCCCGCATAGTC	

	

