


Supplemental Methods

Obtaining ATAC-seq data
Isolating sequencing reads for clusters from single-nuclei ATAC-seq
A list of barcode names (cells) and the clusters to which they belonged to in Preissl, et. al., were obtained from the authors of the original paper (provided by authors via personal communication; published on GitHub (https://github.com/pwh124/open_chromatin) with permission) (Preissl et al. 2018). Crucially, these barcodes were included in the name of each sequencing read. Barcodes were grouped according to their cluster identity and paired-end reads belonging to each cell population were extracted via sequencing read name using the BBMap script ‘demuxbyname.sh’ with the parameters ‘substringmode’ (sourceforge.net/projects/bbmap). FASTQ files for each barcode in each replicate were then combined into a single FASTQ file for each cluster. This method had the advantage of only extracting reads originating from cells that had passed quality control measures (Preissl et al. 2018).

Removing peaks intersecting with “blacklisted” regions
Peak calling from next-generation sequencing data can often be impacted by regions of reference sequences that consistently have abnormally high mapping signals across experiments (Amemiya et al. 2019). Peaks overlapping these regions are often removed before further analysis. The regions for the mm10 and hg19 genome were downloaded, merged, and used to remove overlapping peaks with BEDTools (v2.27.0) ‘intersect’ (Quinlan and Hall 2010).The following ENCODE blacklisted regions as well as regions flagged from ATAC-seq users from the mm10 and hg19 genomes were downloaded (May 4, 2018):
· Mm10.blacklist.bed.gz (http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/)
· wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz (http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/)
· JDB_BLACKLIST.MM10.BED (https://sites.google.com/site/atacseqpublic/atac-seq-analysis-methods/mitochondrialblacklists-1)
· JDB_BLACKLIST.HG19..BED (https://sites.google.com/site/atacseqpublic/atac-seq-analysis-methods/mitochondrialblacklists-1)

Comparisons to publicly available human open chromatin data
	In order to compare ATAC-seq profiles to open chromatin data from a variety of human tissues, we used imputed DNase I hypersensitivity data  from Roadmap Epigenomics Project (Ernst and Kellis 2015; Roadmap Epigenomics Consortium et al. 2015). Imputed open chromatin data was used so data from all 127 tissues and cell lines from Roadmap and ENCODE projects could be used even if actual open chromatin data did not exist (see https://egg2.wustl.edu/roadmap/web_portal/meta.html for more information). In addition to all open chromatin peaks, imputed open chromatin peaks predicted to be promoters, enhancers, and dyadic sequences through the Reg2Map HoneyBadger2-impute tool (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-impute_release/) were used. Peak BED files for each tissue or cell line were downloaded from the following locations:
· All peaks (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-impute_release/DNase/p2/prom/BED_files_per_sample/)
· Promoters (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-impute_release/DNase/p2/prom/BED_files_per_sample/)
· Enhancers (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-impute_release/DNase/p2/enh/BED_files_per_sample/)
· Dyadic sequences (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-impute_release/DNase/p2/dyadic/BED_files_per_sample/)
Tissues and cell lines were annotated using the reference epigenome identifier (EID) metadata:
· https://egg2.wustl.edu/roadmap/data/byFileType/metadata/EID_metadata.tab
 
Partitioning heritability with linkage disequilibrium score regression (S-LDSC)
All necessary components needed to run S-LDSC including baseline scores, PLINK files, frequency files, weights, and SNPs, were downloaded from the Broad Institute (Supplemental Table S16). All files were ‘1000G_Phase3’ versions. Additionally, Roadmap Epigenetic Project LDSC files were used as additions to the baseline model as was done in a previous application of LDSC on ATAC-seq data (Finucane et al. 2018) (Supplemental Table S16). In general, the steps for analysis and the recommendations from the S-LDSC authors (https://github.com/bulik/ldsc) were followed.
The parameters for the “Make_annot.py” script used in order to prepare annotation files for analysis with S-LDSC were: --bed-file, --bimfile, and --annot-file. LD score files needed for analysis were created with the “ldsc.py” script with the following parameters: --l2, --bfile, --ld-wind-cm 1, --thin-annot,  --annot, --out, --print-snps. S-LDSC analysis was performed with the “ldsc.py” script with the following parameters: --h2, --ref-ld-chr, --overlap-annot, --frqfile-chr, --w-ld-chr, and --print-coefficients.
[bookmark: _no6t6w4q8xzm]In order to assess different subsets of peaks for schizophrenia enrichment, mouse-derived ATAC-seq peaks were split into sets of peaks that overlapped with promoter sequences (defined as the transcription start site +/- 500 bp in GENCODE v32 (hg19) (ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/GRCh37_mapping/gencode.v32lift37.annotation.gtf.gz), all peaks that overlapped with distal sequences (defined as outside of promoters), all peaks not overlapping with a peak in the top CLOZUK SCZ annotation (Excitatory Layers II-V*), and all peaks that did not overlap with any other peaks found in other annotations. These annotations were run through the LDSC pipeline as described above. Results were aggregated, processed, and analyzed in R as described above.
 
 
Fine-mapping SNPs in schizophrenia loci
Finding proxy SNPs
The index SNP as reported in Pardinas, et al., could not be used to identify proxy snps in seven loci for various reasons. Instead a suitable replacement was used based on LD or on changes in SNP databases over time (Supplemental Table S17). In addition, two genome-wide significant loci were excluded from the analysis. The locus with the index SNP rs1023497 was excluded because it is not a biallelic variant in 1000 Genomes data so proxies could not be found. The second locus was the MHC locus (rs3130820) because of its complicated LD structure and because it is generally excluded from LDSC analysis (Finucane et al. 2018). 

File setup for fine-mapping
LD files were created with the script “CalcLD_1KG_VCF.py” included in PAINTOR with the following parameters:  --reference, --mapl, --effect_allele A1, --alt_allele A2, --population EUR, --Zhead Zscore, --position pos. The 1000 Genomes reference VCF used was imputed and filtered by BEAGLE (Browning et al. 2018) since the program used to find proxy SNPs (‘proxysnps’) used the same VCF (http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/). Note that the downloaded ‘CalcLD_1KG_VCF.py’ script was modified as suggested on the PAINTOR GitHub page so if the Z-score was flipped when calculating LD, the alleles were also flipped (https://github.com/gkichaev/PAINTOR_V3.0/issues/17). It was also modified so ambiguous SNPs would not be removed as mentioned on the PAINTOR GitHub (https://github.com/gkichaev/PAINTOR_V3.0/issues/16).
Annotation files were created using the ‘AnnotateLocus.py’ script included with PAINTOR with default parameters including: --input annotation_path.txt, --locus, --out, --chr chr, and --pos pos. Python syntax in this script was modified in order for it to run correctly on our system. This involved simply changing line 54 in the “AnnotateLocus.py” script (https://github.com/gkichaev/PAINTOR_V3.0/blob/master/PAINTOR_Utilities/AnnotateLocus.py) from “print annotations” to “print(annotations)”. This change had no bearing on the results of the fine-mapping.

Running PAINTOR fine-mapping
In order to reduce computational burden required to estimate annotation enrichments and perform the fine-mapping with sufficiently long Monte Carlo Markov Chain (MCMC) simulation, the merged annotation enrichment in PAINTOR was estimated with a shorter MCMC simulation with the following key parameters: -mcmc; -burn_in 5000; -max_samples 1000 -num_chains 5; -set_seed 3; -MI 30. 

Functional annotation of fine-mapped SNPs
SNP transcription factor binding site disruption
The following parameters were used in the ‘snps.from.rsid( )’ function from motifbreakR in order to analyze the variants: dbSNP = SNPlocs.Hsapiens.dbSNP144.GRCh37; search.genome = BSgenome.Hsapiens.UCSC.hg19. SNPs were then scanned for modification of TF motifs defined by HOCOMOCO v10 (Kulakovskiy et al. 2018) by using the ‘motifbreakR( )’ function with the following parameters: filterp = TRUE; pwmList = hocomoco; threshold = 1e-4; method = “ic”; bkg = c(A=0.25, C=0.25, G=0.25, T=0.25); BPPARAM = BiocParallel::bpparam().
Over-representation for disrupted transcription factor motifs was tested by using an exact binomial test. This test combined the frequency of TF disruption for the 163 SNPs (disrupting 251 unique TF motifs) implicated with HOCOMOCO data (Supplemental Table S12) with the frequency of TF disruption for all fine-mapped SNPs found to disrupt a TF binding site (38,697 SNPs including the 163 above). The probability of a SNP disrupting a TF motif was calculated in the total fine-mapped dataset which served as the “probability of success.” An exact binomial test was carried out with the R function ‘binom.test’ in order to test whether each TF is more likely to be disrupted in our selected set of SNPs by using the following command: “p=1-binom.test(select.freq,163,p=all.prob,alternative="less")$p.value” in R. The result is subtracted from one in order to make the conclusion as to if the observed TF probability in 163 trials (SNPs) is equal to or greater than the probability in all fine-mapped SNPs. See all results in Supplemental Table 13. The threshold for Bonferroni corrected significance was p-value < 0.01/251 ~ 3.99 x 10-5.

VISTA defined enhancers
Elements tested in the VISTA enhancer browser (Visel et al. 2007) were downloaded (https://enhancer.lbl.gov/; December 4, 2019) and processed into a BED file. Positive VISTA sequences were intersected with SNPs using BEDTools ‘intersect’ command with default parameters. Images for enhancer element hs192 (embryos 1 and 3; images: f1214, f1215, f1218, s3461, s3500, s3533, s3617)  were downloaded from the VISTA enhancer browser (https://enhancer.lbl.gov/cgi-bin/imagedb3.pl?form=presentation&show=1&experiment_id=192&organism_id=1). Note that linkage disequilibrium statistics for rs1805203 and rs1805645 in the SOX2-OT locus were calculated using Phase 3 of the 1000 Genomes project and the LDlink tool (Machiela and Chanock 2015).

Promoter-capture Hi-C interactions
	Significant promoter-capture Hi-C (PCHI-C) interactions measured in excitatory neurons, motor neurons, and hippocampal dentate gyrus-like neurons derived from IPSCs as well as primary astrocytes (Song et al. 2019) were downloaded and processed in R into a BED format. Only promoter-promoter and promoter-other interactions were retained so that fine-mapped SNPs could be linked to a promoter. Interactions were overlapped with SNPs with PIPs > 0.1 using BEDTools ‘intersect’ with default parameters. 
[bookmark: _GoBack]PCHI-C interactions were visualized using the WashU Epigenome Browser (v50.2.0) (Li et al. 2019). Interactions in the loci containing CHRNA2 (hg19, Chr8:27032000-27568000; Supplemental Fig. S11C) and NGEF (hg19, Chr2:233580000-234260000; Supplemental Fig. S13B) were created by first filtering the entire dataset for interactions that including the fragments Chr8:27314708-27328289 (CHRNA2) and Chr2:233737974-233746598 (NGEF). These fragments were chosen because they contain SNPs with high PIPs (Supplemental Table S8; Supplemental Table S14). The filtered data was uploaded to the WashU Epigenome Browser and loci were downloaded as SVGs and converted to PDFs before further modification. The HindIII fragment track was downloaded from a WashU Epigenome Browser session (https://s3-us-west-1.amazonaws.com/shen-msong/brain_pchic_final/HindIII_rmap.bed.gz) (Song et al. 2019) and Tabix was used to index all files (Li 2011).
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