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S1 netNMF-sc with Euclidean distance

We also formulated netNMF-sc with a Euclidean distance cost function. This
cost function is equivalent to maximizing the Gaussian likelihood the data
X given its factors W and H [Févotte and Cemgil, 2009]. Graph-regularized
NMF [Cai et al., 2008] is the following:

min
W≥0,H≥0

||X−WH||2F + λTr(WTLW), (1)

where λ is a positive real constant, L is the Laplacian matrix of the gene-gene
interaction network, and Tr(·) indicates the trace of the matrix. We allow
for zero inflation using a binary matrix M that masks zero entries in X, such
that a non-zero entry in aij in WH is not penalized when the corresponding
entry xij of X is equal to 0. M has the same dimensions as X with entries

mij =

{
1 if xij > 0,

0 otherwise.
(2)

Incorporating the mask, the final formulation of netNMF-sc with a Euclidean
distance cost function is

min
W≥0,H≥0

||M ◦X−M ◦WH||2F + λTr(WTLW), (3)

where ◦ indicates element-wise multiplication (or Schur product of matrices).

To meet the Gaussian assumptions of this model, we set X to be the
log-transform of the transcript counts with a pseudocount of 1, as in many
scRNA-seq models which assume an underlying Gaussian distribution [Prab-
hakaran et al., 2016, Li and Li, 2018]. The zero entry mask is not im-
plemented in many commonly used NMF methods [Pedregosa et al., 2011,
MATLAB, 2018], but has a profound effect on improving clustering perfor-
mance and imputation accuracy at high dropout rates (Fig S3(a-b))
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Figure S1: A) Clustering performance of NMF and netNMF-sc on scRNA-seq
of 182 cells from Buettner et al. [2015] with Euclidean (Euc) and KL diver-
gence cost functions, and k-means clustering with k = 3. The factor matrices
W and H are randomly initialized by sampling i.i.d from the standard normal
distribution, taking the absolute value of each entry to ensure non-negativity.
The result that minimizes the netNMF-sc objective value across 10 random
initializations is displayed. B) Variance in clustering performance across 10
initializations of NMF or netNMF-sc. C) Clustering performance of NMF
and netNMF-sc with Euclidean and KL divergence distance functions clus-
tered with k-means. For each initialization, the k which produces the highest
silhouette score within the range 2 ≤ k ≤ 20 is selected. D) Variance in clus-
tering performance across 10 initializations of NMF or netNMF-sc with k
selected using silhouette score.
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S2 Parameter selection via holdout valida-

tion

We use the following holdout validation procedure to select the number of
latent dimensions d and the regularization parameter λ.

1. Select 20% of the entries of X to be held-out at random. Let V denote
the indices of these data in X.

2. Run netNMF-sc for a range of latent dimensions d with λ = 0, masking
out held-out entries using the matrix M

min
W≥0,H≥0

∑
i,j

(
xij log

xij
(M ◦WH|ij)

−xij+(M◦WH|ij)|ij
)

+λTr(WTLW),

(4)
where M contains zeros for mij ∈ V and ones for mij /∈ V . We hold
out random entries rather than rows or columns to prevent overfitting
as proposed by Owen et al. [2009].

3. Calculate root mean squared error (RMSE) =
√∑

(i,j)∈V (WHij−Xij)2

|V| be-

tween the held-out data from X and the reconstructed data WH, where
|V| denotes the number of held-out entries

4. Select the value of d which results in the lowest RMSE

We perform the analogous procedure to select the regularization parameter
λ using the value of d selected in the previous step.

S3 Library size normalization

For a transcript count matrix X, the library size lj of each cell j is the sum
of all transcript counts across every gene,

lj =
∑
i∈n

xij.

To normalize X, we divide each entry xij in a cell’s expression profile by the
cell’s library size and then multiply xij by the median library size q across
all cells,

x̄ij = q
xij
lj
,
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B)                Selection of with cross-validationA)                  Selection of d with cross-validation �

�d Regularization parameter

Figure S2: A) RMSE between held-out entries of X and corresponding im-
puted entries of WH on simulated data. Here d = 10 has the lowest root
mean squared error. B) RMSE between held-out entries of X and corre-
sponding imputed entries of WH with d = 10. Here λ = 10 has the lowest
RMSE.

where x̄ij is an entry in the normalized transcript count matrix X̄.

S4 Clustering low-dimensional cell matrices

To compare the results of the dimensionality reduction and imputation meth-
ods PCA, scNBMF, NMF, netNMF-sc, MAGIC, and scImpute, we cluster
cells by running k-means on the output from each method. For dimensional-
ity reduction methods (scNBMF, NMF, netNMF-sc) we cluster by running
k-means on the low-dimensional cell matrix, H, where the number of dimen-
sions d is selected using holdout validation (Section S2). For PCA we cluster
by running k-means on the top principal components which explain 90% of
the variance in the data. For imputation methods (MAGIC and scImpute)
we run PCA on the imputed matrices to reduce the dimensionality of the
data and cluster by running k-means on the top principal components which
explain 90% of the variance in the data. For each method, k-means is run
with 100 random initializations and the clusters corresponding to the optimal
objective value are reported.
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Figure S3: (A-B) Adjusted rand index (ARI) and Root mean square er-
ror (RMSE) of netNMF-sc with Euclidean distance on simulated data with
and without masking of zero entries. (C-D) Clustering performance (ARI)
and imputation error (RMSE) of netNMF-sc with Euclidean distance using
different optimizers (Adam, Momentum, Gradient descent, and Adagrad).

S5 Data simulation

We use a real gene-gene co-expression network obtained from COEXPEDIA
[Yang et al., 2016] and randomly select 5000 genes to be retained using the
random.sample command. To define differentially expressed genes, for each
of the k clusters, we randomly sample 5 genes and their neighbors to be dif-
ferentially expressed. If this results in more than 10% of genes being differ-
entially expressed in each cluster, we downsample, at random, these selected
genes such that at most 10% of the genes in each cluster are differentially
expressed. Each differentially expressed gene is scaled by a differential ex-
pression factor as described by Splatter [Zappia et al., 2017], however we
ensure that if a gene is overexpressed in a cluster (differential expression fac-
tor > 1), then its selected neighbors are also overexpressed. The same is true
for for underexpressed genes (differential expression factor < 1). Dropout
of transcripts is performed following either the double exponential or the
multinomial dropout model.
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Table S1: Methods for analyzing scRNA-seq data

Method Imputation
Dimensionality

reduction Clustering
GRN

inference
BISCUIT [Azizi et al., 2017] X X
MAGIC [Van Dijk et al., 2018] X
scImpute [Li and Li, 2018] X
drImpute [Gong et al., 2018] X
SAVER [Huang et al., 2018] X
CIDR [Lin et al., 2017] X X
SC3 [Kiselev et al., 2017] X
Seurat [Butler et al., 2018] X
BackSPIN [Zeisel et al., 2015] X
PhenoGraph [Levine et al., 2015] X
ZIFA [Pierson and Yau, 2015] X
ZINB-WaVE [Risso et al., 2018] X X
SIMLR [Wang et al., 2017] X
pCMF [Durif et al., 2018] X
scNBMF [Sun et al., 2019] X
netNMF-sc X X
SCODE [Matsumoto et al., 2017] X
Sinova [Li et al., 2016] X
SINCERA [Guo et al., 2015] X X
SCENIC [Aibar et al., 2017] X X
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Figure S4: Runtime (log2)of imputation methods as a function of the number
of cells (with 5000 genes).
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Figure S5: Root mean square error (RMSE) on simulated data using the
multinomial dropout model.
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Figure S6: t-SNE projections of imputed simulated data with 5 simulated
cell clusters.

S6 Clustering on cell cycle data

To quantify the effect our choice of network has on the performance of
netNMF-sc, we ran netNMF-sc with two different external networks as well as
a network containing randomized edges. The first network is the previously
described network obtained from the ESCAPE database [Xu et al., 2014].
The second network is a generic gene-gene co-expression network which is
the result of combining expression data from 2, 486 mouse microarray ex-
periments [Yang et al., 2016]. Next, we constructed a k-nearest neighbors
network, constructed by representing the 10 nearest neighbors of each gene
in the input data matrix as edges with weight 1 in the network. Finally, we
constructed a randomized network that maintains the same node degree as
the ESCAPE network by performing the double edge swap procedure from
the python library networkx.

We found that all networks besides the random network significantly im-
proved clustering results compared to NMF (Fig S9A-B), with the mESC-
specific network obtained from the ESCAPE database performing the best.
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Figure S7: Clustering performance of netNMF-sc run on simulated data
with 5000 genes, 1000 cells, and 6 clusters. Dropout was simulated using the
multinomial dropout model with a dropout rate of 0.7. The x-axis measures
the number of random edges added to the original graph G = (V,E), where
the number of random edges is x|E|. The red line shows the performance of
NMF on the same data.
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Figure S8: Comparison of netNMF-sc and other methods on clustering and
imputation for a simulated scRNA-seq dataset containing 1000 cells and 5000
genes, with dropout simulated using a double exponential model. (A) Clus-
tering results for several scRNA-seq methods on simulated data with different
dropout rates. (B) Imputation results with different dropout rates.

S7 Recovering marker genes and gene-gene

correlations from EMT data

Using a set of 16 canonical EMT marker genes (3 genes overexpressed in
epithelial cells and 13 genes overexpressed in mesenchymal cells) [Gibbons
and Creighton, 2018], we defined the set of all 120 gene pairs as our gold
standard. We note that this set includes several gene pairs not investigated
in the MAGIC paper [van Dijk et al., 2017]. To validate our approach, we
looked for positive correlations between pairs of mesenchymal or epithelial
genes and negative correlations between pairs containing one epithelial and
one mesenchymal gene.

We clustered cells by CDH1 and VIM expression, two canonical marker
genes for epithelial (CDH1 ) and mesenchymal cells (VIM ), respectively. We
labeled the 200 cells with the highest CDH1 expression epithelial and the
200 cells with the highest VIM expression mesenchymal. We compared the
ranked list of differentially expressed genes from data imputed by netNMF-sc
to the ranked lists of differentially expressed genes from the raw data and
data imputed NMF, MAGIC, scImpute. We found that the EMT marker
genes ranked very highly in netNMF-sc results (p ≤ 1.4 × 10−5, Wilcoxon
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Figure S9: (A) Clustering results for cell cycle data from [Buettner et al.,
2015]. The result that minimizes the netNMF-sc objective value across 10
random initializations is displayed. NMF is compared with netNMF-sc run
with different networks used as input. COEXPEDIA is a generic gene-gene
co-expression network, ESCAPE is a gene-gene co-expression network specific
to mESCs, and KNN is a k-nearest neighbors network constructed from the
10 nearest neighbors of each gene in the input data matrix. Random is a
random network constructed to have the same number of edges and degree
as the ESCAPE network. (B) Variance in clustering performance across 10
random initializations.
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Figure S10: Clustering results on the mouse embryonic stem cell (mESC)
dataset from Buettner et al. [2015], which has 3 clusters of cell determined
by flow-sorting according to 3 cell cycle stages. (A) k-means clustering results
for k = 3. (B) k-means clustering results for the value k that produced the
highest silhouette score in the range 2 ≤ k ≤ 20 for each method. (C)
Phenograph clustering results. (D) t-SNE projections of k-means clustering
results for k = 3.
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Figure S11: Clustering results on brain cell dataset from Zeisel et al. [2015]
who identified 9 cell types. (A) k-means clustering results for k = 9. (B) k-
means clustering results for the value k that produced the highest silhouette
score in the range 2 ≤ k ≤ 20 for each method. (C) Phenograph clustering
results. (D) t-SNE projections of k-means clustering results for k = 9.
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d=10

d=10

Figure S12: (A) (left)Average R2 correlation over gene pairs on permuted
cell cycle data as a function of the number d of dimensions in the matrix
factorization from netNMF-sc. (right) netNMF-sc run on random data drawn
from N(2, 2). (B) (left) Average R2 correlation over gene pairs on permuted
cell cycle data as a function of the diffusion operator, t, used by MAGIC
(light blue indicates standard deviation). t = 5 is auto-selected by MAGIC
according to the Procrustes disparity of the diffused data. (right) MAGIC
run on random data drawn from N(2, 2).
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Random expression matrices drawn from N(2,2) and imputed using MAGIC

Size 
(genes,cells) Mean R2 Percent significant 

correlations (R2 > 0.8) Auto-selected t

(10000,100) 0.997 0.997 5

(10000,200) 0.997 0.96 5

(10000,300) 0.73 0.60 21

(10000,400) 0.13 5x10-3 20

(10000,500) 0.16 7x10-3 21

(10000,1000) 0.08 1x10-3 19

(10000,2000) 0.07 1x10-3 20

Figure S13: Gene-gene correlations introduced by MAGIC on expression
matrices simulated from a N(2, 2) distribution.

rank sum), a significant improvement compared to their ranking in the raw
data (p ≤ 3.1×10−3, Wilcoxon rank sum) (Fig S14(a)). In contrast, the next
best performing method MAGIC had a smaller improvement in the ranking
of EMT marker genes compared to the raw data (p ≤ 1.1× 10−4, Wilcoxon
rank sum).

We observed that in data imputed by MAGIC, the E marker gene TJP1
had higher average expression in M cells than E cells (p = 1.5× 10−33) (Fig
S14(b)). This resulted in TJP1 being negatively correlated (R = −0.57, p =
3.4 × 10−50) with another E marker gene, CDH1 in the MAGIC imputed
data; in contrast, these E marker genes showed positive correlation (R =
0.66, p = 6.4× 10−78) in the netNMF-sc imputed data, correlation that was
not apparent in the raw data (Fig S14(c)). We also investigated whether
netNMF-sc could recover gene-gene correlations between EMT marker genes
in E and M cells. We expect that pairs of E or M genes would exhibit
positive correlation, while pairs containing one E and one M gene would
exhibit negative correlations. In data imputed by netNMF-sc, 12% of the
EMT gene pairs were significantly correlated (R2 ≥ 0.8, p ≤ 2.2 × 10−16),
with all gene pairs correlated in the expected orientation (Fig S15). In data
imputed by MAGIC, 23% of EMT gene pairs were significantly correlated,
but 5% were correlated in the opposite direction than expected (Fig S14(d)).
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Figure S14: Comparison of gene-gene correlations and differential gene ex-
pression in raw data from [Van Dijk et al., 2018] and data imputed using
netNMF-sc , NMF, scImpute, and MAGIC. (A) Overlap between differen-
tially expressed genes and EMT marker genes (log p-values from Fisher’s
exact test). (B) Expression of the E marker gene TJP1 in cells labeled as E
(blue) and cells labeled as M (green) in data imputed by each method. In
netNMF-sc inputed data, TJP1 is overexpressed in E cells compared to M
cells (p = 1.4×10−12), as expected. In contrast, in data imputed by MAGIC,
TJP1 is underexpressed in E cells compared to M cells (p = 1.5 × 10−33),
and shows no significant difference in expression in raw and scImpute data.
(C) Correlation between pairs of periodic genes in cell cycle data. (D) Scat-
ter plot of two E phase genes: CDH1 and TJP1. The genes are positively
correlated in data imputed by netNMF-sc (p = 6.3 × 10−78) but negatively
correlated in data imputed by MAGIC (p = 3.4× 10−50).
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Method
Gene pairs with 

significant (R2≥.8) 
correlation

Periodic gene pairs with 
significant (R2≥.8) 

correlation in 
correct/incorrect orientation

Raw 6e-8 0.00 / 0.00

MAGIC 0.05 0.18 / 0.05

scImpute 6e-8 0.00 / 0.00

NMF 0.02 0.06 / 0.00

netNMF-sc 6e-3 0.12 / 0.00

Figure S15: Fraction of all gene pairs and EMT gene pairs (defined by
Gibbons and Creighton [2018]) with significant correlations (R2 ≥ 0.8, p ≤
2.2 × 10−16) in the EMT dataset. Correct orientation means that a pair of
E-E or M-M genes have positive correlation while E-M genes have negative
correlation.
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