

1 **Supplemental Materials for**

2
3 **A comparison of gene expression and DNA methylation patterns**
4 **across tissues and species**

5
6 Lauren E. Blake^{1*}, Julien Roux^{1,2,3*}, Irene Hernando-Herraez⁴, Nicholas E. Banovich¹, Raquel
7 Garcia Perez⁴, Chiaowen Joyce Hsiao¹, Ittai Eres¹, Claudia Cuevas¹, Tomas Marques-Bonet⁴⁻⁷,
8 and Yoav Gilad^{1,8,‡}

9
10 1. University of Chicago, Department of Human Genetics, Chicago, IL.
11 2. Department of Biomedicine, University of Basel, Basel, Switzerland
12 3. Swiss Institute of Bioinformatics, Lausanne, Switzerland
13 4. Universitat Pompeu Fabra, Institute of Evolutionary Biology, Barcelona, Spain
14 5. Passeig de Lluís Companys, Catalan Institution of Research and Advanced Studies,
15 Barcelona, Spain.
16 6. Barcelona Institute of Science and Technology, Centre for Genomic Regulation.
17 7. Universitat Autònoma de Barcelona, Institut Català de Paleontologia Miquel Crusafont,
18 Barcelona, Spain.
19 8. University of Chicago, Department of Medicine, Chicago, IL.

20 *Authors contributed equally to this work.

21 ‡Correspondence should be addressed to Yoav Gilad (gilad@uchicago.edu)

22
23
24 **Contents**

25 **Supplemental Methods**

26 **RNA library preparation and sequencing.....4**
27 **Quantifying the number of RNA-seq reads from orthologous genes.....4**
28 **RNA-seq data transformation and normalization.....4**
29 **SNP calling in the RNA-seq and BS-seq data.....6**

31	Analysis of technical variables.....6
32	Differential expression analysis using a linear model-based framework.....7
33	Comparing the rank of tissue-specific DE genes in our dataset to the GTEx
34	Project.....7
35	Expected overlap of genes and significance of the observed overlap.....8
36	The overlap between DE genes and previously defined networks.....8
37	BS-seq library preparation, sequencing, and mapping.....9
38	Methylation level estimate smoothing.....11
39	Identifying differentially methylated regions (DMRs).....11
40	Overlap of tissue-specific DMRs with regulatory regions.....11
41	Supplemental Information
42	Assessing the impact of technical variables on gene expression levels and DNA
43	methylation levels.....13
44	Tissue-specific gene expression patterns.....15
45	Adaptive shrinkage and false sign rate (FSR) to identify tissue-specific
46	genes.....16
47	Identifying inter-species differences between tissues.....16
48	Promoter DNA methylation quality.....17
49	Identification of DMRs across species (S-DMRs).....18
50	References.....19
51	List of Supplemental Figures
52	S1. Distributions of potential confounders across biological variables of
53	interest.....25
54	S2. Sample QC.....26
55	S3. Correlation matrix of normalized log2(CPM) gene expression values from
56	12,184 genes.....27

57	S4. Density function of DNA methylation levels across all species & tissues.....28
58	S5. Correlation matrix of smoothed DNA methylation levels from all orthologous
59	CpGs.....29
60	S6. Principal components analysis (PCA) in human and chimpanzee hearts,
61	kidneys, and livers.....30
62	S7. When comparing DNA methylation levels of human T-DMRs and of
63	orthologous regions in the same tissues, clustering is more highly correlated with
64	tissue than species.....31
65	S8. When comparing DNA methylation levels of chimpanzee T-DMRs and of
66	orthologous regions in the same tissues, clustering is more highly correlated with
67	tissue than species.....32
68	S9. When comparing DNA methylation levels of rhesus macaque T-DMRs and of
69	orthologous regions in the same tissues, clustering is more highly correlated with
70	tissue than species.....33
71	S10. Inter-species DNA methylation and gene expression levels (FDR = 0.05 and
72	FSR = 0.05) in humans and chimpanzees.....34
73	S11. Interspecies DNA methylation and gene expression levels (FDR = 0.05 and
74	FSR = 0.05) in humans and rhesus macaques.....35
75	
76	
77	
78	

79 **Supplemental Methods**

80

81 **RNA library preparation and sequencing**

82 A relatively small percentage of reads could not be assigned to any sample because their
83 adaptor sequence did not match any of the adaptors used in the study. Therefore, we ran in-
84 house Perl scripts to recover those reads that differed at a single position. Because of a calibration
85 issue with the Gilad lab Illumina HiSeq sequencer, the first and the third flow-cell of the study (16
86 lanes) yielded a low number of reads. However, this problem did not affect the quality of the reads,
87 so we kept these lanes for the analysis.

88

89 **Quantifying the number of RNA-seq reads from orthologous genes**

90 When mapping to the species' genome, we allowed for up to two mismatches in each
91 read and kept only reads that mapped uniquely. Tophat2 uses unmapped reads to perform
92 gapped alignments to the genome and discover new exon-exon junction sites. For this step, we
93 disabled the coverage-based search, and only 1 mismatch was allowed in the anchor region of
94 the reads (≥ 8 nt). The minimum intron length was set to 70 nt and the maximum to 50,000 nt.
95 This yielded from 28,544,039 (R1H) to 72,808,273 (R4Li) mapped reads across samples (mean
96 = 46,514,692 reads). Mapping rates were between 71% and 94%.

97 We performed all downstream analyses in R (versions 3.1.1, 3.2.2, or 3.4.3) unless
98 otherwise stated.

99

100

101 **RNA-seq data transformation and normalization**

102 We calculated the \log_2 -transformed counts per million (CPM) from the raw gene counts of
103 each sample using edgeR (Robinson et al. 2010). We then filtered out lowly expressed genes,
104 keeping only genes with an expression level of $\log_2(\text{CPM}) > 1.5$ in at least 24 of the 48 samples
105 (Robinson and Oshlack 2010). We normalized the original read counts using the weighted
106 trimmed mean of M-values algorithm (TMM) (Robinson and Oshlack 2010). This process helped

107 us to account for differences in the read counts at the extremes of the distributions. We then
108 calculated the TMM-normalized \log_2 -transformed CPM values for each of the genes.

109 After performing normalization, we performed principal components analysis (PCA) using
110 the TMM-normalized \log_2 -transformed CPM values of all genes, 1 human heart sample (H1H)
111 clustered with the human livers rather than the hearts. After performing SNP calling on the RNA-
112 seq data (see section below), we found that the SNPs in sample H1H matched those from the
113 other tissues from this individual. We removed this sample (H1H) from the list of the original gene
114 counts. We again filtered for lowly expressed genes keeping only genes with an expression level
115 of $\log_2(\text{CPM}) > 1.5$ in at least 24 of the 47 samples. We also wanted to allow for small differences
116 in the distributions of gene expression across tissues. Therefore, on the 12,184 remaining genes,
117 we performed a TMM normalization and then performed a cyclic loess normalization with the
118 function *normalizeCyclicLoess* from the R/Bioconductor package *limma* (Ballman et al. 2004;
119 Ritchie et al. 2015). To run PCA, we used the R function *prcomp*. For hierarchical clustering, we
120 used unsupervised agglomerative clustering on the correlation matrix of the gene expression
121 data.

122 In this transformation and normalization process, we were interested in the impact of
123 sample-specific biases in GC content on the gene expression counts. Therefore, we used the
124 WASP pipeline (van de Geijn et al. 2015) to obtain expected GC-normalized counts. Specifically,
125 we filtered the genes with lowly expressed counts so that only genes with the \log_2 -transformed
126 CPM > -5.5 in at least 2 of the 4 samples in each species-tissue pair (e.g. 2/4 chimpanzee hearts)
127 remained. For each of the 16,616 genes that remained, we summed the read depth (raw counts)
128 of the 4 samples in each tissue-species pair. We used the WASP pipeline (van de Geijn et al.
129 2015) (https://github.com/bmvdgeijn/WASP/blob/master/CHT/update_total_depth.py) to obtain
130 expected read counts, adjusted for read depth and GC content. The GC content for each of the
131 orthologous metaexons was previously calculated as part of (Gallego Romero et al. 2015). For
132 each tissue-species pair, the adjusted raw counts and the actual raw counts were highly

133 correlated (> 0.98). Therefore, we did not adjust for read depth or GC content in our RNA-
134 sequencing data.

135

136 **SNP calling in the RNA-seq and BS-seq data**

137 We called single nucleotide variants on RNA-seq data from each tissue and sample using
138 standard hard filtering parameters according to GATK recommendations (Van der Auwera et al.
139 2013). Briefly, duplicated reads were removed using Picard MarkDuplicates
140 (<http://broadinstitute.github.io/picard>). Reads were then subjected to local realignment, base-
141 score recalibration, and candidate-variant calling using the IndelRealigner, TableRecalibration,
142 and HaplotypeCaller tools from GATK (McKenna et al. 2010). We required a base quality score
143 ≥ 20 . We only considered variants that were observed in at least four of the samples.

144 We used the same method for the BS-seq data. Through this process, we found that 2
145 groups of samples had been mislabeled during sequencing: the sample labelled R3Li was actually
146 R2Li, and R3Lu was actually R2Lu.

147

148 **Analysis of technical variables**

149 We recorded variables related to the samples (e.g. sex), variables specific to gene
150 expression (e.g. RNA-seq flow cell number), and variables related to methylation levels (e.g.
151 number of CpG sites covered) (Supplemental Table S1A-E). Briefly, we determined which of our
152 recorded technical variables were significant predictors for each of the gene expression PCs 1-5
153 using individual linear models for each of the gene expression variables (FDR $< 10\%$ for each
154 test). The significant technical variables were then tested against our biological variables of
155 interest, tissue and species, again with individual linear models. For the numerical technical
156 variables, we quantified the strength of these associations using the *P* values from analysis of
157 variance (ANOVA), and used a Chi-squared test (using Monte Carlo simulated *P* values) for the
158 categorical technical variables (significance at FDR $< 10\%$). We repeated the same analysis for

159 methylation data, testing the associations between methylation PCs 1-5 and sample
160 information.

161
162 **Differential expression analysis using a linear model-based framework**

163 We implemented a linear model-based framework using the R packages *limma* and *voom*
164 (Smyth 2004; Smyth et al. 2005; Law et al. 2014). This pipeline has previously been shown to
165 perform well with at least 3 samples per condition (Rapaport et al. 2013; Soneson and Delorenzi
166 2013).

167 We hypothesized that RNA quality may be impacted by post-mortem time prior to
168 collection. According to the documentation that we received from the different sites, all of the
169 rhesus macaque samples were collected earlier than all of the chimpanzee samples. These
170 differences could impact RNA quality. Hence, we used RIN score as a proxy for RNA quality, and
171 included RIN score in the linear models.

172 In the linear models, species, tissue, RIN score, and species-by-tissue interaction terms
173 were modeled as fixed effects. Individual was modeled as a random effect. We used contrast
174 tests in *limma* to identify genes that were differentially expressed between tissues within each
175 species and across species in the same tissue. We corrected for multiple testing with the
176 Benjamini and Hochberg FDR (Benjamini and Hochberg 1995). Genes were considered
177 significantly DE at FDR-adjusted P values < 0.01 , unless otherwise stated.

178
179
180 **Comparing the rank of tissue-specific DE genes in our dataset to the GTEx Project**

181 To benchmark the conserved tissue-specific DE genes, we compared the rank of each
182 gene's expression level in our data to its corresponding rank in the GTEx v6 heart, liver, lung, and
183 kidney data (The GTEx Consortium 2017). After this comparison, we looked for enrichment of
184 genes with a given rank. To do so, we used the R package *topGO* (Alexa et al. 2006), with the
185 same implementation as in (Blischak et al. 2015). This implementation included the use of Fisher's

186 Exact Test, with topGO's *weight01* algorithm (which takes into account the correlation among GO
187 categories within the graph structure of the program). We then repeated this process for the
188 tissue-specific DE genes identified in humans only.

189

190 **Expected overlap of genes and significance of the observed overlap**

191 We used the process from (Pai et al. 2011), based on the hypergeometric distribution, to
192 assess the expected overlap of the conserved DE genes and significance of the observed number
193 of conserved DE genes. This process relies on comparing a population proportion to a sample
194 proportion.

195 We first asked about the overlap of DE genes in humans and chimpanzees. To be
196 conservative, in the case of the human and chimpanzee overlap, we assigned the species with
197 the greater number of genes in the direction of interest as the population and the other species
198 as the sample. To assess the expected overlap in upregulated human and chimpanzee genes in
199 a given tissue, we used the *P* value from the hypergeometric distribution with the following
200 parameters: *m* is the total number of DE genes in the population, *n* is the total number of
201 upregulated genes in a population minus *m*, *q* is the observed overlap of upregulated DE genes
202 (between the humans and chimpanzees), and *k* is the total number of upregulated DE genes in
203 the sample, all within the given tissue. The “expected overlap” is the value at which the maximum
204 likelihood estimate for which *m*, *n*, and *k* occurs. We then repeated this process for the
205 upregulated and downregulated DE genes, in all four tissues separately. To obtain the same
206 statistics for the tissue-specific DE genes, we used only the tissue-specific DE genes, and
207 calculated *n* as the total number of genes upregulated in the tissue of interest compared to the
208 other three tissues in the population minus the number of tissue-specific DE genes in the
209 population.

210 To calculate these statistics for all three species, we used this framework to ask whether
211 the observed overlap between all three species was significant relative to the overlap of the

212 human and chimpanzee DE genes. In the same manner, we used the hypergeometric distribution
213 to assess the expected overlap and significance of the number of conserved tDMRs (tissue
214 differentially methylated regions) and conserved tissue-specific DMRs.

215
216 **The overlap between DE genes and previously defined networks**
217
218 To find gene expression patterns that are consistent with the action of natural selection,
219 for each significant DE gene, we determined the within-species variance of all 3 species and
220 found the average of the 3 variances. We then ranked the genes by the mean variances. For the
221 co-transcription network analysis, we used the shared TE-TE networks for the heart and lung as
222 well as the heart-specific network from the Supplementary Materials in (Saha et al. 2017). We
223 downloaded the list of protein-protein interactions in the heart, kidney, liver, and lung from the
224 Human Protein Atlas (Uhlen et al. 2015). For the interaction analyses, we counted the number of
225 interactions for each gene in the co-transcription networks or the protein-protein interactions list,
226 in the appropriate tissue.

227
228 **BS-seq library preparation, sequencing, and mapping**
229 To assess the efficiency of the conversion reaction (Bock 2012), we spiked the extracted
230 DNA with unmethylated lambda phage DNA. For each sample, we prepared at least two libraries,
231 with independent PCR amplifications to minimize PCR duplication rates. The BS-seq libraries
232 were sequenced on 111 lanes on 17 flow-cells on an Illumina HiSeq 2500 sequencer in the Gilad
233 lab or at the University of Chicago Genomics Facility. Reads were single-end and 49 to 59 bp.
234 The distribution of libraries of technical replicates over the flow-cells and additional related
235 information is described in Supplemental Tables S1C-E.

236 Similar to RNA-seq data, we used FastQC to generate quality reports. TrimGalore (version
237 0.2.8) was used to trim adapter sequences incorporated in the BS-seq reads, using a stringency

238 of 3, and to cut the low-quality ends of reads, using a quality threshold of 20. We eliminated reads
239 shorter than 15 bp post-trimming.

240 We aligned the trimmed reads to the human (hg19, February 2009), chimpanzee
241 (panTro3, October 2010), or rhesus macaque (rheMac2, January 2006) genomes, and to the
242 lambda phage genome using the Bismark aligner (version 0.8.1)(Krueger and Andrews 2011).
243 The Bismark aligner maps reads to *in-silico* converted (G to A and C to T) genome sequences
244 using Bowtie (version 1.0.0). This aligner was shown to perform well on benchmark studies
245 (Chatterjee et al. 2012; Tran et al. 2014; Tsuji and Weng 2016). We permitted one mismatch in
246 the seed of the alignment, and by default Bismark reports only uniquely mapped reads. Across
247 technical replicates, mapping rates ranged from 49% to 82% (median 76%). We applied the
248 Bismark deduplication script to each technical replicate to remove reads mapped to the same
249 starting genomic position, which likely arise through PCR amplification of the same DNA
250 fragments during library preparation (Bock 2012). Across technical replicates, the duplication
251 rates ranged from 2.8% to 44% (median 11%).

252 To determine the bisulfite conversion efficiency, we calculated the conversion rate at
253 cytosines from the spiked-in lambda phage DNA (for which coverage ranged from 12 \times to 107 \times).
254 We found this rate to be at least 99.4% across technical replicates, increasing confidence in our
255 data.

256 After combining all technical replicates, the average genome-wide coverage, calculated
257 at CpG sites shared across the three species, ranged from 1.7 \times to 5.7 \times per sample (median of
258 4 \times), corresponding to 12M to 23M CpG sites with a coverage of at least 2 \times (median 19M).

259

260 **DNA methylation level estimate smoothing**

261 Since DNA methylation data from BS-seq is typically lower coverage than DNA
262 methylation array data, we first applied a smoothing procedure on raw methylation levels for each

263 sample. It has previously been shown that this procedure increases the precision of low-coverage
264 BS-seq data, and yields methylation estimates that are in excellent agreement with high-coverage
265 BS-seq data without smoothing (Hansen et al. 2012; Ziller et al. 2014). To perform the smoothing,
266 we used the BSmooth method (as implemented in the Bioconductor package *bsseq*, version
267 0.10.0) (Hansen et al. 2012; Ziller et al. 2014) -- with the default parameters for smoothing -- at
268 least 70 CpG sites with methylation data in a smoothing window of at least 1 kb.

269 We had 17.6M human-chimpanzee orthologous CpGs and 7.5M CpGs orthologous across
270 all 3 species. Next, we filtered the orthologous CpGs based on coverage to increase confidence
271 in our data. We eliminated sites with > 10x coverage, as the relative sparsity of the data suggests
272 that these reads were likely mapped to repeated regions. For each CpG site in each
273 species/tissue combination, we required an average of 2x coverage and that at least 2 out of 4
274 individuals had a coverage \geq 2x. After filtering based on coverage, we had 2.4M autosomal
275 CpGs orthologous in all three species (10.5 million in humans and chimpanzees only).

276

277 **Identifying differentially methylated regions (DMRs)**

278 For a given pairwise comparison (e.g., human liver vs. human heart), the *bsseq* package
279 produces a signal-to-noise statistic for each CpG site similar to a *t*-test statistic, assuming that
280 DNA methylation levels in each condition have equal variance. As recommended by the authors
281 of the package, we used a low-frequency mean correction to improve the marginal distribution of
282 the *t*-statistics. Similar to previous studies using this methodology, a *t*-statistic cutoff of $-4.6, 4.6$
283 was used for significance (Hansen et al. 2011; Hansen et al. 2014).

284

285 **Overlap of tissue-specific DMRs with regulatory regions**

286 We extracted the coordinates of the following features from GENCODE annotation
287 (release 19)(Harrow et al. 2012): exons, first exons, CDS, 3' and 5' UTRs, introns, intergenic
288 regions, promoters (-2 kb to +2 kb from TSS (Eckhardt et al. 2006; Zhou et al. 2014)) and

289 proximal promoters (-250 nt to +250 nt from TSS (Butler and Kadonaga 2002)) of all genes, or
290 only of protein coding genes. We downloaded coordinates of the CpG islands from the UCSC
291 Genome Browser (Karolchik et al. 2014). CpG islands (identified as segments of the genome
292 with %G+C > 50%, length > 200 nt, and a ratio of observed over expected number of CG
293 dinucleotides based on the number of Gs and Cs in the segment > 0.6 (Gardiner-Garden and
294 Frommer 1987)). CpG island shores were defined as 2 kb regions flanking CpG islands, and
295 CpG islands shelves were defined as 2 kb regions outside of CpG islands shores (Irizarry et al.
296 2009). To test the overlap of t-DMRs with enhancers, we used the set of tissue-specific
297 enhancers defined by the FANTOM consortium using CAGE-seq data on primary tissues
298 (Andersson et al. 2014). To control for the potential effects of CpG density and region length in
299 these analyses, we generated 100 sets of randomly located control regions matching the length
300 and CpG densities of the DMRs in the studied set.

301 We calculated the overlap of tissue-specific DMRs with H3K27ac in the left ventricle of
302 the heart, kidney, liver, and lung adult tissues from the Epigenome Roadmap (The Roadmap
303 Epigenomics Consortium 2015). We used the consolidated broad peak data for the left ventricle,
304 liver, and lung (available from
305 http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak/ucsc_compatible/). Since a consolidated version was not available for the kidneys, we used unconsolidated
306 kidney sample numbered 153 (available from
307 http://egg2.wustl.edu/roadmap/data/byFileType/peaks/unconsolidated/broadPeak/ucsc_compatible/). We used BEDTools (version 2.26.0) (Quinlan and Hall 2010) to calculate the number of
309 tDMRs that overlap an H3K27ac mark.
310

311
312 **Supplementary Text**
313
314

315 **Assessing the impact of technical variables on gene expression levels and DNA**

316 **methylation levels**

317 We tested the relationship between our technical factors and biological variables of
318 interest, namely tissue and species (see Methods). Through this process, we discovered that
319 RNA extraction date was confounded with species (Supplemental Fig. S1B). In subsequent
320 analysis with only the human samples (as humans were the only species with samples
321 processed on multiple days), we found that the RNA extraction date did not highly correlate with
322 tissue (Supplemental Fig S1C). We thought it unlikely that differences in RNA extraction date
323 had a larger impact on variation in gene expression levels than tissue type.

324 Furthermore, the time of tissue collection post-mortem is also confounded with species
325 (Supplemental Table S1). These differences could impact RNA quality, which can be
326 approximated by RIN score. Indeed, RIN scores were typically higher in rhesus macaques than
327 in the other species (Supplemental Table S1B; Supplemental Fig. S1A). As a result, we
328 included RIN score as a covariate when modeling gene expression levels.

329 RNA quality may have impacted the number of DE genes identified between tissues.
330 The number of pairwise DE genes was higher in rhesus macaque than in chimpanzee and
331 human across FDR cutoffs (Supplemental Table S5B). This finding is potentially due to the
332 higher sample quality, and therefore lower gene expression level variance, in rhesus macaques.

333 We also tested for associations between technical factors and biological variables of
334 interest in the BS-seq data. Most of the significant associations were related to DNA methylation
335 levels (e.g. number of orthologous CpGs sites with low methylation, mean methylation level at
336 orthologous CpGs) across species and tissues. We expect the DNA methylation level densities
337 to vary somewhat across tissues (Pai et al. 2011) and therefore, these inter-tissue differences
338 are likely biological rather than technical.

339 Overall, we found slightly higher DNA methylation levels in human, compared to
340 chimpanzee and macaque samples (average in humans = 0.664, in chimpanzees = 0.646, in

341 rhesus macaques = 0.626; Supplemental Fig. S4B), which persisted in the raw, unsmoothed
342 data (Supplemental Fig. S4A). The distribution of DNA methylation levels could potentially be
343 biased by CpG to TpG homozygous or heterozygous SNPs, which are erroneously inferred as
344 unmethylated CpG sites. If the rate of such SNPs was higher in the chimpanzee or macaque
345 individuals compared to human (with respect to their respective reference genome), we could
346 observe differences between species. Since we had performed SNP calling on our RNA-seq
347 dataset, we retained only CpG sites located in orthologous exons, and excluded sites with C to
348 T SNPs in any of the samples. However, we still observed differences between species
349 (Supplemental Fig. S4C). Moreover, higher DNA methylation rates in humans compared to
350 chimpanzees were previously reported (but rarely discussed) in a diverse set of tissues, using
351 various technologies to measure DNA methylation (Martin et al. 2011; Molaro et al. 2011;
352 Hernando-Herraez et al. 2013; Hernando-Herraez et al. 2015). Therefore, this result may be
353 driven by biases when mapping to different species' genomes.

354 Read coverage on the lambda phage genome was statistically significant (FDR < 10^{-10}).
355 However, further analysis showed that this trend was driven by some low values in the
356 chimpanzee samples, rather than the rhesus macaques (Supplemental Table S1D). Indeed,
357 there is no difference in this factor across the human and the rhesus macaque samples (P =
358 0.15, Student's t-test). Therefore, we do not think that coverage on the lambda phage genome
359 can account for the differences in DNA methylation between the great apes and the rhesus
360 macaque samples (Figure 1D).

361 We found evidence for a dependent relationship between species and lane number (Chi
362 squared test, FDR= 10^{-13}). Since these lanes were spread across multiple flow-cells, we do not
363 think that lane substantially contributed to the variance in DNA methylation levels. We also
364 found evidence for a dependent relationship between tissue and library preparation date (Chi
365 squared test, FDR = 0.006). Since the correlation was modest (Pearson's correlation = -0.22)
366 and most tissues within a species had libraries made on multiple days, we chose not to correct

367 for this variable. Finally, we note that sample age has previously been shown to impact
368 methylation status in a subset of genes (Day et al. 2013; Horvath 2013). DNA methylation levels
369 were weakly positively correlated with age (age quantile relative to the species' average
370 lifespan; Pearson correlation's = 0.18). However, in our factor analysis, this relationship was
371 non-significant (FDR > 10%). Therefore, we did not correct for this variable.

372

373 **Tissue-specific gene expression patterns**

374 We asked whether the tissue-specific gene expression patterns we found in a sample of
375 four individuals from each species are indeed indicative of regulatory patterns in a larger
376 population. To examine this, we again considered human GTEx data from the same four tissues
377 we included in our study (see Methods). Because the sample size of the GTEx data is much larger
378 than in our study, we compared the normalized gene expression ranks in the four tissues. For
379 example, in both our and the GTEx data, troponin T2 (*TNNT2*) shows the highest expression in
380 the heart (rank 1) and the lowest expression in the liver (rank 4). Using this approach, we found
381 that 428 (62%) of the 687 genes with a tissue-specific expression pattern exclusively in our human
382 data have the same tissue-based ranked expression in the GTEx data. This observation suggests
383 that tissue-specific expression patterns found in just four individuals are quite often not
384 representative of the regulatory patterns in the larger population. In contrast, however, we found
385 that 1,530 (88%) of the 1,739 genes with a conserved tissue-specific expression pattern based
386 on our data have the same tissue-based ranked expression in the GTEx data. Thus, conserved
387 differential expression significantly increases the confidence of classifying tissue-specific
388 expression patterns in a larger human population ($P < 10^{-16}$, difference of proportions test).

389

390 **Adaptive shrinkage and false sign rate to identify tissue-specific genes**

391 We investigated to what extent our ability to detect tissue-specific genes could be
392 substantially impacted by differences in effect sizes across the species (Supplemental Table

393 S6). Therefore, we tested the use of an adaptive shrinkage method (Stephens 2017) to identify
394 genes with a small effect size but consistent direction of effect in each species and used the
395 accompanying false sign rate (FSR) instead of FDR thresholds. The percentage overlap was
396 relatively robust to threshold method (Supplemental Table S6). We found that this method
397 increases both the total number of tissue-specific differences and the species-specific
398 differences. However, it also increases the number of conserved tissue-specific gene
399 expression differences in humans and chimpanzees relative to those in chimpanzees and
400 rhesus macaques (Supplemental Table S6), more closely reflecting established phylogenetic
401 relationships.

402

403 **Identifying inter-species differences between tissues**

404 Since our data contained multiple tissues and species, we identified genes with inter-
405 species differences between tissues (tissue-by-species interactions). These tissue-by-species
406 interactions are potentially informative for great ape evolution (when the contribution of species
407 on gene expression in a given tissue is different between great apes and rhesus) and the
408 evolution of human-specific mechanisms in tissues (when the effect of species on gene
409 expression in a given tissue is different between humans and a group containing chimpanzees
410 and rhesus macaques). Using a linear-model based framework, we modeled these differences
411 with tissue-by-species interaction terms (see Methods). We found 664 total significant
412 interactions in the great ape versus rhesus macaque comparison and 91 in the human versus
413 chimpanzee and rhesus macaque (FDR 1%; Supplemental Table S8). Given our sample size
414 and the small effect sizes of these interactions, we are probably underpowered to detect such
415 interactions. To address this, we employed an adaptive shrinkage method (Stephens 2017) to
416 identify genes with a small effect size but consistent direction of effect in each species, and
417 used FSR instead of FDR thresholds. This method was used to identify cases where the
418 observed sign of the effect across tissues was different between species. After applying this

419 method, we found 1,006 great ape-by-tissue interactions and 257 human-by-tissue interactions
420 (FSR = 1%; Supplemental Table S8).

421 Potentially the most interesting class of tissue-by-species interaction is when species
422 impacts one tissue differently than the other three tissues. Therefore, we used *ashr* to find 799
423 great ape-by-tissue interactions and 249 human-by-tissue interactions only present in one tissue
424 (FSR = 1%; Supplemental Table S8). We defined tissue-by-species specific interactions as
425 interactions with an effect size sign different from the signs of the other interactions (e.g. a
426 positive sign when all other signs are 0 or negative). Unsurprisingly, even after accounting for
427 small effect sizes, there were more tissue-by-species interactions for great apes versus rhesus
428 macaques than human-specific ones.

429

430 **Promoter DNA methylation quality**

431 To check our promoter DNA methylation levels in the humans and chimpanzees, we
432 subset the DNA methylation promoter data to the 3 human and chimpanzee tissues tested in a
433 previous study from our lab (Pai et al. 2011). Consistent with this previous study, PC1 was more
434 highly correlated with tissue than species and PC2 was more highly correlated with species than
435 tissue (Supplemental Fig. S6A). Even in this subset of the data, there was more clear
436 separation between tissues in the gene expression levels than the promoter DNA methylation
437 data for these genes (Supplemental Fig. S6B).

438

439 **Identification of DMRs across species (S-DMRs)**

440 Using the same method to identify DMRs across tissues, we then identified thousands of
441 DMRs across species (S-DMRs). We found the lowest number of S-DMRs on autosomal
442 chromosomes in lungs (8,617 DMRs between human and chimpanzees, 17,696 DMRs between
443 humans and rhesus macaques, and 15,544 between chimpanzees and rhesus macaques) and
444 highest total number in hearts (14,504 DMRs between human and chimpanzees, 25,539 DMRs

445 between humans and rhesus macaques, and 15,544 between chimpanzees and rhesus
446 macaques, Table 2). Similar to the pairwise DE analysis across species, the number of DMRs
447 between species are consistent with known phylogenetic relationships. However, unlike in the
448 pairwise DE analysis across species, the number of S-DMRs is sometimes higher than the
449 number of pairwise T-DMRs. For example, there are more lung S-DMRs than human heart-lung
450 DMRs. This trend is somewhat unexpected given the gene expression data, but consistent with
451 clustering pattern of the DNA methylation data (Figure 1D).

452

453 **References**

454

455 Alexa A, Rahnenfuhrer J, Lengauer T. 2006. Improved scoring of functional groups from
456 gene expression data by decorrelating GO graph structure. *Bioinformatics* **22**:
457 1600-1607.

458 Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y,
459 Zhao X, Schmidl C, Suzuki T et al. 2014. An atlas of active enhancers across
460 human cell types and tissues. *Nature* **507**: 455-461.

461 Ballman K, Grill D, Oberg A, Therneau T. 2004. Faster cyclic loess: normalizing RNA
462 arrays via linear models. *Bioinformatics* **20**: 2778-2786.

463 Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and
464 Powerful Approach to Multiple Testing. *J Royal Stat Soc* **57**: 289-300.

465 Blischak JD, Tailleux L, Mitrano A, Barreiro LB, Gilad Y. 2015. Mycobacterial infection
466 induces a specific human innate immune response. *Sci Rep* **5**: 16882.

467 Bock C. 2012. Analysing and interpreting DNA methylation data. *Nat Rev Genet* **13**:
468 705-719.

469 Butler JEF, Kadonaga JT. 2002. The RNA polymerase II core promoter: a key
470 component in the regulation of gene expression. *Genes Dev* **16**: 2583-2592.

471 Chatterjee A, Stockwell PA, Rodger EJ, Morison IM. 2012. Comparison of alignment
472 software for genome-wide bisulphite sequence data. *Nucleic Acids Res*
473 doi:10.1093/nar/gks150.

474 Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM,
475 Absher D. 2013. Differential DNA methylation with age displays both common
476 and dynamic features across human tissues that are influenced by CpG
477 landscape. *Genome Biol* **14**: R102.

478 Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV,
479 Davies R, Down TA et al. 2006. DNA methylation profiling of human
480 chromosomes 6, 20 and 22. *Nat Genet* **38**: 1378-1385.

481 Gallego Romero I, Pavlovic BJ, Hernando-Herraez I, Zhou X, Ward MC, Banovich NE,
482 Kagan CL, Burnett JE, Huang CH, Mitrano A et al. 2015. A panel of induced
483 pluripotent stem cells from chimpanzees: a resource for comparative functional
484 genomics. *eLife* **4**: e07103. doi: 10.7554/eLife.07103.

485 Gardiner-Garden M, Frommer M. 1987. CpG Islands in vertebrate genomes. *J Mol Biol*
486 **196**: 261-282.

487 The GTEx Consortium. 2017. Genetic effects on gene expression across human tissues.
488 *Nature* **550**: 204–213.

489 Hansen KD, Langmead B, Irizarry RA. 2012. BSmooth: from whole genome bisulfite
490 sequencing reads to differentially methylated regions. *Genome Biol* **13**: R83.

491 Hansen KD, Sabunciyan S, Langmead B, Nagy N, Curley R, Klein G, Klein E, Salomon
492 D, Feinberg AP. 2014. Large-scale hypomethylated blocks associated with
493 Epstein-Barr virus-induced B-cell immortalization. *Genome Res* **24**: 177-184.

494 Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B,
495 Wu H, Liu Y, Diep D et al. 2011. Increased methylation variation in epigenetic
496 domains across cancer types. *Nat Genet* **43**: 768-775.

497 Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL,
498 Barrell D, Zadissa A, Searle S et al. 2012. GENCODE: the reference human
499 genome annotation for The ENCODE Project. *Genome Res* **22**: 1760-1774.

500 Hernando-Herraez I, Heyn H, Fernandez-Callejo M, Vidal E, Fernandez-Bellon H,
501 Prado-Martinez J, Sharp AJ, Esteller M, Marques-Bonet T. 2015. The interplay

502 between DNA methylation and sequence divergence in recent human evolution.

503 *Nucleic Acids Res* doi:10.1093/nar/gkv693.

504 Hernando-Herraez I, Prado-Martinez J, Garg P, Fernandez-Callejo M, Heyn H, Hvilsom

505 C, Navarro A, Esteller M, Sharp AJ, Marques-Bonet T. 2013. Dynamics of DNA

506 methylation in recent human and great ape evolution. *PLoS Genet* **9**: e1003763.

507 doi: 10.1371/journal.pgen.1003763.

508 Horvath S. 2013. DNA methylation age of human tissues and cell types. *Genome Biol*

509 **14**: R115.

510 Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K,

511 Rongione M, Webster M et al. 2009. The human colon cancer methylome shows

512 similar hypo- and hypermethylation at conserved tissue-specific CpG island

513 shores. *Nat Genet* **41**: 178-186.

514 Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR,

515 Fujita PA, Guruvadoo L, Haeussler M et al. 2014. The UCSC Genome Browser

516 database: 2014 update. *Nucleic Acids Res* **42**: D764-770.

517 Krueger F, Andrews SR. 2011. Bismark: a flexible aligner and methylation caller for

518 Bisulfite-Seq applications. *Bioinformatics* **27**: 1571-1572.

519 Law CW, Chen Y, Shi W, Smyth GK. 2014. voom: Precision weights unlock linear

520 model analysis tools for RNA-seq read counts. *Genome Biol* **15**: R29.

521 Martin D, Singer M, Dhahbi J, Mao G, Zhang L, Schroth G, Pachter L, Boffelli D. 2011.

522 Phyloepigenomic comparison of great apes reveals a correlation between

523 somatic and germline methylation states. *Genome Res* **21**: 2049-2057.

524 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
525 Altshuler D, Gabriel S, Daly M et al. 2010. The Genome Analysis Toolkit: a
526 MapReduce framework for analyzing next-generation DNA sequencing data.
527 *Genome Res* **20**: 1297-1303.

528 Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, Smith AD. 2011.
529 Sperm methylation profiles reveal features of epigenetic inheritance and
530 evolution in primates. *Cell* **146**: 1029-1041.

531 Pai AA, Bell JT, Marioni JC, Pritchard JK, Gilad Y. 2011. A genome-wide study of DNA
532 methylation patterns and gene expression levels in multiple human and
533 chimpanzee tissues. *PLoS Genet* **7**: e1001316. doi:
534 10.1371/journal.pgen.1001316.

535 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
536 features. *Bioinformatics* **26**: 841-842.

537 Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Soccia ND, Betel
538 D. 2013. Comprehensive evaluation of differential gene expression analysis
539 methods for RNA-seq data. *Genome Biol* **14**: R95.

540 Ritchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G. 2015. limma powers
541 differential expression analyses for RNA-sequencing and microarray studies.
542 *Nucleic Acids Research* **43**: e47. doi: 10.1093/nar/gkv1007.

543 The Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M,
544 Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J et al. 2015.
545 Integrative analysis of 111 reference human epigenomes. *Nature* **518**: 317-330.

546 Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for
547 differential expression analysis of digital gene expression data. *Bioinformatics* **26**:
548 139-140.

549 Robinson MD, Oshlack A. 2010. A scaling normalization method for differential
550 expression analysis of RNA-seq data. *Genome Biol* **11**: 11:R25.

551 Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, Consortium GT, Engelhardt
552 BE, Battle A. 2017. Co-expression networks reveal the tissue-specific regulation
553 of transcription and splicing. *Genome Res* **27**: 1843-1858.

554 Smyth GK. 2004. Linear models and empirical bayes methods for assessing differential
555 expression in microarray experiments. *Stat Appl Genet Mol Biol* **3**: Article3.

556 Smyth GK, Michaud J, Scott HS. 2005. Use of within-array replicate spots for assessing
557 differential expression in microarray experiments. *Bioinformatics* **21**: 2067-2075.

558 Soneson C, Delorenzi M. 2013. A comparison of methods for differential expression
559 analysis of RNA-seq data. *BMC Bioinformatics* **14**: 91.

560 Stephens M. 2017. False discovery rates: a new deal. *Biostatistics* **18**: 275-294.

561 Tran H, Porter J, Sun MA, Xie H, Zhang L. 2014. Objective and comprehensive
562 evaluation of bisulfite short read mapping tools. *Adv bioinformatics* **2014**:
563 472045.

564 Tsuji J, Weng Z. 2016. Evaluation of preprocessing, mapping and postprocessing
565 algorithms for analyzing whole genome bisulfite sequencing data. *Brief Bioinform*
566 **17**: 938-952.

567 Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson
568 A, Kampf C, Sjostedt E, Asplund A et al. 2015. Proteomics. Tissue-based map of
569 the human proteome. *Science* **347**: 1260419.

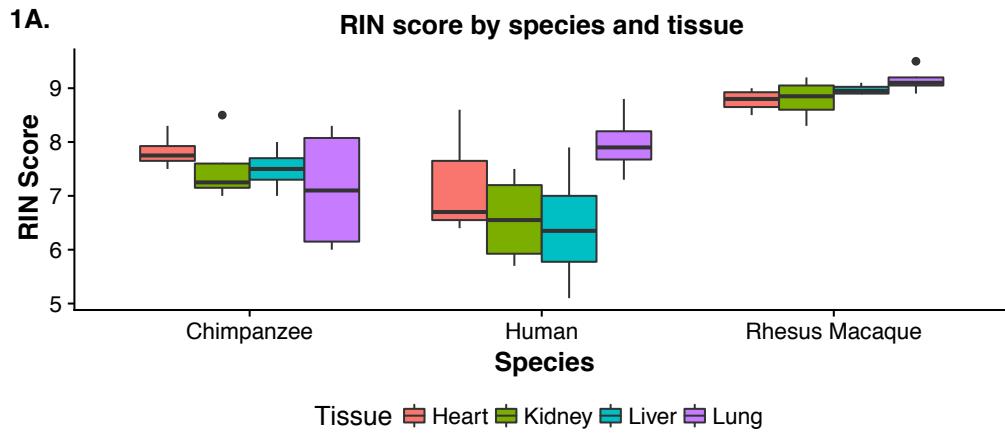
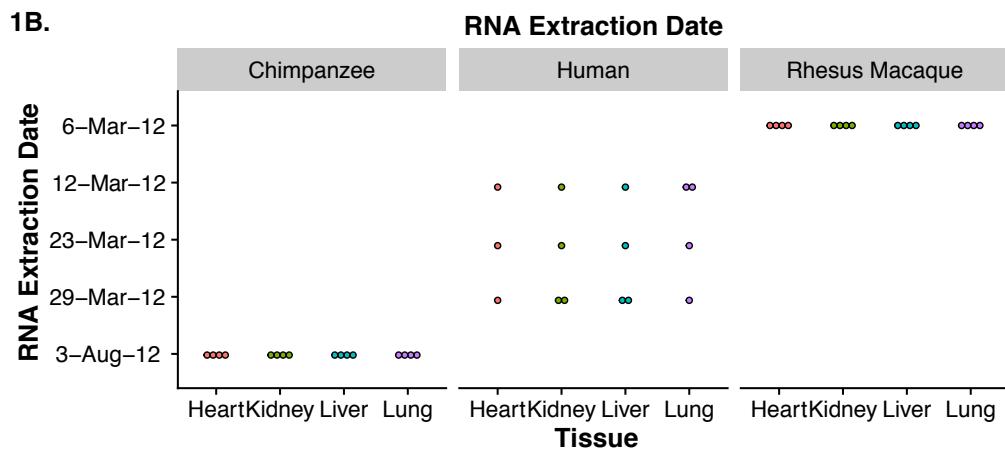
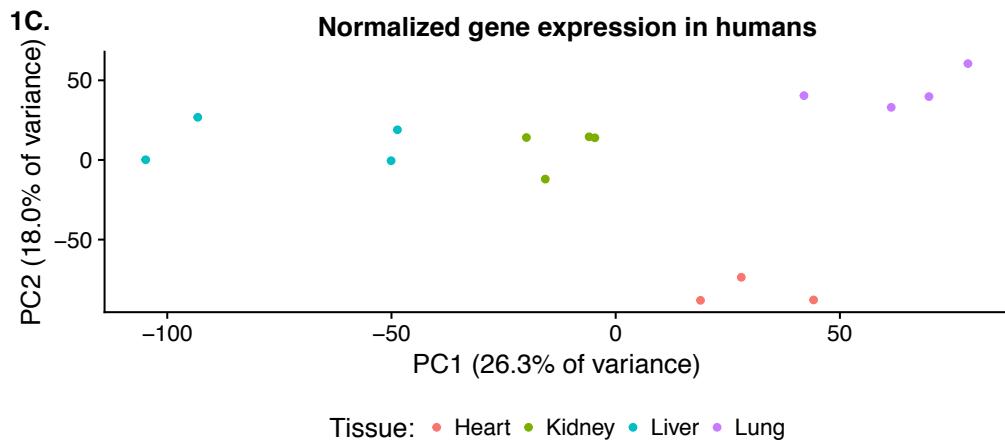
570 van de Geijn B, McVicker G, Gila Y, Pritchard J. 2015. WASP: allele-specific software
571 for robust molecular quantitative trait locus discovery. *Nat Methods* **12**: 1061-
572 1063.

573 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A,
574 Jordan T, Shakir K, Roazen D, Thibault J et al. 2013. From FastQ data to high
575 confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
576 *Curr Protoc Bioinformatics* **43**: 11 10 11-33.

577 Zhou X, Cain CE, Myrthil M, Lewellen N, Michelini K, Davenport ER, Stephens M,
578 Pritchard JK, Gilad Y. 2014. Epigenetic modifications are associated with inter-
579 species gene expression variation in primates. *Genome Biol* **15**: 547.

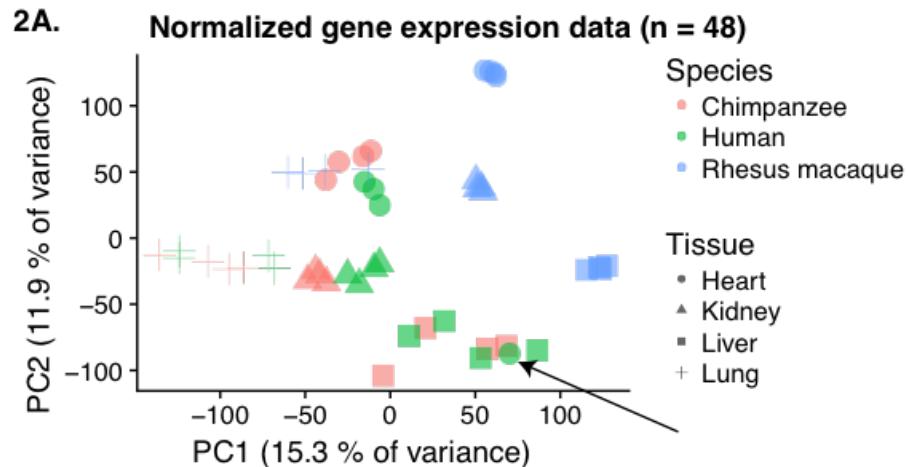
580 Ziller MJ, Hansen KD, Meissner A, Aryee MJ. 2015. Coverage recommendations for
581 methylation analysis by whole-genome bisulfite sequencing. *Nat Meth* **12**: 230-2.

582

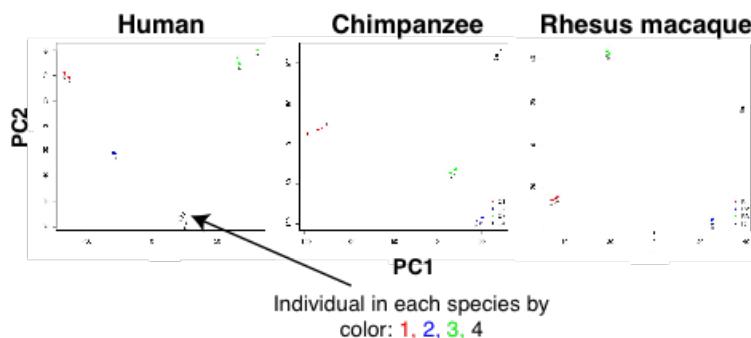


583
584
585
586
587

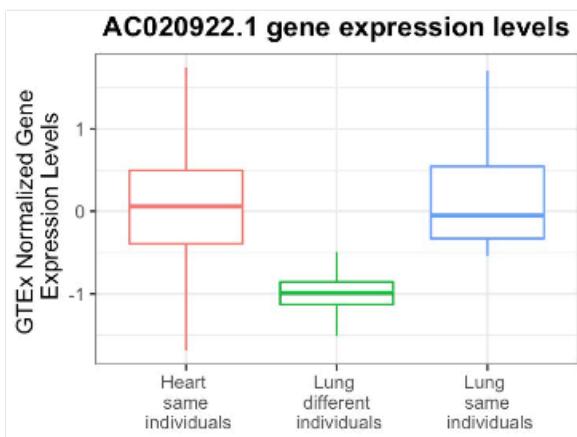
S1. Distributions of potential confounders across biological variables of interest. (A) RIN score across the samples. (B) RNA extraction date by species. (C) PCA of RNA extraction date in humans.



2B.



2C.



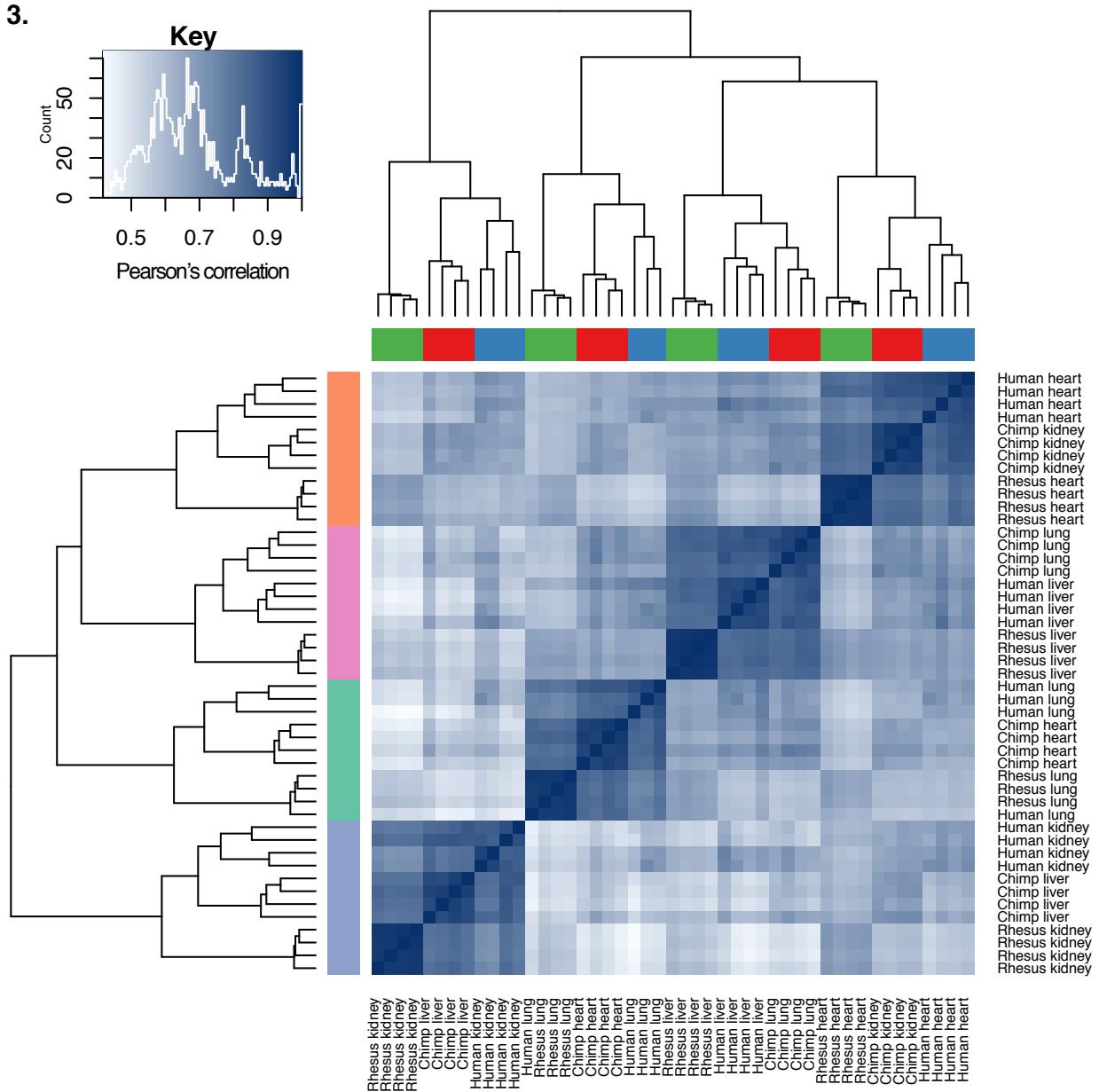
588

589

590

591 **S2. Sample QC.** (A) One human heart (green circle, see arrow) clusters with the human livers
 592 (green squares). The sample originally labeled as H1H ("human 1 heart") is likely a liver from
 593 the same human. (B) GATK analysis of the sample labelled H1H (see arrow) clusters with H1L,
 594 "human 1 liver". (C) Gene expression levels from different tissues in the same individual
 595 ("different tissue") are more highly correlated than gene expression levels between tissues from
 596 different individuals ("both different") and all combinations of tissues and individuals ("all").
 597 Within a given tissue, gene expression levels are most highly correlated ("different individual").

3.



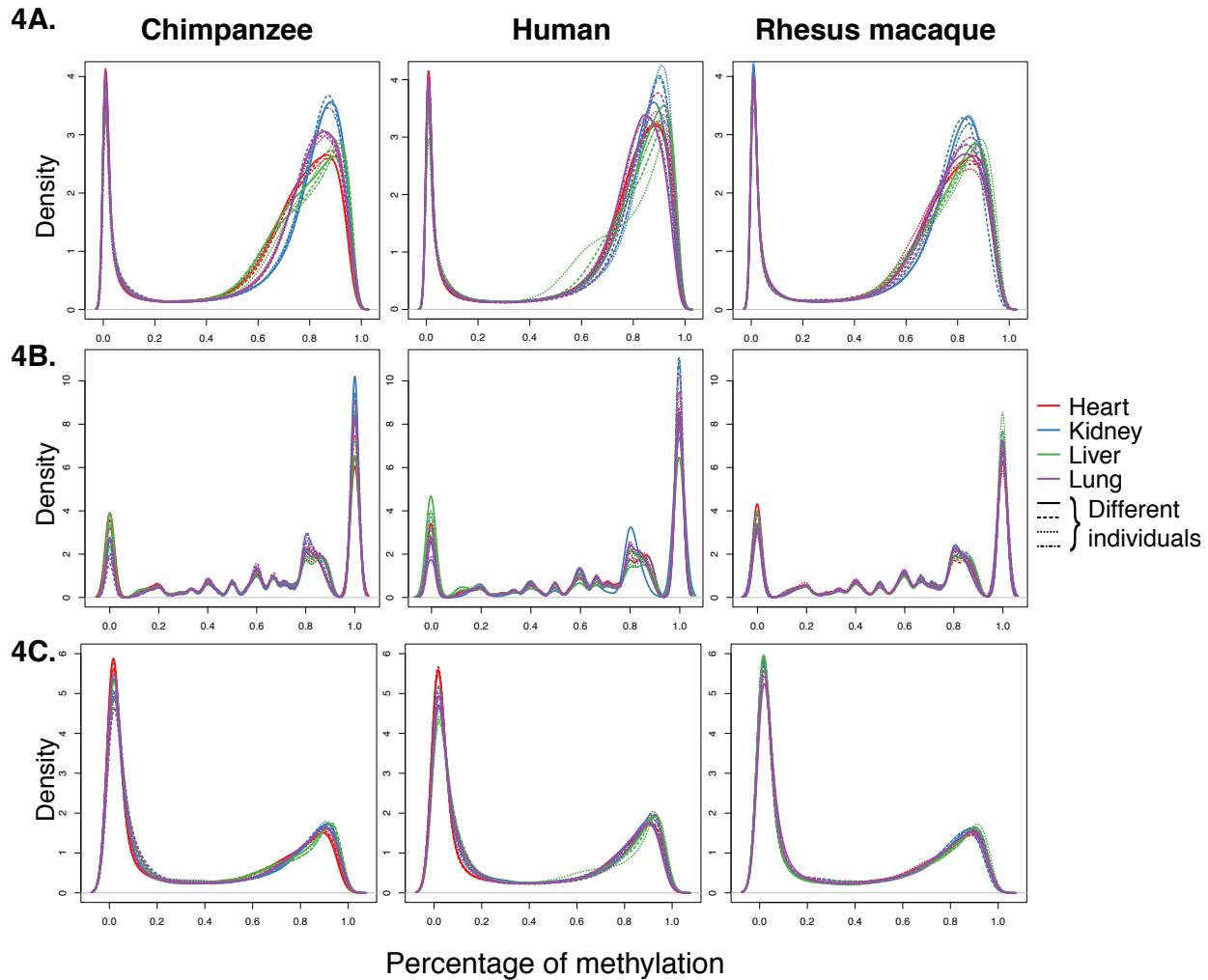
598

599

600

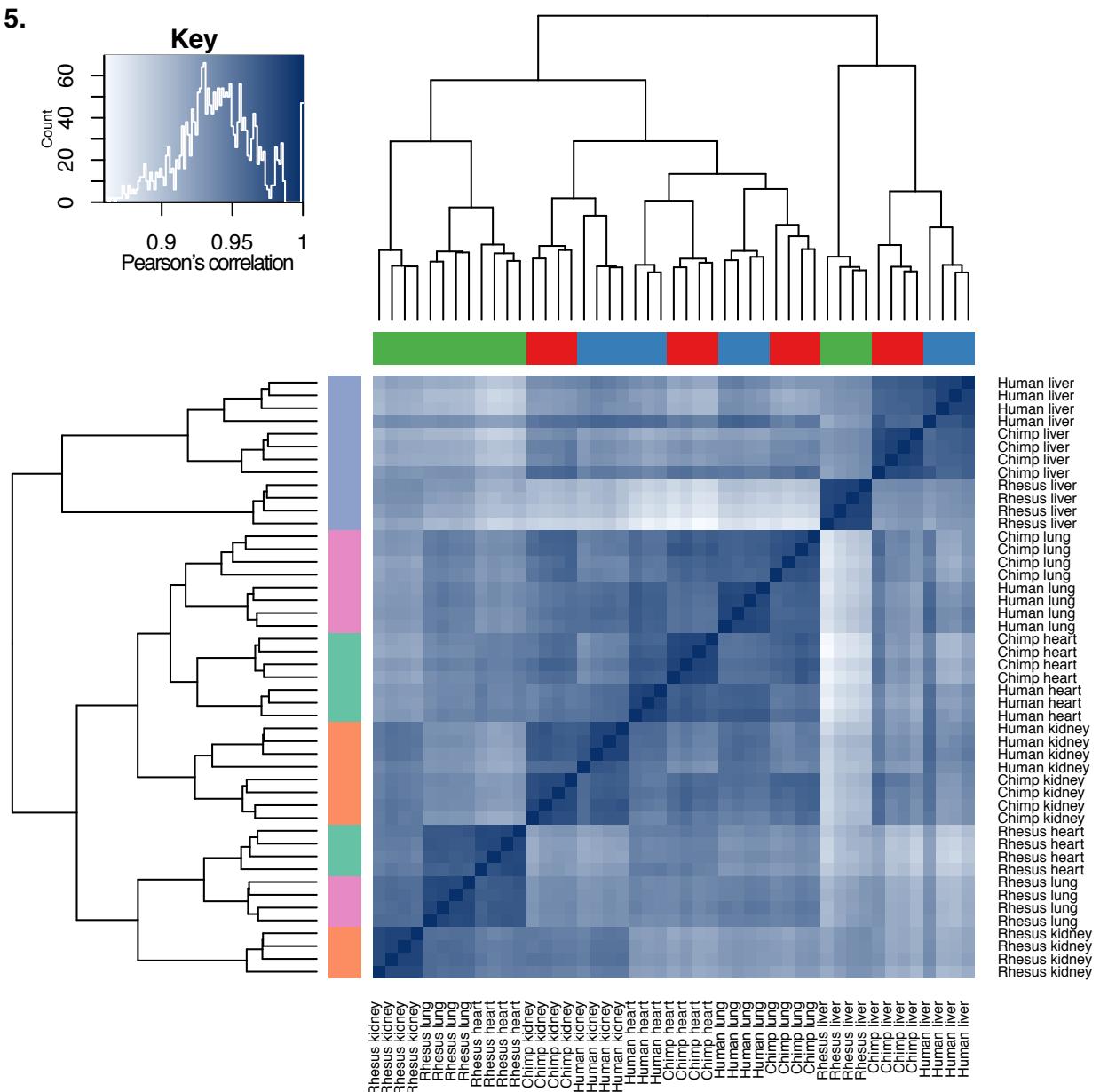
601

S3. Correlation matrix of normalized log2(CPM) gene expression values from 12,184 genes.



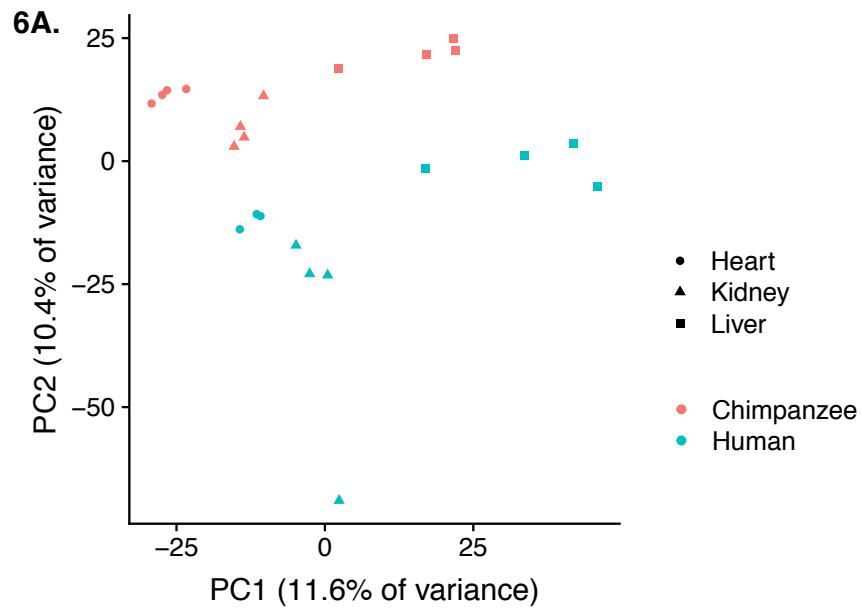
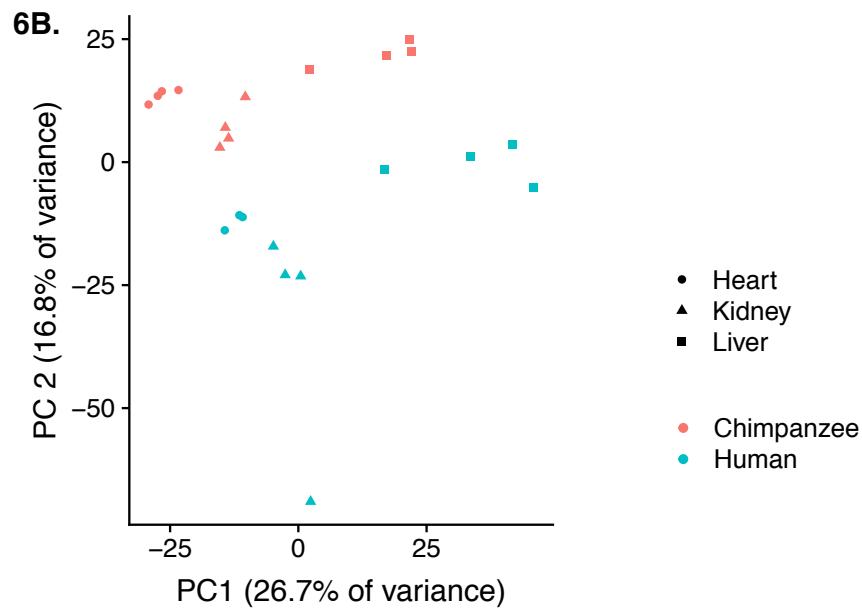
602
603 **S4. Density function of DNA methylation levels across all species and tissues.** (A) Using
604 raw methylation estimates at the subset of orthologous CpG sites showing a read coverage of at
605 least 5X and no more than 10X in each sample. (B) Using smoothed methylation estimates at
606 all orthologous CpG sites across the three species. (C) Using orthologous CpG sites located in
607 orthologous exons, and excluding sites with C to T SNPs in any of the samples.
608

5.



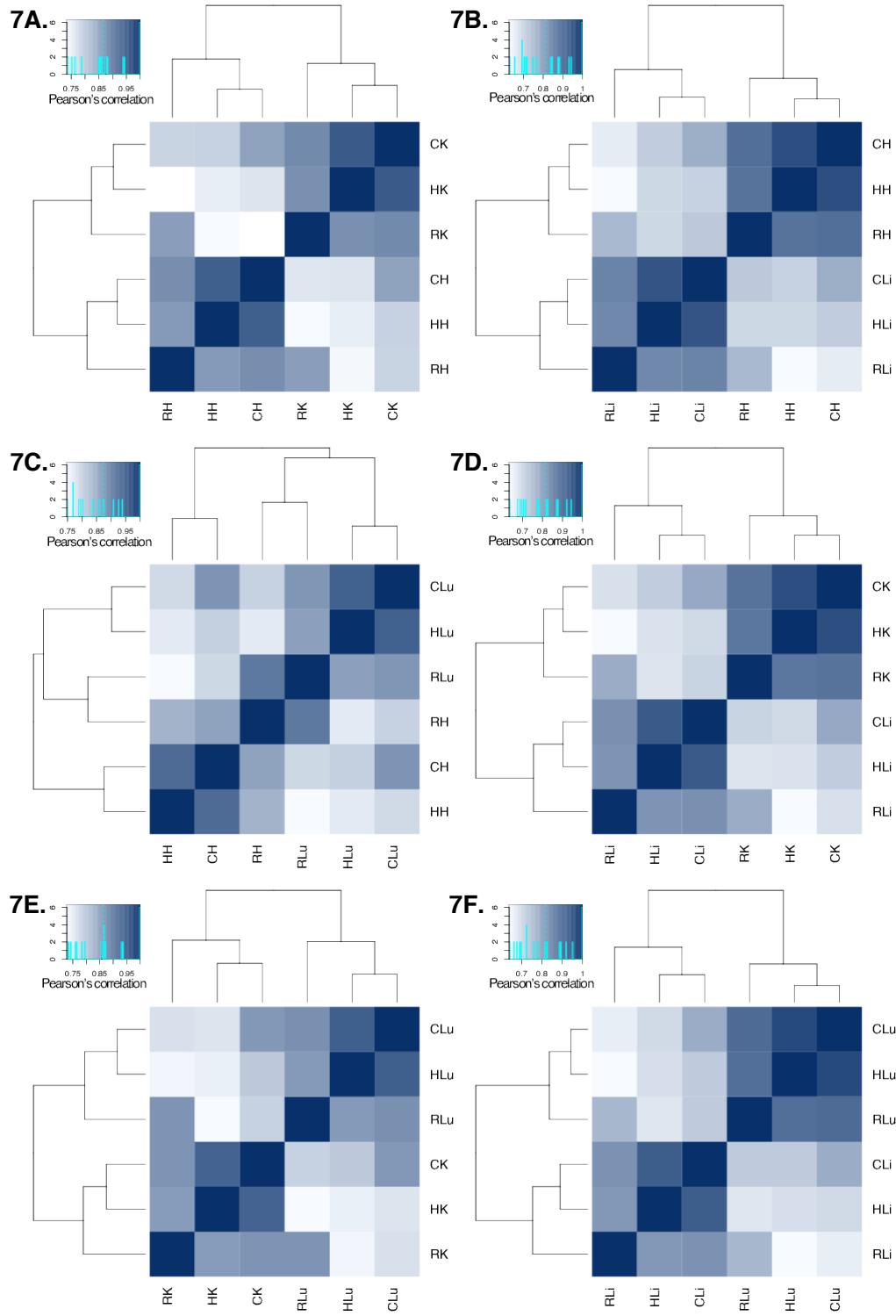
609
610
611
612

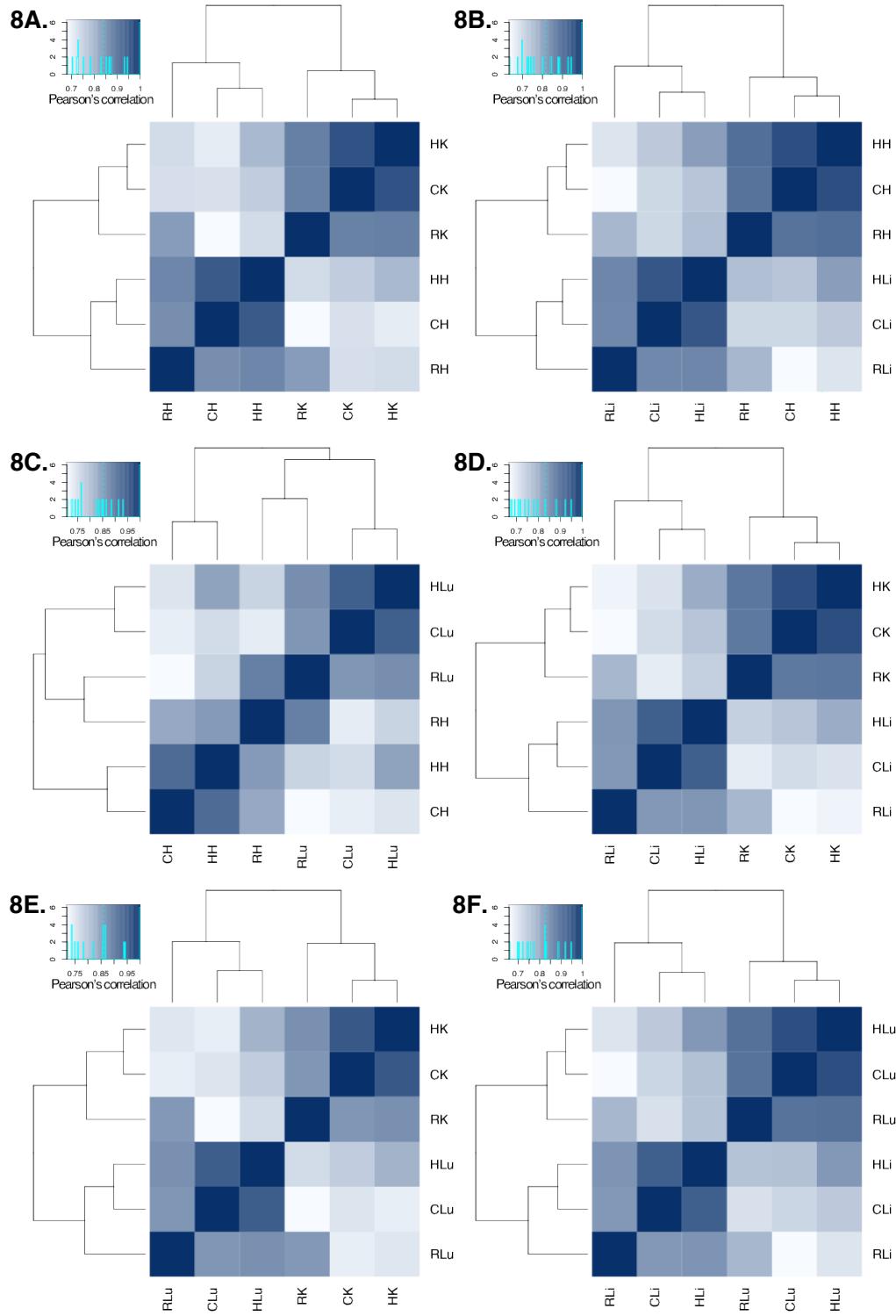
S5. Correlation matrix of smoothed DNA methylation levels from all orthologous CpGs.

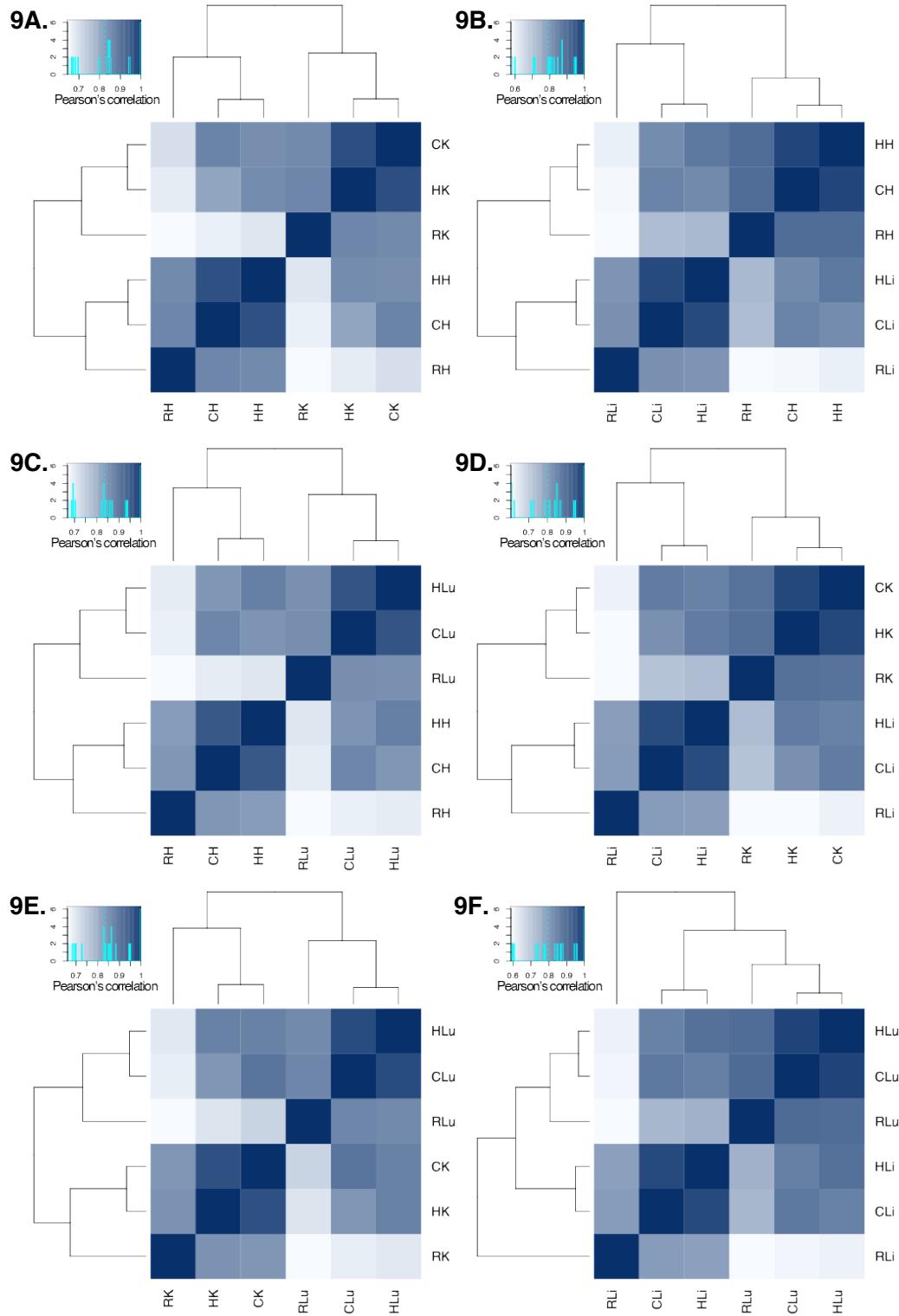


613
614
615
616
617
618
619

S6. Principal components analysis (PCA) in humans and chimpanzee hearts, kidneys, and livers. (A) Average promoter DNA methylation values. (B) Gene expression levels in the same genes from (A).

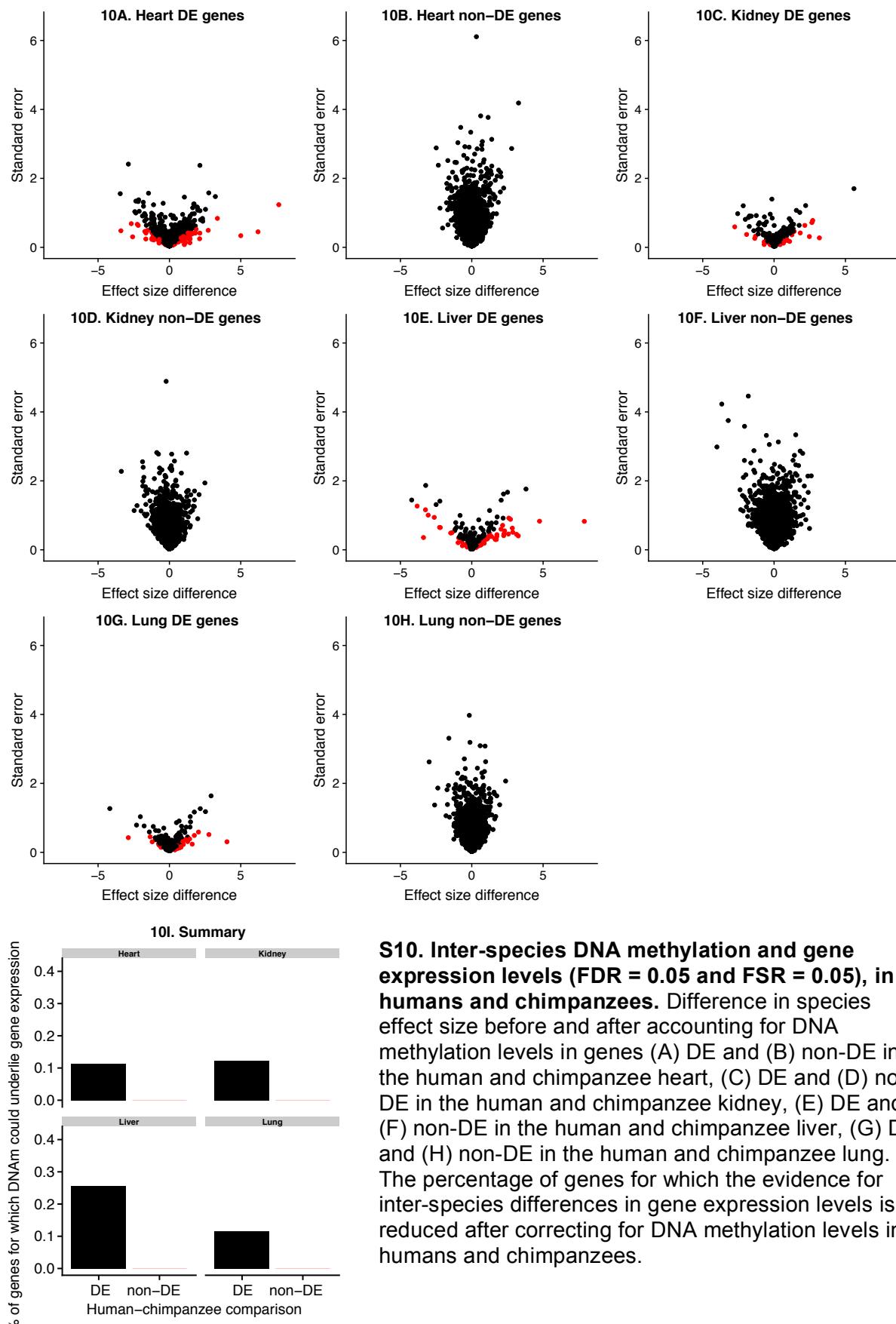






634
635
636
637
638
639

S9. When comparing DNA methylation levels of rhesus macaque T-DMRs and of orthologous regions in the same tissues, clustering is more highly correlated with tissue than species. Heatmaps are based on rhesus macaques (A) heart-kidney T-DMRs, (B) heart-liver T-DMRs, (C) heart-lung T-DMRs, (D) kidney-liver T-DMRs, (E) kidney-lung T-DMRs, and (F) liver-lung T-DMRs.



S10. Inter-species DNA methylation and gene expression levels (FDR = 0.05 and FSR = 0.05), in humans and chimpanzees. Difference in species effect size before and after accounting for DNA methylation levels in genes (A) DE and (B) non-DE in the human and chimpanzee heart, (C) DE and (D) non-DE in the human and chimpanzee kidney, (E) DE and (F) non-DE in the human and chimpanzee liver, (G) DE and (H) non-DE in the human and chimpanzee lung. (I) The percentage of genes for which the evidence for inter-species differences in gene expression levels is reduced after correcting for DNA methylation levels in humans and chimpanzees.

