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Supplemental Methods 79	
 80	
RNA library preparation and sequencing 81	

A relatively small percentage of reads could not be assigned to any sample because their 82	

adaptor sequence did not match any of the adaptors used in the study. Therefore, we ran in-83	

house Perl scripts to recover those reads that differed at a single position. Because of a calibration 84	

issue with the Gilad lab Illumina HiSeq sequencer, the first and the third flow-cell of the study (16 85	

lanes) yielded a low number of reads. However, this problem did not affect the quality of the reads, 86	

so we kept these lanes for the analysis. 87	

 88	

Quantifying the number of RNA-seq reads from orthologous genes 89	

When mapping to the species’ genome, we allowed for up to two mismatches in each 90	

read and kept only reads that mapped uniquely. Tophat2 uses unmapped reads to perform 91	

gapped alignments to the genome and discover new exon-exon junction sites. For this step, we 92	

disabled the coverage-based search, and only 1 mismatch was allowed in the anchor region of 93	

the reads (>=8 nt). The minimum intron length was set to 70 nt and the maximum to 50,000 nt. 94	

This yielded from 28,544,039 (R1H) to 72,808,273 (R4Li) mapped reads across samples (mean 95	

= 46,514,692 reads). Mapping rates were between 71% and 94%. 96	

We performed all downstream analyses in R (versions 3.1.1, 3.2.2, or 3.4.3) unless 97	

otherwise stated.  98	

 99	
 100	
RNA-seq data transformation and normalization  101	

We calculated the log2-transformed counts per million (CPM) from the raw gene counts of 102	

each sample using edgeR (Robinson et al. 2010). We then filtered out lowly expressed genes, 103	

keeping only genes with an expression level of log2(CPM) > 1.5 in at least 24 of the 48 samples 104	

(Robinson and Oshlack 2010). We normalized the original read counts using the weighted 105	

trimmed mean of M-values algorithm (TMM) (Robinson and Oshlack 2010). This process helped 106	
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us to account for differences in the read counts at the extremes of the distributions. We then 107	

calculated the TMM-normalized log2-transformed CPM values for each of the genes.  108	

After performing normalization, we performed principal components analysis (PCA) using 109	

the TMM-normalized log2-transformed CPM values of all genes, 1 human heart sample (H1H) 110	

clustered with the human livers rather than the hearts. After performing SNP calling on the RNA-111	

seq data (see section below), we found that the SNPs in sample H1H matched those from the 112	

other tissues from this individual. We removed this sample (H1H) from the list of the original gene 113	

counts. We again filtered for lowly expressed genes keeping only genes with an expression level 114	

of log2(CPM) > 1.5 in at least 24 of the 47 samples. We also wanted to allow for small differences 115	

in the distributions of gene expression across tissues. Therefore, on the 12,184 remaining genes, 116	

we performed a TMM normalization and then performed a cyclic loess normalization with the 117	

function normalizeCyclicLoess from the R/Bioconductor package limma (Ballman et al. 2004; 118	

Ritchie et al. 2015). To run PCA, we used the R function prcomp. For hierarchical clustering, we 119	

used unsupervised agglomerative clustering on the correlation matrix of the gene expression 120	

data.  121	

In this transformation and normalization process, we were interested in the impact of 122	

sample-specific biases in GC content on the gene expression counts. Therefore, we used the 123	

WASP pipeline (van de Geijn et al. 2015) to obtain expected GC-normalized counts. Specifically, 124	

we filtered the genes with lowly expressed counts so that only genes with the log2-transformed 125	

CPM > -5.5 in at least 2 of the 4 samples in each species-tissue pair (e.g. 2/4 chimpanzee hearts) 126	

remained. For each of the 16,616 genes that remained, we summed the read depth (raw counts) 127	

of the 4 samples in each tissue-species pair. We used the WASP pipeline (van de Geijn et al. 128	

2015) (https://github.com/bmvdgeijn/WASP/blob/master/CHT/update_total_depth.py) to obtain 129	

expected read counts, adjusted for read depth and GC content.  The GC content for each of the 130	

orthologous metaexons was previously calculated as part of (Gallego Romero et al. 2015). For 131	

each tissue-species pair, the adjusted raw counts and the actual raw counts were highly 132	
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correlated (> 0.98). Therefore, we did not adjust for read depth or GC content in our RNA-133	

sequencing data.  134	

 135	

SNP calling in the RNA-seq and BS-seq data 136	

We called single nucleotide variants on RNA-seq data from each tissue and sample using 137	

standard hard filtering parameters according to GATK recommendations (Van der Auwera et al. 138	

2013).  Briefly, duplicated reads were removed using Picard MarkDuplicates 139	

(http://broadinstitute.github.io/picard). Reads were then subjected to local realignment, base-140	

score recalibration, and candidate-variant calling using the IndelRealigner, TableRecalibration, 141	

and HaplotypeCaller tools from GATK (McKenna et al. 2010).  We required a base quality score 142	

≥20. We only considered variants that were observed in at least four of the samples. 143	

We used the same method for the BS-seq data. Through this process, we found that 2 144	

groups of samples had been mislabeled during sequencing: the sample labelled R3Li was actually 145	

R2Li, and R3Lu was actually R2Lu.  146	

 147	

Analysis of technical variables 148	

We recorded variables related to the samples (e.g. sex), variables specific to gene 149	

expression (e.g. RNA-seq flow cell number), and variables related to methylation levels (e.g. 150	

number of CpG sites covered) (Supplemental Table S1A-E). Briefly, we determined which of our 151	

recorded technical variables were significant predictors for each of the gene expression PCs 1-5 152	

using individual linear models for each of the gene expression variables (FDR < 10% for each 153	

test). The significant technical variables were then tested against our biological variables of 154	

interest, tissue and species, again with individual linear models. For the numerical technical 155	

variables, we quantified the strength of these associations using the P values from analysis of 156	

variance (ANOVA), and used a Chi-squared test (using Monte Carlo simulated P values) for the 157	

categorical technical variables (significance at FDR < 10%). We repeated the same analysis for 158	
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methylation data, testing the associations between methylation PCs 1-5 and sample 159	

information.   160	

 161	
Differential expression analysis using a linear model-based framework 162	

We implemented a linear model-based framework using the R packages limma and voom 163	

(Smyth 2004; Smyth et al. 2005; Law et al. 2014). This pipeline has previously been shown to 164	

perform well with at least 3 samples per condition (Rapaport et al. 2013; Soneson and Delorenzi 165	

2013).     166	

We hypothesized that RNA quality may be impacted by post-mortem time prior to 167	

collection. According to the documentation that we received from the different sites, all of the 168	

rhesus macaque samples were collected earlier than all of the chimpanzee samples. These 169	

differences could impact RNA quality. Hence, we used RIN score as a proxy for RNA quality, and 170	

included RIN score in the linear models.  171	

In the linear models, species, tissue, RIN score, and species-by-tissue interaction terms 172	

were modeled as fixed effects. Individual was modeled as a random effect. We used contrast 173	

tests in limma to identify genes that were differentially expressed between tissues within each 174	

species and across species in the same tissue. We corrected for multiple testing with the 175	

Benjamini and Hochberg FDR (Benjamini and Hochberg 1995). Genes were considered 176	

significantly DE at FDR-adjusted P values < 0.01, unless otherwise stated.  177	

 178	
 179	
Comparing the rank of tissue-specific DE genes in our dataset to the GTEx Project 180	

To benchmark the conserved tissue-specific DE genes, we compared the rank of each 181	

gene’s expression level in our data to its corresponding rank in the GTEx v6 heart, liver, lung, and 182	

kidney data (The GTEx Consortium 2017). After this comparison, we looked for enrichment of 183	

genes with a given rank. To do so, we used the R package topGO (Alexa et al. 2006), with the 184	

same implementation as in (Blischak et al. 2015). This implementation included the use of Fisher’s 185	



	 8	

Exact Test, with topGO’s weight01 algorithm (which takes into account the correlation among GO 186	

categories within the graph structure of the program). We then repeated this process for the 187	

tissue-specific DE genes identified in humans only.  188	

 189	

Expected overlap of genes and significance of the observed overlap  190	

We used the process from (Pai et al. 2011), based on the hypergeometric distribution, to 191	

assess the expected overlap of the conserved DE genes and significance of the observed number 192	

of conserved DE genes. This process relies on comparing a population proportion to a sample 193	

proportion.  194	

We first asked about the overlap of DE genes in humans and chimpanzees. To be 195	

conservative, in the case of the human and chimpanzee overlap, we assigned the species with 196	

the greater number of genes in the direction of interest as the population and the other species 197	

as the sample. To assess the expected overlap in upregulated human and chimpanzee genes in 198	

a given tissue, we used the P value from the hypergeometric distribution with the following 199	

parameters: m is the total number of DE genes in the population, n is the total number of 200	

upregulated genes in a population minus m, q is the observed overlap of upregulated DE genes 201	

(between the humans and chimpanzees), and k is the total number of upregulated DE genes in 202	

the sample, all within the given tissue. The “expected overlap” is the value at which the maximum 203	

likelihood estimate for which m, n, and k occurs. We then repeated this process for the 204	

upregulated and downregulated DE genes, in all four tissues separately. To obtain the same 205	

statistics for the tissue-specific DE genes, we used only the tissue-specific DE genes, and 206	

calculated n as the total number of genes upregulated in the tissue of interest compared to the 207	

other three tissues in the population minus the number of tissue-specific DE genes in the 208	

population.  209	

To calculate these statistics for all three species, we used this framework to ask whether 210	

the observed overlap between all three species was significant relative to the overlap of the 211	
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human and chimpanzee DE genes. In the same manner, we used the hypergeometric distribution 212	

to assess the expected overlap and significance of the number of conserved tDMRs (tissue 213	

differentially methylated regions) and conserved tissue-specific DMRs.  214	

 215	
The overlap between DE genes and previously defined networks 216	
 217	
 To find gene expression patterns that are consistent with the action of natural selection, 218	

for each significant DE gene, we determined the within-species variance of all 3 species and 219	

found the average of the 3 variances. We then ranked the genes by the mean variances. For the 220	

co-transcription network analysis, we used the shared TE-TE networks for the heart and lung as 221	

well as the heart-specific network from the Supplementary Materials in (Saha et al. 2017). We 222	

downloaded the list of protein-protein interactions in the heart, kidney, liver, and lung from the 223	

Human Protein Atlas (Uhlen et al. 2015). For the interaction analyses, we counted the number of 224	

interactions for each gene in the co-transcription networks or the protein-protein interactions list, 225	

in the appropriate tissue.   226	

 227	

BS-seq library preparation, sequencing, and mapping 228	

To assess the efficiency of the conversion reaction (Bock 2012), we spiked the extracted 229	

DNA with unmethylated lambda phage DNA. For each sample, we prepared at least two libraries, 230	

with independent PCR amplifications to minimize PCR duplication rates. The BS-seq libraries 231	

were sequenced on 111 lanes on 17 flow-cells on an Illumina HiSeq 2500 sequencer in the Gilad 232	

lab or at the University of Chicago Genomics Facility. Reads were single-end and 49 to 59 bp. 233	

The distribution of libraries of technical replicates over the flow-cells and additional related 234	

information is described in Supplemental Tables S1C-E.  235	

Similar to RNA-seq data, we used FastQC to generate quality reports. TrimGalore (version 236	

0.2.8) was used to trim adapter sequences incorporated in the BS-seq reads, using a stringency 237	
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of 3, and to cut the low-quality ends of reads, using a quality threshold of 20. We eliminated reads 238	

shorter than 15 bp post-trimming. 239	

We aligned the trimmed reads to the human (hg19, February 2009), chimpanzee 240	

(panTro3, October 2010), or rhesus macaque (rheMac2, January 2006) genomes, and to the 241	

lambda phage genome using the Bismark aligner (version 0.8.1)(Krueger and Andrews 2011). 242	

The Bismark aligner maps reads to in-silico converted (G to A and C to T) genome sequences 243	

using Bowtie (version 1.0.0). This aligner was shown to perform well on benchmark studies 244	

(Chatterjee et al. 2012; Tran et al. 2014; Tsuji and Weng 2016). We permitted one mismatch in 245	

the seed of the alignment, and by default Bismark reports only uniquely mapped reads. Across 246	

technical replicates, mapping rates ranged from 49% to 82% (median 76%). We applied the 247	

Bismark deduplication script to each technical replicate to remove reads mapped to the same 248	

starting genomic position, which likely arise through PCR amplification of the same DNA 249	

fragments during library preparation (Bock 2012). Across technical replicates, the duplication 250	

rates ranged from 2.8% to 44% (median 11%). 251	

To determine the bisulfite conversion efficiency, we calculated the conversion rate at 252	

cytosines from the spiked-in lambda phage DNA (for which coverage ranged from 12✕ to 107✕). 253	

We found this rate to be at least 99.4% across technical replicates, increasing confidence in our 254	

data.  255	

After combining all technical replicates, the average genome-wide coverage, calculated 256	

at CpG sites shared across the three species, ranged from 1.7✕ to 5.7✕ per sample (median of 257	

4✕), corresponding to 12M to 23M CpG sites with a coverage of at least 2✕ (median 19M). 258	

 259	

DNA methylation level estimate smoothing  260	

Since DNA methylation data from BS-seq is typically lower coverage than DNA 261	

methylation array data, we first applied a smoothing procedure on raw methylation levels for each 262	
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sample. It has previously been shown that this procedure increases the precision of low-coverage 263	

BS-seq data, and yields methylation estimates that are in excellent agreement with high-coverage 264	

BS-seq data without smoothing (Hansen et al. 2012; Ziller et al. 2014). To perform the smoothing, 265	

we used the BSmooth method (as implemented in the Bioconductor package bsseq, version 266	

0.10.0) (Hansen et al. 2012; Ziller et al. 2014) -- with the default parameters for smoothing -- at 267	

least 70 CpG sites with methylation data in a smoothing window of at least 1 kb. 268	

We had 17.6M human-chimpanzee orthologous CpGs and 7.5M CpGs orthologous across 269	

all 3 species. Next, we filtered the orthologous CpGs based on coverage to increase confidence 270	

in our data. We eliminated sites with > 10x coverage, as the relative sparsity of the data suggests 271	

that these reads were likely mapped to repeated regions. For each CpG site in each 272	

species/tissue combination, we required an average of 2x coverage and that at least 2 out of 4 273	

individuals had a coverage >= 2x. After filtering based on coverage, we had 2.4M autosomal 274	

CpGs orthologous in all three species (10.5 million in humans and chimpanzees only).  275	

 276	

Identifying differentially methylated regions (DMRs) 277	

For a given pairwise comparison (e.g., human liver vs. human heart), the bsseq package 278	

produces a signal-to-noise statistic for each CpG site similar to a t-test statistic, assuming that 279	

DNA methylation levels in each condition have equal variance. As recommended by the authors 280	

of the package, we used a low-frequency mean correction to improve the marginal distribution of 281	

the t-statistics. Similar to previous studies using this methodology, a t-statistic cutoff of –4.6,4.6 282	

was used for significance (Hansen et al. 2011; Hansen et al. 2014). 283	

 284	
Overlap of tissue-specific DMRs with regulatory regions 285	

We extracted the coordinates of the following features from GENCODE annotation 286	

(release 19)(Harrow et al. 2012): exons, first exons, CDS, 3’ and 5’ UTRs, introns, intergenic 287	

regions, promoters (-2 kb to +2 kb from TSS (Eckhardt et al. 2006; Zhou et al. 2014)) and 288	
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proximal promoters (-250 nt to +250 nt from TSS (Butler and Kadonaga 2002)) of all genes, or 289	

only of protein coding genes. We downloaded coordinates of the CpG islands from the UCSC 290	

Genome Browser (Karolchik et al. 2014). CpG islands (identified as segments of the genome 291	

with %G+C > 50%, length > 200 nt, and a ratio of observed over expected number of CG 292	

dinucleotides based on the number of Gs and Cs in the segment > 0.6 (Gardiner-Garden and 293	

Frommer 1987)). CpG island shores were defined as 2 kb regions flanking CpG islands, and 294	

CpG islands shelves were defined as 2 kb regions outside of CpG islands shores (Irizarry et al. 295	

2009). To test the overlap of t-DMRs with enhancers, we used the set of tissue-specific 296	

enhancers defined by the FANTOM consortium using CAGE-seq data on primary tissues 297	

(Andersson et al. 2014). To control for the potential effects of CpG density and region length in 298	

these analyses, we generated 100 sets of randomly located control regions matching the length 299	

and CpG densities of the DMRs in the studied set. 300	

We calculated the overlap of tissue-specific DMRs with H3K27ac in the left ventricle of 301	

the heart, kidney, liver, and lung adult tissues from the Epigenome Roadmap (The	Roadmap	302	

Epigenomics	Consortium	2015). We used the consolidated broad peak data for the left ventricle, 303	

liver, and lung (available from 304	

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak/ucsc_compatible305	

/). Since a consolidated version was not available for the kidneys, we used unconsolidated 306	

kidney sample numbered 153 (available from 307	

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/unconsolidated/broadPeak/ucsc_compati308	

ble/). We used BEDTools (version 2.26.0) (Quinlan and Hall 2010) to calculate the number of 309	

tDMRs that overlap an H3K27ac mark.  310	

 311	
Supplementary Text 312	
 313	
 314	
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Assessing the impact of technical variables on gene expression levels and DNA 315	

methylation levels 316	

We tested the relationship between our technical factors and biological variables of 317	

interest, namely tissue and species (see Methods). Through this process, we discovered that 318	

RNA extraction date was confounded with species (Supplemental Fig. S1B). In subsequent 319	

analysis with only the human samples (as humans were the only species with samples 320	

processed on multiple days), we found that the RNA extraction date did not highly correlate with 321	

tissue (Supplemental Fig S1C). We thought it unlikely that differences in RNA extraction date 322	

had a larger impact on variation in gene expression levels than tissue type.  323	

Furthermore, the time of tissue collection post-mortem is also confounded with species 324	

(Supplemental Table S1). These differences could impact RNA quality, which can be 325	

approximated by RIN score. Indeed, RIN scores were typically higher in rhesus macaques than 326	

in the other species (Supplemental Table S1B; Supplemental Fig. S1A). As a result, we 327	

included RIN score as a covariate when modeling gene expression levels. 328	

RNA quality may have impacted the number of DE genes identified between tissues. 329	

The number of pairwise DE genes was higher in rhesus macaque than in chimpanzee and 330	

human across FDR cutoffs (Supplemental Table S5B). This finding is potentially due to the 331	

higher sample quality, and therefore lower gene expression level variance, in rhesus macaques.   332	

We also tested for associations between technical factors and biological variables of 333	

interest in the BS-seq data. Most of the significant associations were related to DNA methylation 334	

levels (e.g. number of orthologous CpGs sites with low methylation, mean methylation level at 335	

orthologous CpGs) across species and tissues. We expect the DNA methylation level densities 336	

to vary somewhat across tissues (Pai et al. 2011) and therefore, these inter-tissue differences 337	

are likely biological rather than technical.   338	

Overall, we found slightly higher DNA methylation levels in human, compared to 339	

chimpanzee and macaque samples (average in humans = 0.664, in chimpanzees = 0.646, in 340	
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rhesus macaques = 0.626; Supplemental Fig. S4B), which persisted in the raw, unsmoothed 341	

data (Supplemental Fig. S4A). The distribution of DNA methylation levels could potentially be 342	

biased by CpG to TpG homozygous or heterozygous SNPs, which are erroneously inferred as 343	

unmethylated CpG sites. If the rate of such SNPs was higher in the chimpanzee or macaque 344	

individuals compared to human (with respect to their respective reference genome), we could 345	

observe differences between species. Since we had performed SNP calling on our RNA-seq 346	

dataset, we retained only CpG sites located in orthologous exons, and excluded sites with C to 347	

T SNPs in any of the samples. However, we still observed differences between species 348	

(Supplemental Fig. S4C). Moreover, higher DNA methylation rates in humans compared to 349	

chimpanzees were previously reported (but rarely discussed) in a diverse set of tissues, using 350	

various technologies to measure DNA methylation (Martin et al. 2011; Molaro et al. 2011; 351	

Hernando-Herraez et al. 2013; Hernando-Herraez et al. 2015). Therefore, this result may be 352	

driven by biases when mapping to different species’ genomes. 353	

Read coverage on the lambda phage genome was statistically significant	(FDR < 10-10). 354	

However, further analysis showed that this trend was driven by some low values in the 355	

chimpanzee samples, rather than the rhesus macaques (Supplemental Table S1D). Indeed, 356	

there is no difference in this factor across the human and the rhesus macaque samples (P = 357	

0.15, Student’s t-test). Therefore, we do not think that coverage on the lambda phage genome 358	

can account for the differences in DNA methylation between the great apes and the rhesus 359	

macaque samples (Figure 1D).  360	

We found evidence for a dependent relationship between species and lane number (Chi 361	

squared test, FDR= 10-13). Since these lanes were spread across multiple flow-cells, we do not 362	

think that lane substantially contributed to the variance in DNA methylation levels. We also 363	

found evidence for a dependent relationship between tissue and library preparation date (Chi 364	

squared test, FDR = 0.006). Since the correlation was modest (Pearson’s correlation = -0.22) 365	

and most tissues within a species had libraries made on multiple days, we chose not to correct 366	
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for this variable. Finally, we note that sample age has previously been shown to impact 367	

methylation status in a subset of genes (Day et al. 2013; Horvath 2013). DNA methylation levels 368	

were weakly positively correlated with age (age quantile relative to the species’ average 369	

lifespan; Pearson correlation’s = 0.18). However, in our factor analysis, this relationship was 370	

non-significant (FDR > 10%). Therefore, we did not correct for this variable. 371	

 372	

Tissue-specific gene expression patterns 373	

We asked whether the tissue-specific gene expression patterns we found in a sample of 374	

four individuals from each species are indeed indicative of regulatory patterns in a larger 375	

population. To examine this, we again considered human GTEx data from the same four tissues 376	

we included in our study (see Methods). Because the sample size of the GTEx data is much larger 377	

than in our study, we compared the normalized gene expression ranks in the four tissues. For 378	

example, in both our and the GTEx data, troponin T2 (TNNT2) shows the highest expression in 379	

the heart (rank 1) and the lowest expression in the liver (rank 4). Using this approach, we found 380	

that 428 (62%) of the 687 genes with a tissue-specific expression pattern exclusively in our human 381	

data have the same tissue-based ranked expression in the GTEx data. This observation suggests 382	

that tissue-specific expression patterns found in just four individuals are quite often not 383	

representative of the regulatory patterns in the larger population. In contrast, however, we found 384	

that 1,530 (88%) of the 1,739 genes with a conserved tissue-specific expression pattern based 385	

on our data have the same tissue-based ranked expression in the GTEx data. Thus, conserved 386	

differential expression significantly increases the confidence of classifying tissue-specific 387	

expression patterns in a larger human population (P < 10-16, difference of proportions test).  388	

 389	

Adaptive shrinkage and false sign rate to identify tissue-specific genes 390	

We investigated to what extent our ability to detect tissue-specific genes could be 391	

substantially impacted by differences in effect sizes across the species (Supplemental Table 392	
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S6). Therefore, we tested the use of an adaptive shrinkage method (Stephens 2017) to identify 393	

genes with a small effect size but consistent direction of effect in each species and used the 394	

accompanying false sign rate (FSR) instead of FDR thresholds. The percentage overlap was 395	

relatively robust to threshold method (Supplemental Table S6). We found that this method 396	

increases both the total number of tissue-specific differences and the species-specific 397	

differences. However, it also increases the number of conserved tissue-specific gene 398	

expression differences in humans and chimpanzees relative to those in chimpanzees and 399	

rhesus macaques (Supplemental Table S6), more closely reflecting established phylogenetic 400	

relationships. 401	

 402	

Identifying inter-species differences between tissues 403	

Since our data contained multiple tissues and species, we identified genes with inter-404	

species differences between tissues (tissue-by-species interactions). These tissue-by-species 405	

interactions are potentially informative for great ape evolution (when the contribution of species 406	

on gene expression in a given tissue is different between great apes and rhesus) and the 407	

evolution of human-specific mechanisms in tissues (when the effect of species on gene 408	

expression in a given tissue is different between humans and a group containing chimpanzees 409	

and rhesus macaques). Using a linear-model based framework, we modeled these differences 410	

with tissue-by-species interaction terms (see Methods). We found 664 total significant 411	

interactions in the great ape versus rhesus macaque comparison and 91 in the human versus 412	

chimpanzee and rhesus macaque (FDR 1%; Supplemental Table S8). Given our sample size 413	

and the small effect sizes of these interactions, we are probably underpowered to detect such 414	

interactions. To address this, we employed an adaptive shrinkage method (Stephens 2017) to 415	

identify genes with a small effect size but consistent direction of effect in each species, and 416	

used FSR instead of FDR thresholds. This method was used to identify cases where the 417	

observed sign of the effect across tissues was different between species. After applying this 418	
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method, we found 1,006 great ape-by-tissue interactions and 257 human-by-tissue interactions 419	

(FSR = 1%; Supplemental Table S8).  420	

Potentially the most interesting class of tissue-by-species interaction is when species 421	

impacts one tissue differently than the other three tissues. Therefore, we used ashr to find 799 422	

great ape-by-tissue interactions and 249 human-by-tissue interactions only present in one tissue 423	

(FSR = 1%; Supplemental Table S8). We defined tissue-by-species specific interactions as 424	

interactions with an effect size sign different from the signs of the other interactions (e.g. a 425	

positive sign when all other signs are 0 or negative). Unsurprisingly, even after accounting for 426	

small effect sizes, there were more tissue-by-species interactions for great apes versus rhesus 427	

macaques than human-specific ones.  428	

 429	

Promoter DNA methylation quality 430	

To check our promoter DNA methylation levels in the humans and chimpanzees, we 431	

subset the DNA methylation promoter data to the 3 human and chimpanzee tissues tested in a 432	

previous study from our lab (Pai et al. 2011). Consistent with this previous study, PC1 was more 433	

highly correlated with tissue than species and PC2 was more highly correlated with species than 434	

tissue (Supplemental Fig. S6A). Even in this subset of the data, there was more clear 435	

separation between tissues in the gene expression levels than the promoter DNA methylation 436	

data for these genes (Supplemental Fig. S6B).  437	

 438	

Identification of DMRs across species (S-DMRs) 439	

Using the same method to identify DMRs across tissues, we then identified thousands of 440	

DMRs across species (S-DMRs). We found the lowest number of S-DMRs on autosomal 441	

chromosomes in lungs (8,617 DMRs between human and chimpanzees, 17,696 DMRs between 442	

humans and rhesus macaques, and 15,544 between chimpanzees and rhesus macaques) and 443	

highest total number in hearts (14,504 DMRs between human and chimpanzees, 25,539 DMRs 444	
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between humans and rhesus macaques, and 15,544 between chimpanzees and rhesus 445	

macaques, Table 2). Similar to the pairwise DE analysis across species, the number of DMRs 446	

between species are consistent with known phylogenetic relationships. However, unlike in the 447	

pairwise DE analysis across species, the number of S-DMRs is sometimes higher than the 448	

number of pairwise T-DMRs. For example, there are more lung S-DMRs than human heart-lung 449	

DMRs. This trend is somewhat unexpected given the gene expression data, but consistent with 450	

clustering pattern of the DNA methylation data (Figure 1D). 451	

  452	
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	583	
S1. Distributions of potential confounders across biological variables of interest. (A) RIN 584	
score across the samples. (B) RNA extraction date by species. (C) PCA of RNA extraction date 585	
in humans.   586	
  587	
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	588	
	589	
	590	
S2. Sample QC. (A) One human heart (green circle, see arrow) clusters with the human livers 591	
(green squares). The sample originally labeled as H1H (“human 1 heart”) is likely a liver from 592	
the same human. (B) GATK analysis of the sample labelled H1H (see arrow) clusters with H1L, 593	
“human 1 liver”. (C) Gene expression levels from different tissues in the same individual 594	
(“different tissue”) are more highly correlated than gene expression levels between tissues from 595	
different individuals (“both different”) and all combinations of tissues and individuals (“all”). 596	
Within a given tissue, gene expression levels are most highly correlated (“different individual”). 597	
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	598	
S3. Correlation matrix of normalized log2(CPM) gene expression values from 12,184 599	
genes. 600	
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	602	
S4. Density function of DNA methylation levels across all species and tissues. (A) Using 603	
raw methylation estimates at the subset of orthologous CpG sites showing a read coverage of at 604	
least 5✕ and no more than 10✕ in each sample. (B) Using smoothed methylation estimates at 605	
all orthologous CpG sites across the three species. (C) Using orthologous CpG sites located in 606	
orthologous exons, and excluding sites with C to T SNPs in any of the samples. 607	
	  608	
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	609	
 610	
S5. Correlation matrix of smoothed DNA methylation levels from all orthologous CpGs. 611	
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	613	
 614	
 615	
S6. Principal components analysis (PCA) in humans and chimpanzee hearts, kidneys, 616	
and livers. (A) Average promoter DNA methylation values. (B) Gene expression levels in the 617	
same genes from (A). 618	
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	620	
 621	
S7.  When comparing DNA methylation levels of human T-DMRs and of orthologous 622	
regions in the same tissues, clustering is more highly correlated with tissue than 623	
species. Heatmaps are based on human (A) heart-kidney T-DMRs, (B) heart-liver T-DMRs, (C) 624	
heart-lung T-DMRs, (D) kidney-liver T-DMRs, (E) kidney-lung T-DMRs, and (F) liver-lung T-625	
DMRs.  626	

7A. 7B.

7C. 7D.

7E. 7F.
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	627	
 628	
S8.  When comparing DNA methylation levels of chimpanzee T-DMRs and of orthologous 629	
regions in the same tissues, clustering is more highly correlated with tissue than 630	
species. Heatmaps are based on chimpanzee (A) heart-kidney T-DMRs, (B) heart-liver T-631	
DMRs, (C) heart-lung T-DMRs, (D) kidney-liver T-DMRs, (E) kidney-lung T-DMRs, and (F) liver-632	
lung T-DMRs.  633	

8A. 8B.

8C. 8D.

8E. 8F.
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	634	
S9.  When comparing DNA methylation levels of rhesus macaque T-DMRs and of 635	
orthologous regions in the same tissues, clustering is more highly correlated with tissue 636	
than species. Heatmaps are based on rhesus macaques (A) heart-kidney T-DMRs, (B) heart-637	
liver T-DMRs, (C) heart-lung T-DMRs, (D) kidney-liver T-DMRs, (E) kidney-lung T-DMRs, and 638	
(F) liver-lung T-DMRs.  639	
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 10I. Summary 	
S10. Inter-species DNA methylation and gene 
expression levels (FDR = 0.05 and FSR = 0.05), in 
humans and chimpanzees. Difference in species 
effect size before and after accounting for DNA 
methylation levels in genes (A) DE and (B) non-DE in 
the human and chimpanzee heart, (C) DE and (D) non-
DE in the human and chimpanzee kidney, (E) DE and 
(F) non-DE in the human and chimpanzee liver, (G) DE 
and (H) non-DE in the human and chimpanzee lung. (I) 
The percentage of genes for which the evidence for 
inter-species differences in gene expression levels is 
reduced after correcting for DNA methylation levels in 
humans and chimpanzees.  
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Liver Lung

Heart Kidney
S11. Inter-species DNA methylation and gene 
expression levels (FDR = 0.05 and FSR = 0.05), in 
humans and rhesus macaques. Difference in 
species effect size before and after accounting for 
DNA methylation levels in genes (A) DE and (B) non-
DE in the human and rhesus heart, (C) DE and (D) 
non-DE in the human and rhesus kidney, (E) DE and 
(F) non-DE in the human and rhesus liver, (G) DE and 
(H) non-DE in the human and rhesus lung. (I) The 
percentage of genes for which the evidence for inter-
species differences in gene expression levels is 
reduced after correcting for DNA methylation levels in 
humans and rhesus macaques.   


