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Supplemental Methods
RNA library preparation and sequencing

A relatively small percentage of reads could not be assigned to any sample because their
adaptor sequence did not match any of the adaptors used in the study. Therefore, we ran in-
house Perl scripts to recover those reads that differed at a single position. Because of a calibration
issue with the Gilad lab lllumina HiSeq sequencer, the first and the third flow-cell of the study (16
lanes) yielded a low number of reads. However, this problem did not affect the quality of the reads,

so we kept these lanes for the analysis.

Quantifying the number of RNA-seq reads from orthologous genes

When mapping to the species’ genome, we allowed for up to two mismatches in each
read and kept only reads that mapped uniquely. Tophat2 uses unmapped reads to perform
gapped alignments to the genome and discover new exon-exon junction sites. For this step, we
disabled the coverage-based search, and only 1 mismatch was allowed in the anchor region of
the reads (>=8 nt). The minimum intron length was set to 70 nt and the maximum to 50,000 nt.
This yielded from 28,544,039 (R1H) to 72,808,273 (R4Li) mapped reads across samples (mean
= 46,514,692 reads). Mapping rates were between 71% and 94%.

We performed all downstream analyses in R (versions 3.1.1, 3.2.2, or 3.4.3) unless

otherwise stated.

RNA-seq data transformation and normalization

We calculated the log,-transformed counts per million (CPM) from the raw gene counts of
each sample using edgeR (Robinson et al. 2010). We then filtered out lowly expressed genes,
keeping only genes with an expression level of log,(CPM) > 1.5 in at least 24 of the 48 samples
(Robinson and Oshlack 2010). We normalized the original read counts using the weighted

trimmed mean of M-values algorithm (TMM) (Robinson and Oshlack 2010). This process helped
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us to account for differences in the read counts at the extremes of the distributions. We then
calculated the TMM-normalized log,-transformed CPM values for each of the genes.

After performing normalization, we performed principal components analysis (PCA) using
the TMM-normalized log,-transformed CPM values of all genes, 1 human heart sample (H1H)
clustered with the human livers rather than the hearts. After performing SNP calling on the RNA-
seq data (see section below), we found that the SNPs in sample H1H matched those from the
other tissues from this individual. We removed this sample (H1H) from the list of the original gene
counts. We again filtered for lowly expressed genes keeping only genes with an expression level
of log,(CPM) > 1.5 in at least 24 of the 47 samples. We also wanted to allow for small differences
in the distributions of gene expression across tissues. Therefore, on the 12,184 remaining genes,
we performed a TMM normalization and then performed a cyclic loess normalization with the
function normalizeCyclicLoess from the R/Bioconductor package limma (Ballman et al. 2004;
Ritchie et al. 2015). To run PCA, we used the R function prcomp. For hierarchical clustering, we
used unsupervised agglomerative clustering on the correlation matrix of the gene expression
data.

In this transformation and normalization process, we were interested in the impact of
sample-specific biases in GC content on the gene expression counts. Therefore, we used the
WASP pipeline (van de Geijn et al. 2015) to obtain expected GC-normalized counts. Specifically,
we filtered the genes with lowly expressed counts so that only genes with the log,-transformed
CPM > -5.5in at least 2 of the 4 samples in each species-tissue pair (e.g. 2/4 chimpanzee hearts)
remained. For each of the 16,616 genes that remained, we summed the read depth (raw counts)
of the 4 samples in each tissue-species pair. We used the WASP pipeline (van de Geijn et al.

2015) (https://github.com/bmvdgeijin/WWASP/blob/master/CHT/update total depth.py) to obtain

expected read counts, adjusted for read depth and GC content. The GC content for each of the
orthologous metaexons was previously calculated as part of (Gallego Romero et al. 2015). For

each tissue-species pair, the adjusted raw counts and the actual raw counts were highly
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correlated (> 0.98). Therefore, we did not adjust for read depth or GC content in our RNA-

sequencing data.

SNP calling in the RNA-seq and BS-seq data

We called single nucleotide variants on RNA-seq data from each tissue and sample using
standard hard filtering parameters according to GATK recommendations (Van der Auwera et al.
2013). Briefly, duplicated reads were removed using Picard MarkDuplicates

(http://broadinstitute.github.io/picard). Reads were then subjected to local realignment, base-

score recalibration, and candidate-variant calling using the IndelRealigner, TableRecalibration,
and HaplotypeCaller tools from GATK (McKenna et al. 2010). We required a base quality score
>20. We only considered variants that were observed in at least four of the samples.

We used the same method for the BS-seq data. Through this process, we found that 2
groups of samples had been mislabeled during sequencing: the sample labelled R3Li was actually

R2Li, and R3Lu was actually R2Lu.

Analysis of technical variables

We recorded variables related to the samples (e.g. sex), variables specific to gene
expression (e.g. RNA-seq flow cell number), and variables related to methylation levels (e.g.
number of CpG sites covered) (Supplemental Table S1A-E). Briefly, we determined which of our
recorded technical variables were significant predictors for each of the gene expression PCs 1-5
using individual linear models for each of the gene expression variables (FDR < 10% for each
test). The significant technical variables were then tested against our biological variables of
interest, tissue and species, again with individual linear models. For the numerical technical
variables, we quantified the strength of these associations using the P values from analysis of
variance (ANOVA), and used a Chi-squared test (using Monte Carlo simulated P values) for the

categorical technical variables (significance at FDR < 10%). We repeated the same analysis for
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methylation data, testing the associations between methylation PCs 1-5 and sample

information.

Differential expression analysis using a linear model-based framework

We implemented a linear model-based framework using the R packages limma and voom
(Smyth 2004; Smyth et al. 2005; Law et al. 2014). This pipeline has previously been shown to
perform well with at least 3 samples per condition (Rapaport et al. 2013; Soneson and Delorenzi
2013).

We hypothesized that RNA quality may be impacted by post-mortem time prior to
collection. According to the documentation that we received from the different sites, all of the
rhesus macaque samples were collected earlier than all of the chimpanzee samples. These
differences could impact RNA quality. Hence, we used RIN score as a proxy for RNA quality, and
included RIN score in the linear models.

In the linear models, species, tissue, RIN score, and species-by-tissue interaction terms
were modeled as fixed effects. Individual was modeled as a random effect. We used contrast
tests in limma to identify genes that were differentially expressed between tissues within each
species and across species in the same tissue. We corrected for multiple testing with the
Benjamini and Hochberg FDR (Benjamini and Hochberg 1995). Genes were considered

significantly DE at FDR-adjusted P values < 0.01, unless otherwise stated.

Comparing the rank of tissue-specific DE genes in our dataset to the GTEx Project

To benchmark the conserved tissue-specific DE genes, we compared the rank of each
gene’s expression level in our data to its corresponding rank in the GTEx v6 heart, liver, lung, and
kidney data (The GTEx Consortium 2017). After this comparison, we looked for enrichment of
genes with a given rank. To do so, we used the R package topGO (Alexa et al. 2006), with the

same implementation as in (Blischak et al. 2015). This implementation included the use of Fisher’s
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Exact Test, with topGO’s weight01 algorithm (which takes into account the correlation among GO
categories within the graph structure of the program). We then repeated this process for the

tissue-specific DE genes identified in humans only.

Expected overlap of genes and significance of the observed overlap

We used the process from (Pai et al. 2011), based on the hypergeometric distribution, to
assess the expected overlap of the conserved DE genes and significance of the observed number
of conserved DE genes. This process relies on comparing a population proportion to a sample
proportion.

We first asked about the overlap of DE genes in humans and chimpanzees. To be
conservative, in the case of the human and chimpanzee overlap, we assigned the species with
the greater number of genes in the direction of interest as the population and the other species
as the sample. To assess the expected overlap in upregulated human and chimpanzee genes in
a given tissue, we used the P value from the hypergeometric distribution with the following
parameters: m is the total number of DE genes in the population, n is the total number of
upregulated genes in a population minus m, q is the observed overlap of upregulated DE genes
(between the humans and chimpanzees), and k is the total number of upregulated DE genes in
the sample, all within the given tissue. The “expected overlap” is the value at which the maximum
likelihood estimate for which m, n, and k occurs. We then repeated this process for the
upregulated and downregulated DE genes, in all four tissues separately. To obtain the same
statistics for the tissue-specific DE genes, we used only the tissue-specific DE genes, and
calculated n as the total number of genes upregulated in the tissue of interest compared to the
other three tissues in the population minus the number of tissue-specific DE genes in the
population.

To calculate these statistics for all three species, we used this framework to ask whether

the observed overlap between all three species was significant relative to the overlap of the
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human and chimpanzee DE genes. In the same manner, we used the hypergeometric distribution
to assess the expected overlap and significance of the number of conserved tDMRs (tissue

differentially methylated regions) and conserved tissue-specific DMRs.

The overlap between DE genes and previously defined networks

To find gene expression patterns that are consistent with the action of natural selection,
for each significant DE gene, we determined the within-species variance of all 3 species and
found the average of the 3 variances. We then ranked the genes by the mean variances. For the
co-transcription network analysis, we used the shared TE-TE networks for the heart and lung as
well as the heart-specific network from the Supplementary Materials in (Saha et al. 2017). We
downloaded the list of protein-protein interactions in the heart, kidney, liver, and lung from the
Human Protein Atlas (Uhlen et al. 2015). For the interaction analyses, we counted the number of
interactions for each gene in the co-transcription networks or the protein-protein interactions list,

in the appropriate tissue.

BS-seq library preparation, sequencing, and mapping

To assess the efficiency of the conversion reaction (Bock 2012), we spiked the extracted
DNA with unmethylated lambda phage DNA. For each sample, we prepared at least two libraries,
with independent PCR amplifications to minimize PCR duplication rates. The BS-seq libraries
were sequenced on 111 lanes on 17 flow-cells on an lllumina HiSeq 2500 sequencer in the Gilad
lab or at the University of Chicago Genomics Facility. Reads were single-end and 49 to 59 bp.
The distribution of libraries of technical replicates over the flow-cells and additional related
information is described in Supplemental Tables S1C-E.

Similar to RNA-seq data, we used FastQC to generate quality reports. TrimGalore (version

0.2.8) was used to trim adapter sequences incorporated in the BS-seq reads, using a stringency
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of 3, and to cut the low-quality ends of reads, using a quality threshold of 20. We eliminated reads
shorter than 15 bp post-trimming.

We aligned the trimmed reads to the human (hg19, February 2009), chimpanzee
(panTro3, October 2010), or rhesus macaque (rheMac2, January 2006) genomes, and to the
lambda phage genome using the Bismark aligner (version 0.8.1)(Krueger and Andrews 2011).
The Bismark aligner maps reads to in-silico converted (G to A and C to T) genome sequences
using Bowtie (version 1.0.0). This aligner was shown to perform well on benchmark studies
(Chatterjee et al. 2012; Tran et al. 2014; Tsuji and Weng 2016). We permitted one mismatch in
the seed of the alignment, and by default Bismark reports only uniquely mapped reads. Across
technical replicates, mapping rates ranged from 49% to 82% (median 76%). We applied the
Bismark deduplication script to each technical replicate to remove reads mapped to the same
starting genomic position, which likely arise through PCR amplification of the same DNA
fragments during library preparation (Bock 2012). Across technical replicates, the duplication
rates ranged from 2.8% to 44% (median 11%).

To determine the bisulfite conversion efficiency, we calculated the conversion rate at

cytosines from the spiked-in lambda phage DNA (for which coverage ranged from 12X to 107 X).

We found this rate to be at least 99.4% across technical replicates, increasing confidence in our
data.
After combining all technical replicates, the average genome-wide coverage, calculated

at CpG sites shared across the three species, ranged from 1.7 X to 5.7 X per sample (median of

4X), corresponding to 12M to 23M CpG sites with a coverage of at least 2X (median 19M).

DNA methylation level estimate smoothing
Since DNA methylation data from BS-seq is typically lower coverage than DNA

methylation array data, we first applied a smoothing procedure on raw methylation levels for each
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sample. It has previously been shown that this procedure increases the precision of low-coverage
BS-seq data, and yields methylation estimates that are in excellent agreement with high-coverage
BS-seq data without smoothing (Hansen et al. 2012; Ziller et al. 2014). To perform the smoothing,
we used the BSmooth method (as implemented in the Bioconductor package bsseq, version
0.10.0) (Hansen et al. 2012; Ziller et al. 2014) -- with the default parameters for smoothing -- at
least 70 CpG sites with methylation data in a smoothing window of at least 1 kb.

We had 17.6M human-chimpanzee orthologous CpGs and 7.5M CpGs orthologous across
all 3 species. Next, we filtered the orthologous CpGs based on coverage to increase confidence
in our data. We eliminated sites with > 10x coverage, as the relative sparsity of the data suggests
that these reads were likely mapped to repeated regions. For each CpG site in each
species/tissue combination, we required an average of 2x coverage and that at least 2 out of 4
individuals had a coverage >= 2x. After filtering based on coverage, we had 2.4M autosomal

CpGs orthologous in all three species (10.5 million in humans and chimpanzees only).

Identifying differentially methylated regions (DMRs)

For a given pairwise comparison (e.g., human liver vs. human heart), the bsseq package
produces a signal-to-noise statistic for each CpG site similar to a f-test statistic, assuming that
DNA methylation levels in each condition have equal variance. As recommended by the authors
of the package, we used a low-frequency mean correction to improve the marginal distribution of
the f-statistics. Similar to previous studies using this methodology, a t-statistic cutoff of —4.6,4.6

was used for significance (Hansen et al. 2011; Hansen et al. 2014).

Overlap of tissue-specific DMRs with regulatory regions
We extracted the coordinates of the following features from GENCODE annotation
(release 19)(Harrow et al. 2012): exons, first exons, CDS, 3’ and 5’ UTRs, introns, intergenic

regions, promoters (-2 kb to +2 kb from TSS (Eckhardt et al. 2006; Zhou et al. 2014)) and
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proximal promoters (-250 nt to +250 nt from TSS (Butler and Kadonaga 2002)) of all genes, or
only of protein coding genes. We downloaded coordinates of the CpG islands from the UCSC
Genome Browser (Karolchik et al. 2014). CpG islands (identified as segments of the genome
with %G+C > 50%, length > 200 nt, and a ratio of observed over expected number of CG
dinucleotides based on the number of Gs and Cs in the segment > 0.6 (Gardiner-Garden and
Frommer 1987)). CpG island shores were defined as 2 kb regions flanking CpG islands, and
CpG islands shelves were defined as 2 kb regions outside of CpG islands shores (Irizarry et al.
2009). To test the overlap of t-DMRs with enhancers, we used the set of tissue-specific
enhancers defined by the FANTOM consortium using CAGE-seq data on primary tissues
(Andersson et al. 2014). To control for the potential effects of CpG density and region length in
these analyses, we generated 100 sets of randomly located control regions matching the length
and CpG densities of the DMRs in the studied set.

We calculated the overlap of tissue-specific DMRs with H3K27ac in the left ventricle of

the heart, kidney, liver, and lung adult tissues from the Epigenome Roadmap (The Roadmap

Epigenomics Consortium 2015). We used the consolidated broad peak data for the left ventricle,

liver, and lung (available from

http://egg2.wustl.edu/roadmap/data/byFile Type/peaks/consolidated/broadPeak/ucsc compatible

/). Since a consolidated version was not available for the kidneys, we used unconsolidated
kidney sample numbered 153 (available from

http://egg2.wustl.edu/roadmap/data/byFile Type/peaks/unconsolidated/broadPeak/ucsc compati

ble/). We used BEDTools (version 2.26.0) (Quinlan and Hall 2010) to calculate the number of

tDMRs that overlap an H3K27ac mark.

Supplementary Text
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Assessing the impact of technical variables on gene expression levels and DNA
methylation levels

We tested the relationship between our technical factors and biological variables of
interest, namely tissue and species (see Methods). Through this process, we discovered that
RNA extraction date was confounded with species (Supplemental Fig. S1B). In subsequent
analysis with only the human samples (as humans were the only species with samples
processed on multiple days), we found that the RNA extraction date did not highly correlate with
tissue (Supplemental Fig S1C). We thought it unlikely that differences in RNA extraction date
had a larger impact on variation in gene expression levels than tissue type.

Furthermore, the time of tissue collection post-mortem is also confounded with species
(Supplemental Table S1). These differences could impact RNA quality, which can be
approximated by RIN score. Indeed, RIN scores were typically higher in rhesus macaques than
in the other species (Supplemental Table S1B; Supplemental Fig. S1A). As a result, we
included RIN score as a covariate when modeling gene expression levels.

RNA quality may have impacted the number of DE genes identified between tissues.
The number of pairwise DE genes was higher in rhesus macaque than in chimpanzee and
human across FDR cutoffs (Supplemental Table S5B). This finding is potentially due to the
higher sample quality, and therefore lower gene expression level variance, in rhesus macaques.

We also tested for associations between technical factors and biological variables of
interest in the BS-seq data. Most of the significant associations were related to DNA methylation
levels (e.g. number of orthologous CpGs sites with low methylation, mean methylation level at
orthologous CpGs) across species and tissues. We expect the DNA methylation level densities
to vary somewhat across tissues (Pai et al. 2011) and therefore, these inter-tissue differences
are likely biological rather than technical.

Overall, we found slightly higher DNA methylation levels in human, compared to

chimpanzee and macaque samples (average in humans = 0.664, in chimpanzees = 0.646, in
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rhesus macaques = 0.626; Supplemental Fig. S4B), which persisted in the raw, unsmoothed
data (Supplemental Fig. S4A). The distribution of DNA methylation levels could potentially be
biased by CpG to TpG homozygous or heterozygous SNPs, which are erroneously inferred as
unmethylated CpG sites. If the rate of such SNPs was higher in the chimpanzee or macaque
individuals compared to human (with respect to their respective reference genome), we could
observe differences between species. Since we had performed SNP calling on our RNA-seq
dataset, we retained only CpG sites located in orthologous exons, and excluded sites with C to
T SNPs in any of the samples. However, we still observed differences between species
(Supplemental Fig. S4C). Moreover, higher DNA methylation rates in humans compared to
chimpanzees were previously reported (but rarely discussed) in a diverse set of tissues, using
various technologies to measure DNA methylation (Martin et al. 2011; Molaro et al. 2011;
Hernando-Herraez et al. 2013; Hernando-Herraez et al. 2015). Therefore, this result may be
driven by biases when mapping to different species’ genomes.

Read coverage on the lambda phage genome was statistically significant (FDR < 107').
However, further analysis showed that this trend was driven by some low values in the
chimpanzee samples, rather than the rhesus macaques (Supplemental Table S1D). Indeed,
there is no difference in this factor across the human and the rhesus macaque samples (P =
0.15, Student’s t-test). Therefore, we do not think that coverage on the lambda phage genome
can account for the differences in DNA methylation between the great apes and the rhesus
macaque samples (Figure 1D).

We found evidence for a dependent relationship between species and lane number (Chi
squared test, FDR= 10'13). Since these lanes were spread across multiple flow-cells, we do not
think that lane substantially contributed to the variance in DNA methylation levels. We also
found evidence for a dependent relationship between tissue and library preparation date (Chi
squared test, FDR = 0.006). Since the correlation was modest (Pearson’s correlation = -0.22)

and most tissues within a species had libraries made on multiple days, we chose not to correct
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for this variable. Finally, we note that sample age has previously been shown to impact
methylation status in a subset of genes (Day et al. 2013; Horvath 2013). DNA methylation levels
were weakly positively correlated with age (age quantile relative to the species’ average
lifespan; Pearson correlation’s = 0.18). However, in our factor analysis, this relationship was

non-significant (FDR > 10%). Therefore, we did not correct for this variable.

Tissue-specific gene expression patterns

We asked whether the tissue-specific gene expression patterns we found in a sample of
four individuals from each species are indeed indicative of regulatory patterns in a larger
population. To examine this, we again considered human GTEx data from the same four tissues
we included in our study (see Methods). Because the sample size of the GTEx data is much larger
than in our study, we compared the normalized gene expression ranks in the four tissues. For
example, in both our and the GTEx data, troponin T2 (TNNT2) shows the highest expression in
the heart (rank 1) and the lowest expression in the liver (rank 4). Using this approach, we found
that 428 (62%) of the 687 genes with a tissue-specific expression pattern exclusively in our human
data have the same tissue-based ranked expression in the GTEx data. This observation suggests
that tissue-specific expression patterns found in just four individuals are quite often not
representative of the regulatory patterns in the larger population. In contrast, however, we found
that 1,530 (88%) of the 1,739 genes with a conserved tissue-specific expression pattern based
on our data have the same tissue-based ranked expression in the GTEx data. Thus, conserved
differential expression significantly increases the confidence of classifying tissue-specific

expression patterns in a larger human population (P < 107", difference of proportions test).

Adaptive shrinkage and false sign rate to identify tissue-specific genes
We investigated to what extent our ability to detect tissue-specific genes could be

substantially impacted by differences in effect sizes across the species (Supplemental Table
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S6). Therefore, we tested the use of an adaptive shrinkage method (Stephens 2017) to identify
genes with a small effect size but consistent direction of effect in each species and used the
accompanying false sign rate (FSR) instead of FDR thresholds. The percentage overlap was
relatively robust to threshold method (Supplemental Table S6). We found that this method
increases both the total number of tissue-specific differences and the species-specific
differences. However, it also increases the number of conserved tissue-specific gene
expression differences in humans and chimpanzees relative to those in chimpanzees and
rhesus macaques (Supplemental Table S6), more closely reflecting established phylogenetic

relationships.

Identifying inter-species differences between tissues

Since our data contained multiple tissues and species, we identified genes with inter-
species differences between tissues (tissue-by-species interactions). These tissue-by-species
interactions are potentially informative for great ape evolution (when the contribution of species
on gene expression in a given tissue is different between great apes and rhesus) and the
evolution of human-specific mechanisms in tissues (when the effect of species on gene
expression in a given tissue is different between humans and a group containing chimpanzees
and rhesus macaques). Using a linear-model based framework, we modeled these differences
with tissue-by-species interaction terms (see Methods). We found 664 total significant
interactions in the great ape versus rhesus macaque comparison and 91 in the human versus
chimpanzee and rhesus macaque (FDR 1%; Supplemental Table S8). Given our sample size
and the small effect sizes of these interactions, we are probably underpowered to detect such
interactions. To address this, we employed an adaptive shrinkage method (Stephens 2017) to
identify genes with a small effect size but consistent direction of effect in each species, and
used FSR instead of FDR thresholds. This method was used to identify cases where the

observed sign of the effect across tissues was different between species. After applying this
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method, we found 1,006 great ape-by-tissue interactions and 257 human-by-tissue interactions
(FSR = 1%; Supplemental Table S8).

Potentially the most interesting class of tissue-by-species interaction is when species
impacts one tissue differently than the other three tissues. Therefore, we used ashr to find 799
great ape-by-tissue interactions and 249 human-by-tissue interactions only present in one tissue
(FSR = 1%; Supplemental Table S8). We defined tissue-by-species specific interactions as
interactions with an effect size sign different from the signs of the other interactions (e.g. a
positive sign when all other signs are 0 or negative). Unsurprisingly, even after accounting for
small effect sizes, there were more tissue-by-species interactions for great apes versus rhesus

macaques than human-specific ones.

Promoter DNA methylation quality

To check our promoter DNA methylation levels in the humans and chimpanzees, we
subset the DNA methylation promoter data to the 3 human and chimpanzee tissues tested in a
previous study from our lab (Pai et al. 2011). Consistent with this previous study, PC1 was more
highly correlated with tissue than species and PC2 was more highly correlated with species than
tissue (Supplemental Fig. S6A). Even in this subset of the data, there was more clear
separation between tissues in the gene expression levels than the promoter DNA methylation

data for these genes (Supplemental Fig. S6B).

Identification of DMRs across species (S-DMRs)

Using the same method to identify DMRs across tissues, we then identified thousands of
DMRs across species (S-DMRs). We found the lowest number of S-DMRs on autosomal
chromosomes in lungs (8,617 DMRs between human and chimpanzees, 17,696 DMRs between
humans and rhesus macaques, and 15,544 between chimpanzees and rhesus macaques) and

highest total number in hearts (14,504 DMRs between human and chimpanzees, 25,539 DMRs
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between humans and rhesus macaques, and 15,544 between chimpanzees and rhesus
macaques, Table 2). Similar to the pairwise DE analysis across species, the number of DMRs
between species are consistent with known phylogenetic relationships. However, unlike in the
pairwise DE analysis across species, the number of S-DMRs is sometimes higher than the
number of pairwise T-DMRs. For example, there are more lung S-DMRs than human heart-lung
DMRs. This trend is somewhat unexpected given the gene expression data, but consistent with

clustering pattern of the DNA methylation data (Figure 1D).
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004 non-DE in the human and rhesus kidney, (E) DE and

Liver - (F) non-DE in the human and rhesus liver, (G) DE and
0.4 (H) non-DE in the human and rhesus lung. (I) The
percentage of genes for which the evidence for inter-

0.31
species differences in gene expression levels is

02 reduced after correcting for DNA methylation levels in

0.11 humans and rhesus macaques.
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