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Supplemental Methods: 
Gene annotations / Modules. Gene Ontology (GO) annotations (Ashburner et al. 2000) were downloaded from www.geneontology.org/ on Oct 4, 2017, with versions indicated by submission date below. Gene Reference Into Function (GeneRIF) (Mitchell et al. 2003) was downloaded from ftp://ftp.ncbi.nih.gov/gene/GeneRIF/ on Oct 11, 2017. Literature data for the genes was downloaded from PubMed at ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz on Mar 15, 2018. 
Module data for all the species were retrieved from GO (Ashburner et al. 2000), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2012), and Reactome (Croft et al. 2011). Annotations from GO with evidence codes of IEA (inferred from electronic annotation), ND (No biological data available), NR (Not recorded), NAS (Non-traceable author statement) were removed from the analysis. The parent-child hierarchical structure of GO was ignored. All modules, including the redundant modules (modules with similar gene components), as well as parent-child modules, were considered as independent in the analysis. 
Modules with less than 15 genes or larger than 1,000 genes were excluded, resulting in 6,979, 7,489, 7,462, 3,811, 2,495, and 2,381 modules for human, mouse, rat, fly, worm, and yeast, respectively, for the analysis. 
Module similarity calculation. Similarity between two modules was defined as the Jaccard index , i.e. the number of genes in A and B divided by the number of genes in A or B. It measures the intersection between the modules as a fraction of the total size. 
Gene expression across tissues. Expression patterns of EHHADH and SLC6A1 in mRNA and protein levels across human tissues were obtained from the Human Protein Atlas (Uhlen et al. 2015), and are available from v18.proteinatlas.org/ENSG00000113790-EHHADH/tissue and v18.proteinatlas.org/ENSG00000157103-SLC6A1/tissue, respectively. 
Transcriptome datasets. The human GTEx transcriptome datasets (v7) were downloaded from www.gtexportal.org (The GTEx Consortium 2013). Most of the microarray and RNA-seq datasets were downloaded from GEO (Barrett et al. 2013) and ArrayExpress (Kolesnikov et al. 2015), with processed human and mouse RNA-seq datasets obtained from ARCHS4 (Lachmann et al. 2018). The rest of the datasets were downloaded from other sources, including the database of Genotypes and Phenotypes (dbGaP) (Mailman et al. 2007), Mouse phenome database (Bogue et al. 2018), and other data repository websites. Data from single cell RNA-seq were excluded from the study because they contain too many zero counts. Detailed information can be found at systems-genetics.org/datasets. 
Data preprocessing of transcriptome datasets. For microarray datasets, the expression for a given gene with more than one probe set was represented by the average values of all its probe sets. Un-annotated probe sets were removed in the data pre-processing step. Only protein coding genes were considered in the analysis, as non-coding genes are often not well measured in microarray platforms. For RNA-seq datasets, CPM (Count Per Million) were calculated to normalize the gene expression across samples and log2(CPM) were used for further analysis. Only protein coding genes were considered in the analysis to match the data in microarray datasets. 
Transcriptome data were standardized by quantile-transformation to fit a normal distribution to avoid model misspecification when performing gene-level statistics. The expression values of all genes were normalized to the range of 0 to 1. Samples and genes with more than 30% missing values were removed from the analysis, and the remaining missing data were imputed using nearest neighbor averaging by the impute.knn function in the “impute” R package. 
For all the datasets, covariates were manually annotated and curated based on the metadata available from the respective data sources. Datasets containing data from different tissues were separated into single tissues. To account for confounding sources of expression variations, the effects of known covariates, including age, gender, genotype, platform, disease, treatment, batch, etc, as well as hidden determinants of gene expression were estimated and removed by using PEER (probabilistic estimation of expression residuals) (Stegle et al. 2012), and the expression residuals were used for further analysis. The reason of using expression residual instead of raw expression data is that raw data have known and hidden covariates, for example batch, sex, and disease condition, which can strongly influence the results. 
Most of the analyses described in this study were performed using R (R Core Team 2019). 
WeGET. The WeGET pre-computed results for around 7,000 modules from GO, KEGG, and Reactome were downloaded from https://coexpression.cmbi.umcn.nl/downloads (Szklarczyk et al. 2016). 
COXPRESdb. The correlation table for all genes from human datasets was downloaded from https://coxpresdb.jp/download/ (coexpression version: Hsa-r.c4-0, release date: 2019.02.25) (Obayashi et al. 2019). The algorithm described in https://coxpresdb.jp/top_search/#CoExSearch was implemented in R to test the predictive performance of COXPRESdb. 
Average r. A simpler method (average r) based on average of correlation coefficient was applied on the same expression compendia collected in this study to compare with G-MAD. Specifically, the coexpression between two genes was calculated by taking the average of their correlation coefficients in all datasets. Such calculation was repeated for all gene pairs to obtain the coexpression table across all genes. For a given module, the association with a gene was computed by averaging its correlation coefficients (average r) with all genes in this module. The final average r was used as the final score to estimate the gene-module association. 
Module network analysis. Module networks were constructed using Gephi 0.9.2 (Mathieu et al. 2009) based on either the module similarities or module connections from M-MAD. The Fruchterman-Reingold algorithm (Fruchterman and Reingold 1991) was used to create the network layout with a gravity value of 10. Iterations were stopped when the network reached stability. The node colors were obtained using the community detection algorithm (Vincent et al. 2008) embedded as the modularity tool in Gephi. Clusters with more than 20 nodes were colored to illustrate the module communities. The most frequent 10 biological terms (excluding biological meaningless words, such as “of”, “in”, or “and”) were used to represent the modules of these communities. The statistical characteristics of the module networks were computed using Gephi. For the network visualization of G-MAD results for one gene, modules were plotted according to their x and y coordinates of the module similarity network, and the gene-module association scores (GMAS) against all modules were used to color the modules using indicated color codes. 
Gene correlation network analysis. Gene correlation networks were constructed based on the Pearson’s correlation among genes of indicated modules in respective datasets using the “layout_with_fr” function in the igraph R package. Edges with correlation p-values lower than the indicated cutoffs in the figure panels were plotted. 
Gene set enrichment analysis. Transcriptome data of uterus-specific Arid1a knockout mice (Kim et al. 2015) were downloaded from GEO under the accession number GSE72200. For enrichment analysis, genes were ranked based on their fold changes between Arid1a knockout and control samples, and gene set enrichment analysis (GSEA) was performed to identify the enriched gene sets using the R/fgsea package (Subramanian et al. 2005; Sergushichev 2016). 
Transcript-phenotype correlation analysis in mouse cohorts. Phenotype data, as well as transcriptome data of liver and white adipose tissue, from the BXD (Wu et al. 2014) and CTB6F2 (Schadt et al. 2008) mouse cohorts were downloaded from GeneNetwork (www.genenetwork.org). Spearman’s correlation coefficient rho was used to calculate the correlation between the transcript levels of ribosomal protein genes and metabolic phenotypes. 
Cell culture and siRNA transfection. Human embryonic kidney (HEK) 293 cells were cultured in DMEM supplemented with 10% fetal bovine serum, 100 IU/ml penicillin and 100 μg/ml streptomycin. HEK 293 cells were grown to approximately 70% confluence in 12-well plate. The cells were treated with either scrambled siRNA, or human DDT / BOLA3 siRNA (Dharmacon) mixed with lipofectamine 2000 to yield a final concentration of 100nM according to the supplier’s protocol. After siRNA treatment for 48 hours, cells were collected for quantitative real-time PCR assay. Primers used in this assay are listed in Supplemental Table S6. Statistical significance was determined by two-tailed Student’s t-test. 
Mitochondrial localization. Mouse embryonic fibroblasts (MEFs) were used to determine the subcellular location of DDT. DDT antibody was purchased from Invitrogen (PA5-62071). MitoTracker® Red CMXRos was purchased from ThermoFisher (M7512). The cells were stained in culture medium containing 100 nM MitoTracker for 30 minutes and then fixed. Cells were then stained with DDT antibody (1:200 dilution) and DAPI, and imaged using the ZEISS LSM 700 microscope. Mitochondrial localization was confirmed by overlaying the signals of DDT and MitoTracker. Cells stained with only MitoTracker or DDT antibody were also included, and no interference signals between the red and green channels were detected.
[bookmark: _GoBack]Mitochondrial function assay. Mitochondrial oxygen consumption rate (OCR) was measured on a Seahorse XFe96 analyzer (Agilent) according to the manufacturer’s protocol. HEK 293 cells were seeded on to 96-well XF analyzer assay plate. Cells were treated with scrambled siRNA or human DDT / BOLA3 siRNA. After 48 hours siRNA treatment, Seahorse XFe96 analyzer was used to measure OCR of the cells. After basal OCR levels were measured, HEK 293 cells were cumulatively treated with 1µM Oligomycin (ATP synthase inhibitor), then 3µM carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, mitochondrial uncoupler). Then, a mixture of 1µM Antimycin A (mitochondrial respiratory chain Complex III inhibitor) and 1µM Rotenone (Complex I inhibitor) was added. OCR levels were normalized to total protein content per well determined by Lowry protein assay. Statistical significance was determined by two-tailed Student’s t-test.
C. elegans experiments. Lipid droplets were stained in C. elegans as described previously (Li et al. 2018). Inhibition of ribosome in early stage of worms affects their development and growth, so RNAi was performed after the worms reached adulthood. Specifically, L1 larvae of N2 worms were grown on regular nematode growth media (NGM) plates at 20°C for 2 days until reaching adulthood. Then worms were then transferred to RNAi plates with 1mM IPTG containing HT115 bacteria expressing RNAi clones for ribosomal genes or empty vector. After 2 days of RNAi treatment, worms were collected, washed twice with 1x PBS and then suspended in 120 μl of PBS. Then 120 μl 2x MRWB buffer (160 mM KCl, 40 mM NaCl, 14 mM Na2EGTA, 30 mM PIPES pH 7.4, 1 mM Spermidine, 0.4 mM Spermine, 2% paraformaldehyde, 0.2% beta- mercaptoethanol) was added. The worms were taken through 3 freeze-thaw cycles between dry ice/ethanol mixture and warm running tap water, followed by 1 minute spinning at 14,000g. Worms were then washed once using PBS to remove paraformaldehyde. Oil Red O staining of lipid droplets was performed after fixation. Worms were re-suspended and dehydrated in 60% isopropanol. 250 µl of 60% Oil Red O stain was added to each sample, and samples were incubated overnight at room temperature. Worms were washed twice in 60% isopropanol solution after Oil Red O staining. The region immediately behind the pharynx of each worm was used for imaging of the lipid droplets. The lipid droplets were quantified using Fiji (ImageJ) as previously described (Li et al. 2018). Statistical significance was determined by two-tailed Student’s t-test. 



Reference
[bookmark: _ENREF_1]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 25: 25-29.
[bookmark: _ENREF_2]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al. 2013. NCBI GEO: archive for functional genomics data sets--update. Nucleic acids research 41: D991-995.
[bookmark: _ENREF_3]Bogue MA, Grubb SC, Walton DO, Philip VM, Kolishovski G, Stearns T, Dunn MH, Skelly DA, Kadakkuzha B, TeHennepe G et al. 2018. Mouse Phenome Database: an integrative database and analysis suite for curated empirical phenotype data from laboratory mice. Nucleic acids research 46: D843-D850.
[bookmark: _ENREF_4]Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B et al. 2011. Reactome: a database of reactions, pathways and biological processes. Nucleic acids research 39: D691-697.
[bookmark: _ENREF_5]Fruchterman TMJ, Reingold EM. 1991. Graph drawing by force-directed placement. Software: Practice and Experience 21: 1129-1164.
[bookmark: _ENREF_6]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic acids research 40: D109-114.
[bookmark: _ENREF_7]Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA et al. 2015. ARID1A Is Essential for Endometrial Function during Early Pregnancy. PLoS genetics 11: e1005537.
[bookmark: _ENREF_8]Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T et al. 2015. ArrayExpress update--simplifying data submissions. Nucleic acids research 43: D1113-1116.
[bookmark: _ENREF_9]Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, Ma'ayan A. 2018. Massive mining of publicly available RNA-seq data from human and mouse. Nature communications 9: 1366.
[bookmark: _ENREF_10]Li H, Wang X, Rukina D, Huang Q, Lin T, Sorrentino V, Zhang H, Bou Sleiman M, Arends D, McDaid A et al. 2018. An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function. Cell systems 6: 90-102 e104.
[bookmark: _ENREF_11]Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, Hao L, Kiang A, Paschall J, Phan L et al. 2007. The NCBI dbGaP database of genotypes and phenotypes. Nature genetics 39: 1181-1186.
[bookmark: _ENREF_12]Mathieu B, Sebastien H, Mathieu J. 2009. Gephi: An Open Source Software for Exploring and Manipulating Networks. International AAAI Conference on Weblogs and Social Media.
[bookmark: _ENREF_13]Mitchell JA, Aronson AR, Mork JG, Folk LC, Humphrey SM, Ward JM. 2003. Gene indexing: characterization and analysis of NLM's GeneRIFs. AMIA  Annual Symposium proceedings AMIA Symposium: 460-464.
[bookmark: _ENREF_14]Obayashi T, Kagaya Y, Aoki Y, Tadaka S, Kinoshita K. 2019. COXPRESdb v7: a gene coexpression database for 11 animal species supported by 23 coexpression platforms for technical evaluation and evolutionary inference. Nucleic acids research 47: D55-D62.
[bookmark: _ENREF_15]R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. 
[bookmark: _ENREF_16]Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C et al. 2008. Mapping the genetic architecture of gene expression in human liver. PLoS biology 6: e107.
[bookmark: _ENREF_17]Sergushichev A. 2016. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv.
[bookmark: _ENREF_18]Stegle O, Parts L, Piipari M, Winn J, Durbin R. 2012. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nature protocols 7: 500-507.
[bookmark: _ENREF_19]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102: 15545-15550.
[bookmark: _ENREF_20]Szklarczyk R, Megchelenbrink W, Cizek P, Ledent M, Velemans G, Szklarczyk D, Huynen MA. 2016. WeGET: predicting new genes for molecular systems by weighted co-expression. Nucleic acids research 44: D567-573.
[bookmark: _ENREF_21]The GTEx Consortium. 2013. The Genotype-Tissue Expression (GTEx) project. Nature genetics 45: 580-585.
[bookmark: _ENREF_22]Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A et al. 2015. Proteomics. Tissue-based map of the human proteome. Science 347: 1260419.
[bookmark: _ENREF_23]Vincent DB, Jean-Loup G, Renaud L, Etienne L. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008: P10008.
[bookmark: _ENREF_24]Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z et al. 2014. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158: 1415-1430.



3

