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Supplemental Fig. S1

CPSF-1 (CPSF1)

[ TResidues 400 to 973 interact with HAT-C domain of CstF-77 (Bai et al., 2007)
[ 1bP1 domain made of WD40 repeats (Clerici et al., 2017, Sun et al., 2018)
[ 1bP2 domain made of WD40 repeats (Clerici et al., 2017, Sun et al., 2018)
["1bP3 domain made of WD40 repeats interacts with CPSF30 (Clerici et al., 2017, Sun et al., 2018)
[ | c-terminal domain (Clerici et al., 2017, Sun et al., 2018)
Elongated loops 1-3 stabilize interaction with Wdr33 NTD (Clerici et al., 2017, Sun et al., 2018)

Supplemental Figure S1: Protein alignment of members of the CPC complex in

five organisms. Amino acid sequence alignment for the members of the CPC from

five organisms produced with Clustal Omega Multiple Sequence Alignment.

Conserved domains produced with the Batch Conserved Domain Search on NCBI are
represented by the highlighted regions of each figure. Known domains determined

from previously published literature are outlined. 3
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I CPSF Complex
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CPSF-2 (CPSF2)
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CPSF-4 (CPSF4)
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CPF-1 (CST1)

@_ WD40 Domain

--MKPDIKDRE¥MYRLIIGQLFYDGHQQIAVNLARTLGCSAPAPPPSDKLFRLVY 53 Worm [LUATDHPTVRLYNIETAQAYASARPDDQHTESVIDVEY SENARLYVTASKDGHVKIWDGY| 289
Hunan MYRTKVCLKDRQQLYKLITSQLLYDGY ISIANGLINETRPQSV-CAPSEQLLHLIN 55  Human [LVGTOHPTLRLYDINTFOCFVSCNPODOHTDAICSVNYNSSANMYVTGSKDGCIKLADGY| 292
Mouse MYRTKVGLRDROOLYKLIISOLLYDGYISIANGLINETKPOSV-CAPSEQLLHLIN 55  Mouse 'OCF 292

Rat ----MYRTXVGLKDROOLYKLIISCLLYDGY ISTANGLINETKPOSV-CAPSEQLLHLIN 55  Rat [LVGTQHPTLRLYDINTFQCFVSCRPQDORTDAICSVRYNPSARMYVIGSKDGCTIRLADGV| 292
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Tuman LGMENDDTAVAYAIGRSD--~TVAPGTGIDLEFDADVQTMSP VISHRGPCH 112 Human [SKRCITTFEKAHDGAEVCSAIFSXNSKY ILSSCKDSVAKLWEISTGRTLVRYTGAGLSGR| 352
Mouse LGMENDDTAVQYAIGRSD-~~TVAPGTGIDLEFDADVQTMSPEASEYETCYVTSHRGRCR 112  Nouse [SNRCITTFEKAHDGABVCSAIFSKNSXY ILSSGKDSVAKLWEISTGRTLVRYTGAGLSGR| 352
Rat LGMENDDTAVQYAIGRSD===T I IDLEFDADVQTMSPE! VISHRGPCR 112 Rat SNRCITTPERAHDGAEVCSAIFSKNSKY ILSSCKDSVAKLWEISTCRTLVRYTCAGLSER| 352
Fly AGHQTLSDED===KTKSD==~DV~-~LHSIDLEFEPEASALAPEPHSYETAYVTSHRQACH 110 Fly SGRCINTTABAHGGAATCSLEFTRNGKYLLSSCHDSLVYLWELCTSRPIQOTYTGAGTTGK| 345
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Human VATYSRDGOLIANSADAS!HWI!WWV!MYDI 172 Human QVHRTQAVENHTEDYVLLPDERTISLCCWDSRTAERRNLLSLGHNNIVRCIVHSPTHPGP| 412
Mouse VATYSRDGQLIATGSADAS IKILDTERML 1 172 Mouse QVHRTQAVENHTEDYTLLPDERTISLCCHDSRTAERRNLLSLGHNN IVRCIVESPTNRGE| 412
Rat VATYSRDGOLIANSADIS!HWI!WWV!MYH 172 Rat QVHRTQAVFNHTEDYTLLPDERTISLCCWDSRTAERRNLLSLGHNSTVRCIVASPTNPGF| 412
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Rat VDEVTCLAFPHP KY 1232 Rat
Ply TDEVSYLEFHPKEHILA FDI AHKVFTDCEPVLCL TGDYV| 225 Ply
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[1 wD40 Repeats (Yang et al., 2018)
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Mouse Y GFCEYQDQETALSAMRNLNGREFSGRI KSL IESPYGE 117 Mouse AEPREL DQRGPPL DARG 417
Rat YGFCEYQDQETALSAMRNLNGREFSGR? KSL VIESPYGE| 117 Rat AEPRPL DQRGPPL DARG 417
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Human ITISPEDAPEST SL MKQMXL LONPOLAYALLQAQV| 177 Human DARGL 450
Mouse SISPEDA.PBS[SKAVASLPPEQHFBLHKOHXMVONSPQRARRMLI&NPQLAYALWAQV 177 Mouge DARGL 477
Rat [SISPEDAPES ISKAVASLPPEQMFELMKQMXLCVD LONPOQLAYALLQAQV| 177 Rat EARAM PGP 472
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Worm VMRIVDPQTALGLLERNKAATLTPFHNT. P 209 Worm QONHQE 294
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Mouse VMRIVDPEIALKILHRQTNIPTLISGNPQP R )SLGGM 237 Mouse RGPNPSGIQ-GF VPQGSROVP GGFSPGQSQVTPQ 536
Rat VMRIVDPETALKILHRQTNIPTLISGNPQPVAVAGPGSGP QAP SGM 237 Rat RGPIPSGIQ Ve )SQUTEQ 531
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[ Proline-rich segment that facilitates interactions with CstF-64 and CstF-55 (Bai et al., 2007)
[ ] HAT-N Domain (Bai et al., 2007)

["] HAT-C Domain that interacts with CPSF160 (Bai et al., 2007)



I CFIm Complex

Supplemental Fig. S1
CFIM-1 (NUDT21) PP 9

( ; :
E | Nudix Hydrolase Super Family C|

Worm @ s MEDIWPTIERTTISA----SVPEAPANFDEKPPFNRTINVYPLTNYTFGTK 47
Human ~MSVVPPNRSQTGWPRGVTQFGNK————————— YIQQOTKPLTLERTINLYPLTNYTFGTK 50
Mouse ~MSVVPPNRSQTGWPRGVNQFGNK—— = —————— YIQQTKPLTLERTINLYPLTNYTFGTK 50
Rat ~MSVVPPNRSQTGWPRGVNQFGNK ——— —————— YIQOTKPLTLERTINLYPLTNYTEFGTK 50
Fly MASSQVSNKSGSGWPRRGSQGQADAAS SNNNGTQKYTNQALTINRTINLYPLTNYTFGTK 60
* % : ::****:***********
Worm DAQAEKDKSVPERFKRMKDEYEVMGMRRSVEAVLIVHEHSLPHILLLOIGTTFYKLPGGE| 107
Human EPLYEKDSSVAARFORMREEFDKI RTVEGVLIVHEHRLPHVLLLOLGTTFFKLPGGE| 110
Mouse EPLYEKDSSVAARFORMREEFDKIGMRRTVEGVLIVHEHRLPHVLLLOLGTTFFKLPGGE| 110
Rat EPLYEKDSSVAARFORMREEFDKIGMRRTVEGVLIVHEHRLPHVLLLOLGTTFFKLPGGE| 110
Fly EPLFEKDPSVPSRFQRMREEFDRIGMRRSVEGVLLVHEHGLPHVLLLQLGTTFFKLPGGE| 120
s *dkk kK **;**: :*:: :****:**'**:**** ***:****:****:******
Worm LELGEDEISGVTRLLNETLGRTDGETNEWTIEDEIGNWWRPNFDPPRYPYIPAHVTKPKE| 167
Human LNPGEDEVEGLKRLMTEILGRQODGVLODWVIDDCIGNWWRPNFEPPQYPYIPAHITKPKE| 170
Mouse LNPGEDEVEGLKRLMTEILGRQDGVLQDWVIDDCIGNWWRPNFEPPQYPYIPAHITKPKE| 170
Rat LNPGEDEVEGLKRLMTEILGRQODGVLODWVIDDCIGNWWRPNFEPPQYPYIPAHITKPKE| 170
Fly LNAGEDEVEGLKRLLSETLGRODGVKQEWIVEDTIGNWWRPNFEPPQYPYIPPHITKPKE| 180
* 3 ****:.*:.**:.* *khk KKk ::* ::* *********:**:***** *;*****
Worm HTKLLLVQLPSKSTFCVPKNFKLVAAPLFELYDNAAAYGPLISSLP SRENFIFNDSN 227
Human HKKLFLVQLOEKALFAVPKNYKLVAAPLFELYDNAPGYGPIISSLPOQLI/SRENFIYN-—-— 227
Mouse HKKLFLVQLQEKALFAVPKNYKLVAAPLFELYDNAPGYGPIISSLPQLI/SRENFIYN-——— 227
Rat HKKLFLVQLQEKALFAVPKNYKLVAAPLFELYDNAPGYGPIISSLPQLLSRENFIYN-—— 227
Fly HKRLFLVQLHEKALFAVPKNYKLVAAPLFELYDPNSQGYGPIISSLPQALICRENFIYM——— 237
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[ Nudix domain (Yang et al., 2011) [ cFIm68 and CFIm59 tethering site (Zhu et al.,2017)
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Worm MAELD-EAALLGDGNEQHDGP IDENALLDGKELKEEDIDDLYDEATAPTNSTESAKPVS- 58  Worm LGSKGVQPLMOMNTA~~N-RPPINGLPPV -~~~ 356
Fly HADVV-~LDLYAE. DLDKDFAGQAQDE! YDDIGGPT! 51 Fly PAPHVNPAFENQPGGPAQHPGMGGPPEGAPGPOPGMNMPPROGNNMTPOHGPPPQFAQHE 417
Mouse YGGHDQIDLYDDVISPSANNGDAPEDR- 30 Mouse PAPHVNPAFFPPP 'TSDSRGPPPTDRPY-( 365
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Name  Experiment # Eggs/Hatched Lethality (%)
1 163/11 93.7
(ggss’; ; 2 238/5 97.9
3 149/1 99.3
1 68/37 64.8
(ggss';'__z) 2 178/28 86.4
3 021/25 89.8
1 323/5 98.5
(ggss';'__i : 2 699/17 97.6
3 204/3 98.6
1 251/76 76.8
(22911 ) 2 200/64 75.8
3 185/25 88.1
— 1 446/54 89.2
2 138/14 90.8
(CSTF2) 3 61/3 95.3
i1 1 249/23 91.5
2 196/20 90.7
(NUDT21) 3 154/2 98.7
_ 1 137/1 99.3
(gg'g;) 2 282/27 91.3
3 260/32 89.0
— 1 62/4 93.9
. 2 19/4 82.6
(Symplekin) 3 114/5 95.8
1 293/0 100
(EZ'E'LZ) 2 344/0 100
3 116/0 100
1 141/5 96.6
(I’:’,g’;:_;; ) 2 105/0 100
3 172/5 97.2
1 86/23 92.6
(‘gf};’:} 2 289/18 94.1
3 208/17 92.4
1 5/0 100
2 8/0 100
3 18/1 94.7
4 51/1 98.1
o3 5 3/0 100
(n’;ga e 6 22/0 100
control) 7 53/0 100
8 6/0 100
9 13/0 100
10 19/0 100
11 5/0 100
12 410 100

Supplemental Fig. S2

Supplemental Figure S2:
Results of the RNAi
experiments of the C. elegans
CPC. Twelve genes for the
members of the C. elegans CPC
were knocked-down using RNA..
Clones/rows are color-coded as
from Figure 1. The human
orthologs of each gene are shown
in parenthesis in the first column.
For each RNAI experiment we use
15 worms, and the number of
eggs unhatched vs hatched at the
end of the experiment were
counted. The percent lethality was
consistently high across all tested
clones. pkc-3 RNAi was used as a
negative RNAI control, since it is
known to induce strong embryonic
lethality.
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raw data acquisition/mapping

3’-UTR clusters preparation

(@)

3’-UTR isoform mapping

download datasets from the SRA
repository

\—/W/__

extract reads with:

2 23 consecutive As at 3’end
23 consecutive Tsvat 5’end
3 convert reads to fasta format
v
4 convert reads to FASTQ file
(fasta_to_fastq.pl)
[ 7
5 map reads (Bowtie 2)
v
6 sort and index the reads (SAMtools)
7 extract SAM reads that match 100% to
WS250 (positive or negative chr)
7
8 prepare a bedGraph file
2
9 merge reads
(bedtools merge —c1 -0)
clusters must
10 contain at least 5
reads
yes ¥ no
11 use cluster discard cluster
\ :
adenosine content
12 next to clusters <
35%
yes l: J: no
13 use cluster discard cluster
v
14 assign a cluster to the closed gene >2k in
the same orientation
15 count number of 3’-UTR isoforms in each
gene
2
16 count total number of reads in each cluster
for a given gene
17 cluster density
>30%
yes y no
18 use cluster discard cluster
v
19 assign 3’-UTR isoform

Supplemental Fig. S3

Supplemental Figure S3: Bioinformatic
Pipeline used in this study. The pipeline
uses raw transcriptome datasets
downloaded from the public repository SRA
trace archive to extract and map 3-UTR
end clusters to the closest protein-coding
genes in the correct orientation.

The pipeline is divided in three large steps:
A) Acquisition/Mapping, B) 3’-UTR cluster
preparation and C) 3’-UTR isoforms
mapping.

In the acquisition/mapping step, we used
custom made Perl scripts to extract reads
with 23 consecutive As at the 3’-end or 23
consecutive Ts at the 5’-end and then
mapped these filtered reads to the WS250
version of the C. elegans genome (Bowtie
2). We then sorted and indexed the reads
for visualization purposes.

In the 3’-UTR cluster preparation step, we
extracted SAM reads with 100% match to
the WS250 and used them to prepare a
new bedGraph file (BEDTools).

We then merged the reads and discarded
the clusters with less than 5 reads.
Restrictive parameters for cluster
identification and 3’-UTR end mapping
included the discard of clusters with an
adenosine content of <85% downstream of
its end.

Clusters were assigned to a mapped 3’-
UTR end and attached to the closest gene
with 2,000 nt in the same orientation.

At the completion of these steps we
performed the 3’-UTR isoform mapping
step, which consists of the counting and
assignment the total number of 3’-UTR
isoforms to a given gene.

We discarded clusters with a density of
less than 30% of the total number of reads.
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Supplemental Fig. S4

A

n=27,264
mismatch (+/- mm 25 I stringent
1,604 2,167 < 20 Mrv
5 2,637 3,373 g1
g 10
10 2,898 3,842 =
E 5
20 3,702 5,437 » 0 II
+/- match 1 S 10 20
n=27,264
mismatch (+/') Mangone Jan 15 UTRome v1 (Mangone et al., 2010)
etal, et al., ;@ 10 Jan et al., 2011
2010 2011 E
930 285 =
S 5
5 1,717 989 'E
10 2,229 1,664 9
20 3,436 3,106 +/- match 1 5 10 20

C

UTRome vl Tourasseetal. UTRomev2 Tourasse et al. Janetal. Tourasse et al.

30,158 4,028 23,236 - 21,166 2,867 24,397

Supplemental Figure S4: Comparison with Tourasse et al., 2017. We have
downloaded the poly(A) sites mapped in Tourasse et al. and performed a comparison with
the 3-UTRs present in our 3’-UTRome v2. A) Top Panel: number of mapped poly(A) sites
from Tourasse et al. that match our stringent and raw datasets within +/-1 nt, +/- 5 nt, +/-
10 nt or +/- 20 nt. Bottom Panel: number of poly(A) sites in common between Tourasse et
al. and Mangone et al. and between Tourasse et al. and Jan et al. within +/-1nt, +/- 5nt, +/-
10nt or +/- 20nt. B) Bar chart showing the % of similarity of the two datasets in Panel A. C.
Venn diagrams comparing the 3’-UTRs shared (+/- 20nt) between Tourasse et al., and the
UTRome v1 (Mangone et al., - (green), this study (UTRome v2 - red), and Jan et al.
(orange). We have used our unfiltered dataset to compare UTRome v2 with Tourasse et al.
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Supplemental Fig. S5

A B PAS switch in genes with three or
more 3’-UTR isoforms with at least 10 nt

PAS switch in genes with two differences (n=766 genes)
3’-UTR isoforms with at least 10 nt n=226
differences (n=4,750 genes) B [FAURRA] ) (average 163nt) —
n=373 - p

[ [AAUAAA] > — (average 246nt) —

B [ [Aavasa] >

|AAuAAA| >

(211nt)

n=665
BN [veriant] >—— azony
n=296
— ) (I .. o
o | I TNaRER > oo 2 | )
~ ~
(N [aavana] > [ B [AnvARA] >
_n=164

322nt n=113
e I R ——
| BN ;

29%

28%

Supplemental Figure S5: PAS site usage in genes with multiple 3’-UTR isoforms. A) In
genes with only two 3’-UTR isoforms with a difference of at least 10 nt between isoforms, 373
pairs of isoforms had canonical PAS elements in both isoforms with an average of 246 nt
difference between isoforms while 665 pairs had variant PAS elements in both isoforms with
an average of 125 nt difference between them. In isoform pairs where the type of PAS
element switches, 71% have a shorter isoform with a variant PAS element and a longer
isoform with a canonical PAS element with an average of 209 nt between them while the
remaining 29% have a canonical PAS element on the shorter isoform and a variant PAS
element on the longer isoform with an average of 322 nt between them. B) In genes with
three or more 3’-UTR isoforms, genes where the longest and the shortest isoform both have
canonical PAS elements have an average of 163 nt between them while genes where the
longest and the shortest isoforms both have variant PAS elements have an average of 211 nt
between them. 72% of genes switch from a variant PAS elements in the short isoform to a
canonical PAS element in the long isoform, with an average of 181 nt between them. 28% of
genes have canonical PAS elements in the short isoforms and variant PAS elements in the
long 3’-UTR isoform, with an average of 211 nt between the two.
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Genes with 1 3’-UTR isoform and no
canonical PAS element w/ RRYRRR
motif (n=1,637)

gguaaa

Supplemental Fig. S6

Genes with 2+ 3’-UTR isoform and no
canonical PAS element w/ RRYRRR
motif (n=5,006)
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Supplemental Figure S6: Detection of the PAS element in genes lacking a canonical
AAUAAA hexamer. A) We have searched for the most common RRYRRR motifs located within
the last 30 nt in genes with 1 (top) or 2+ (bottom) 3’-UTR isoforms with no canonical PAS and
with a detectable RRYRRR motif. The left chart shows the occurrences of the seven most
common PAS elements identified in these groups, and the right logo shows the identified PAS
motif. Apart from a slight increase in percentage of adenosines and guanosines in 3’-UTRs of
genes with 2+ 3’-UTRs, both results are similar. The overwhelming majority of PAS conform
with the AAU(G/A)AA with a tolerance of 1 nt purine-purine or pyrimidine-pyrimidine
replacement. B) PAS site usage in genes with 1 or 2 3’-UTR isoforms with non canonical PAS
and no RRYRRR motif. The pie chart shows the 10 most common hexamers located within 30
nt upstream of the the cleavage site. Right logo plot shows the nucleotide conservation of the
intergenic region encompassing the cleavage site from -30 to +20 nt. Arrow marks the cleavage
site. The buffer region and the PAS is marked. 18



1 3-UTR isoform (n=8,537)

2 3’-UTR isoform (n=4,741)

Supplemental Fig. S7
3+ 3’-UTR isoform (n=1,530)
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Supplemental Figure S7: GO term analysis for genes with 1, 2 or 3 3’-UTR isoforms.
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Supplemental Fig. S8
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Supplemental Figure S8: Detection of the ‘UGUA’
element in C. elegans 3’-UTRs. A) Logo plot of the
transcript’s region within the cleavage site in genes with
only one 3’-UTR isoform and with a canonical or variant
PAS element. B) Identification of the ‘UGUA” motif (red)
within 100 nt upstream of the cleavage site in genes
with one or two 3’-UTR isoforms. C) Binned frequency
distribution of the occurrences of the AAUAAA and
UGUA elements in distal 3-UTR isoforms as in the right
heatmap in Panel B (green and red) vs. the
occurrences of the UGUA motif in a randomly

generated 3’-UTR dataset (blue) (n=785). 20



Supplemental Fig. S9

Motif Logo RC Logo E-value Unerased E-value
2
(2]
1. AATAWATA 51 AAUAAAUA 21 4.6e-027 4.6e-027
0545 7 78
2
2. AATAMA £1 AAUAA 21 UUUAUU 1.2e-010 8.86-015
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2 2
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2° 2
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Supplemental Figure S9: Detection of enriched elements in C. elegans
3’-UTRs of genes with 2 3’-UTR isoforms (only distal) (n=785). These
motifs have been detected using the meme suite (Bailey et al., 2015.)
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Supplemental Fig. S10
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Supplemental Figure S10: Nucleotide binding site of the human CPSF160-
WDR33-CPSF30 complex. Ribbon representation of the cryo-EM structure of
human CPSF160-WDR33-CPSF30 complex (PDB code: 6DNF) (Sun et al., 2018).
The nucleotides of the bound RNA fragment do not show a specific interaction with
either CPSF30 or WDR33. The interactions are mostly established by -t ring
stacking. Color gray shows the CPSF160, pink for WDR33, and light green for
CPSF30. Sticks represent the RNA molecules bound with CPSF30 and WDR33.
Surfaces in the inlets are for individual nucleotides.
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Supplemental Fig. S11

A MO03A1.3 wt 3’-UTR
TGAAAGGACCTGCAGTGTTTTGGGCGATTGGAGTATTCTTCTGCATTGCT

Supplemental Figure S11: In

GTTGCGTTGTCACTTCTTGTCGTCAATGGATATAAAAATGTATAATTATT vivo cleavage assay for
AATGGAATTTTGGAATCTCATCTAATTTATTGATTTTATTGAATACGGGT MO3A1.3
AGTTTCTGATAATTACTTTGCATTGTAAAAAAACAAACTTTGTATGAATA - ) )
AACATATTGAACATCTEEGTGCTTGCGTTTTTTTARACTCAACTTTGGTT A) M0O3A1.3 genomic region

GCGCATATCTTGGCTCTCTTTAGTTTTTATTAAAAAATGTCAACTACAGA cloned downstream of the GFP

reporter. Blue: terminal portion
of the MO3A1.3 ORF. Green:
STOP codon. Gray: 3’-UTR.
Red: mutated terminal
adenosine nucleotides. The
transgenic worms expressing
the Pmyo-3::GFP::M03A1.3_3’-
UTR wt and mutant cassette are
shown below.
B) At the completion of the
experiment, we recovered the
total RNA and performed RT-
PCR experiments using a
AATAAACATA ACATGCTIAAAAAAAAAAAAAAAAAAA ] forward primer annealing within
w ! the GFP ORF and a reverse
polydT primer with two anchors

/ \ 1/\ }f'\\x /‘/ Y\ v /\d\(\ MMM containing Invitrogen Gateway

e s arar—= adapters. The resultant

mut i amplicons were then subcloned
! in gateway vectors and
A f \ \/\/\ [ /\/\/\ [\ [\ ANV WYWANAVVVV VA sequenced to detect the
L FPLB L - - cleavage site. An example of
C resultant trace files is shown.
q C) Examples of 10 clones
M03A1.3 wt 3’'UTR identified in this study for
ISTORN] AATAAACATATTGAACATCTAAGTGCTTGCGTITTTTTTAAA DNV LY VR I A
~ #1 TATTGAACATCThaaaaaaaaaaaaaaaaaaaaa terminal genomic adenosine
#2 xg giggGGxCC:gziaaaaaaaaaaaaaaaaaaaaa nucleotide induces a cleavage
aaaaaaaaaaaaaaaaaaaaa :
zz AAT TATTGAACATCCaaaaaaaaaaaaaaaaaaaaaa site 3 ht upstream of .the.
e | a5 AAT TATTGAACATCGraaaaaaaaaaaaaaaaaaaaa canonical cleavage ,Slte in three
S7 4  |RAT TATTGAACAGCahaaaaaaaaaaaaaaaaaaaaa clones (arrows_), which also
#7 AAT TATTGAACAGaahaaaaaaaaaaaaaaaaaaaaa contain a terminal adenosine
#8 AAT TATTGAACATCCaaaaaaaaaaaaaaaaaaaaaa nucleotide. The PAS element is
#9 AAT. TATTGAACATCCaaaaaaaaaaaaaaaaaaaaaa boxed in blue color.
L #10 TATTGAACAchaaaaaaaaaaaaaaaaaaaaaa
MO03A1.3 mut 3’UTR q"

['STOP"] AATAAACATATTGAACATCT GTGCTTGCGTTTTTTTAAA [

~#1 > TATTGAAChaaaaaaaaaaaaaaaaaaaaaaaaa
#2 AAT TATTGAACAACaaaaaaaaaaaaaaaaaaaaaaa
#3 AATAA TATTGAACATCaaaaaaaaaaaaaaaaaaaaaaa

#4 —> |AAT.
#5 AAT.
#6 AAT
#7 — |AAT
L #8

TATTGAACaaaaaaaaaaaaaaaaaaaaaaaaaa
TATTGAAC?\TCATaaaaaaaaaaaaaaaaaaaaa
TATTGAACACaaaaaaaaaaaaaaaaaaaaaaaa
TATTGAAChaaaaaaaaaaaaaaaaaaaaaaaaa
TATTGAAC#\TCTCTaaaaaaaaaaaaaaaaaaaa 23

clone
|




C

Y106G6H.9 wt 3’'UTR
STOP'l AATAAAGAGAAAGTTTAATATTTTCTAGTCTGGA [

double mut 3’'UTR
'STOP Ml AATARAGAGAAAGTTTAAT TTTTCT GTCTGGA [

Y106G6H.9 wt 3'-UTR

AGAGCCACGTGCACCTTCTATAAACATCCAAAARAAACTAAATATATATTT
TTTTGAAATGCAAACAACACTCCGCAGTTTTGTTTGGAAAACGAATTGGT
CTACTTCTTCATAAAACATATGCGGTTCAATTGATACTTTTATTTCCATT
GGAATTAAATTTAATGAATTGCTTCTTTAAATATTAT?TCTATGCATCTG
TTCTTCCTTTTGATTCTTCCATGAATATCTTTTTTTTATTGATCCTACAG
GATCGTACAGGATCTTGTCACACTAAAGATATCTACATATTTAATAATGT
TCACCTTTGTTTTCTATTCTTCATGCCAATAAAGAGAAAGTTTAAT.TTT
TCT.GTCTGGAATTTTTATTTTTAAAAAGCTGTCAACTGACAAATTATTG
TCCACGACTTCGTCTGTTATTTTTAGTGAACTAAATGTTAGATCGACAGT

Y106G6H.9 muti

Y106G6H.9 mut2

ATT TTTTCTCAAAAAAAAAAAAAA

CTTTTTITTGGA

mut1/mut2

sy

#1 GAAAGTTGaazhaaaaaaaaaaaaaaaa
o | H2 GAAAGTTCaasdbaaaaaaaaaaaaaaaa
§ #3 GAAAGTTTAAThaaaaaaaaaaaaaaaa
© | #4 GAAAGTTTAG(Rhaaaaaaaaaaaaaaaa
#5 GAAAGTTTAAChaaaaaaaaaaaaaaaa

#1 AATAAAGAGAAAGTTTAACaaaaaadaaaaaaaaa
#2 AATAAAGAGAAAGTTTAAMMIaaaaaadaaaaaaaaa
g #3 AATAAAGAGAAAGTTTAATaaaaaagdaaaaaaaaa
% #4 AATAAAGAGAAAGTTTAA(Taaaaaagaaaaaaaaa
#5 — |AATAAAGAGAAAGTTTAATITGCaaagaaaaaaaaa
#te — AATAAAGAGAAAGTTTAA'I“I'TTTTCTClaaaaaaaaa

mut 3’UTRs

[STOP |l CATGAATATCTTTTTTTIATTGA |

8{ #1 * [CATGAATATCTTTTTTGdaaaaaaaaa
2] #2 * |CATGAATATCTTTTTTAG2aaaaaaaa

Supplemental Fig. S12

Supplemental Figure S12: In
vivo cleavage assay for
Y106G6H.9.

A) Y106G6H.9 genomic region
cloned downstream of the GFP
reporter. Blue: terminal portion of
the Y106G6H.9 ORF. Green:
STOP codon. Gray: 3-UTR. Red:
mutated terminal adenosine
nucleotides. Red Asterisk: position
of the cryptic cleavage site (see
below). The transgenic worms
expressing the Pmyo-3::GFP::
Y106G6H.9_3-UTR wt and
mutant cassette are shown below.
B) At the completion of the
experiment we recovered the total
RNA and performed RT-PCR
experiments using a forward
primer annealing within the GFP
ORF and a reverse polydT primer
with two anchors containing
Invitrogen Gateway adapters. The
resultant amplicons were then
subcloned in gateway vectors and
sequenced to detect the cleavage
site. An example of resultant trace
files is shown.

C) Examples of several clones
identified in this study for
Y106G6H.9. In the wt we were
able to detect two classes of
cleavage sites, both ending within
4 nt of each other with a terminal
adenosine nucleotide. In the
double mutant, the removal of the
terminal genomic adenosine
induces a cleavage skip in two
clones (arrows). In one case (red
arrow), the cleavage occurs 20 nt
downstream of the PAS element.
Two of the mutant clones also
shown an occurrence of a new
cryptic cleavage site 100 nt
upstream of the natural site (red
asterisks), which also contain a
terminal adenosine nucleotide at
their 3’end. The PAS element is
boxed in blue color.
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Supplemental Fig. S13

A ges-1 wt 3’-UTR

TCCAACTAATAGTGCCATGCATTCGTCAAACAAGGACGAGCTGTAAAAAT Supplemental Figure S13: In
GCAATAAATTTATGTATTTAATTGATTTCGAATAAATATACTTTTGCT.C vivo c|eavage assay for ges-1_
BEETCTTCGGCARATGCTCATGCTCGATTTCTCCCCGCCAATTGAGCACC A) ges-1 genomic region cloned
TGTCATTTATCTTGTCATTTTTCCTGTACAARACACTTCTTGCCCCGACCA

downstream of the GFP reporter.

Blue: terminal portion of the ges-1
ORF. Green: STOP codon. Gray:
3’UTR. Red: mutated terminal
adenosine nucleotides. The
transgenic worms expressing the
Pmyo-3::GFP::ges-1_3-UTR wt
and mutant cassette are shown
below.

B) At the completion of the
experiment we recovered the total
RNA and performed RT-PCR
experiments using a forward
primer annealing within the GFP
ORF and a reverse polydT primer
with two anchors containing
Invitrogen Gateway adapters. The
resultant amplicons were then
subcloned in gateway vectors and
sequenced to detect the cleavage
site. An example of resultant trace
files is shown.

ges-1 mut

C " T C) Examples of 10 clones
identified in this study for ges-1.
ges-1 wt 3’UTR 4"’ The removal of the terminal
genomic adenosine nucleotide
[ #1 |[AATAAATATACTTTTGCIGGaaaaaaaaaaaaaaaaaaaaaa does not alter the cleavage site but
#2 AACAAATATACTTTTGC#ACaaaaaaaaaaaaaaaaaaaaaa makes it more variable. The PAS
#3 |AATAAATATACTTTTGCTAGaaaaaaaaaaaaaaaaaaaaaa element is boxed in blue color.

#4 |AATAAATATACCTTTACdaaaaaaaaaaaaaaaaaaaaaaaa
#5 AATAAATATACTTTTGCdACaaaaaaaaaaaaaaaaaaaaaa
##t6 |AATAAATATACTTTTGCTNaaaaaaaaaaaaaaaaaaaaaaaa
#7 |AATAAATATACTTTTGCTACGaaaaaaaaaaaaaaaaaaaaa
#8 AATAAATATACTTTTGCﬂGaaaaaaaaaaaaaaaaaaaaaaa
#9 |AATAAATATACTTTTGGdaaaaaaaaaaaaaaaaaaaaaaaa
_ #10 AATAAATATACTTTTGC#ACaaaaaaaaaaaaaaaaaaaaaa

clone
1

ges-1 mut 3'UTR ’1"’

~ #1 |AATAAATATACTTTTGCOQaaaaaaaaaaaaaaaaaaaaaaaa
#2 AATAAATATACTTTTGCqACaaaaaaaaaaaaaaaaaaaaaa
#3 |AATAAATATACTTTTGCTTCaaaaaaaaaaaaaaaaaaaaaa
#4 |AATAAATATACCTTTGCTTCCCGaaaaaaaaaaaaaaaaaaa
#5 AATAAATATACTTTTGC#ACaaaaaaaaaaaaaaaaaaaaaa
#6 |AATAAATATACTTTTGCTTCACaaaaaaaaaaaaaaaaaaaa
#7 |AATAAATATACTTTTGCTTCGaaaaaaaaaaaaaaaaaaaaa
#8 AATAAATATACTTTTGCﬂGCaaaaaaaaaaaaaaaaaaaaaa
#9 |AATAAATATACTTTTGCTICCaaaaaaaaaaaaaaaaaaaaaa

_ #10 AATAAATATACTTTTGC#TTGaaaaaaaaaaaaaaaaaaaaa 25

clone
|




Supplemental Fig. S14

A GO Term: Biological Process

adj.Pval | nGenes Pathways
7.26-05 7 oxidation-reduction
process
deoxyribonucleoside
5.9e-04 2 diphosphate metabolic
process

single-organism metabolic
process

1.7e-03 8

GO Term: Molecular Component

adj.Pval | nGenes Pathways
1.2e-03 5 oxidoreductase activity

Functional Enrichment: Kegg

adj.Pval | nGenes Pathways
1.7e-03 1 Pen_tose and gluc.:uronate
interconversions
1.7e-03 1 Fructose and mannose
metabolism
B miRNA Sequence Hits
miR-272 uguaggcauggguguuug 7
miR-2217a cagagugggcagucggugucgauc 6
miR-2217b cagagcgggcagucggugucaauc 6
miR-5553 ucaauggguagcacguggcaaga 6
miR-265 ugagggaggaagggugguau 5
miR-34 aggcagugugguuagcugguug 5
miR-44 ugacuagagacacauucagcu 5
miR-4935 gccggcgagagagguggagagcg 5
miR-795 ugagguagauugaucagcgagcuu 5
miR-8190 cgggaaaucgcuuuggaauccagga 5
miR-8194 augcgccuuuaaaaagguacgg 5
miR-1822 aguuucucugggaaagcuaucggc 4
miR-71 ugaaagacauggguagugagacg 4

Supplemental Figure S14: miRNA target
analysis in genes with 2 3’-UTR isoforms
which either gain or lose a miRNA binding
site. A) GO Term analysis of genes with multiple
3’-UTRs which gain or lose a miRNA target as
predicted using our miRanda ‘stringent’ dataset
(n=132). B) Most common miRNAs, their

sequences, and number of occurrences. o6



Additional Materials and Methods

Comparative analysis of C. elegans members of the CPC

We have downloaded the protein sequences of each known member of the human CPC
and used BLAT algorithm to identify C. elegans genes with high homology to their
human counterparts. We then performed a protein BLAST analysis using the tools
available at the NCBI website to obtain the amino acid sequences for the fly, rat, and
mouse orthologs. These amino acid sequences were then aligned using Clustal Omega
Multiple Sequence Alignment with standard parameters. At the completion of the
analysis, we used the Batch NCBI Conserved Domain Search (Batch CD-Search)
against the database CDD- 52910 PSSMs using standard parameters to identify the
conserved domains across the aligned protein sequences. We then used these results
to populate the location of these elements within the alignment shown in Supplemental
Figure S1. We were unable to identify the C. elegans homolog of the human gene

CPSF7.

Plasmid DNA isolation, sequencing and visualization

All plasmids used in this study were prepared from cultures grown overnight in LB using
the Wizard Plus SV Minipreps DNA Purification System (Promega) according to the
manufacturer’s instructions. DNA samples were sequenced with Sanger sequencing
performed at the DNASU Sequencing Core Facility (The Biodesign Institute, ASU,

Tempe, AZ).
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RNAi experiments

RNAI experiments were performed in standard NGM agar containing 1mM IPTG and 50
ug/ml ampicillin. These plates were seeded with 75 ul of RNAI clone bacteria and
allowed to induce for a minimum of 16 hours. 5 N2 C. elegans at the L1 stage were
aliquoted for each RNAI clone tested. Three days after plating, the progeny was scored
for embryonic lethality. Each RNAIi experiment was performed in triplicate. The total
number of hatched and not hatched eggs was the following: cpsf-1(CPSF160) n=567;
cpsf-2(CPSF100) n=557; cpsf-4(CPSF30) n=1,251; cpf-2(CstF64) n= 716; cpf-
1(CstF50) n=801, cfim-1(CFIm25) n=644; cfim-2(CFIm68) n=739; symk-1(symplekin)

n=208; tag-214(RBBP6) n=753; pcf-11(CPF11) n=428; clpf-1(CLP1) n=841.

Mutagenesis of 3’-UTRs cleavage sites

The mutagenesis reactions to remove the adenosine nucleotides near the cleavage
sites were carried out using the QuikChange Site-Directed Mutagenesis Kit (Agilent).
The mutagenesis DNA primers for the site mutation reactions are available in
Supplemental Table S2. Each mutagenesis reaction was followed by DNA digestion
using Dpn-1 enzyme and transformed in Top10 competent cells (Thermo Fisher
Scientific) in agar plates containing 20mg/uL of kanamycin. We validated the nucleotide
mutation using Sanger sequencing approach. Wild type and mutant 3’-UTRs cloned in
pDONR P2RP3 were then shuttled into destination vectors using the Gateway LR
Clonase Il Plus Enzyme Mix (Invitrogen, Carlsbad, CA). The finalized destination

vectors contained the C. elegans pharynx promoter (Pmyo-2) in the first position, a GFP
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sequence with a mutated STOP codon in the second position, and the wt or mutant 3’-
UTRs used in this study in the third position. The resultant recombined constructs were
then transformed in Top10 competent cells (Thermo Fisher Scientific) and plated on
10mg/uL ampicillin plates overnight. The success of the recombination reaction was

confirmed using Sanger sequencing with the M13F DNA primer.

Preparation of transgenic worm lines

EG6699 strain worms were kindly provided by Christian Frokjaer-densen (Frokjaer-
Jensen et al. 2008). These worm strains were maintained at 18°C on nematode growth
media (NGM) agar plates and propagated on plates seeded with OP50-1 bacteria. To
synchronize worms for injections, EG6699 worms were bleached with bleaching
solution (1 M NaOH) four days before injections. Each construct was mixed with an
injection master mix containing pCFJ601 (25 ng/ul), pgH8 (10 ng/ul), and pCFJ104 (5
ng/ul) vectors. Injection needles were loaded with the injection mixture and mounted to
the Leica DMI300B microscope. The needle was pressurized with 22 psi through the
FemtodJet (Eppendorf). Young adult EG6699 worms were picked onto an agarose pad
covered with mineral oil on a glass coverslip. Injected worms were rescued onto an
NGM plate and rinsed with M9 buffer. Two days post-injections, the F1 progeny were
screened with a Leica DMI3000B microscope for both unc-119 rescues and expression
of the red fluorescence produced by the co-injection marker and then isolated onto
individual plates. These worms were allowed to lay eggs, and then the F2 progeny was
screened for fluorescence. Once 75% of the progeny on a single plate were transgenic,

the strains were used for further experimentation.
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Worm genotype validation

Populations obtained from single worms from each of the seven strains were lysed
using worm lysis buffer (EDTA, 0.1 M Tris, 10% Triton-X, Proteinase K, 20% Tween 20).
These worms were subjected to heating in a Bio-Rad T100 Thermal Cycler. To confirm
that the mutated cleavage site was present in the injected strains, we used PCR
approach using Platinum Taq polymerase (Invitrogen) with a forward DNA primer
binding the beginning of the GFP sequence and 3’-UTR-specific reverse DNA primers.
The PCR product was then sequenced using Sanger sequencing with a forward DNA

primer binding to the GFP sequence present in the injected construct.

Detection of the 3’-UTR cleavage skipping

Total RNA was extracted from transgenic strains using the Direct-zol RNA MiniPrep
Plus kit (RPI) according to the manufacturer’s instructions. We tested approximately 10
independent wt and mutant clones for each 3’-UTR. Approximately 50 uL of worm pellet
was used for extraction. cDNA was synthesized using a reverse transcription reaction
using Superscript || enzyme (Invitrogen). The first strand reaction was performed using
a reverse poly dT DNA primer containing two anchors and the attB Gateway BP
recombination element (Invitrogen). The second strand of the cDNA was synthesized
using a PCR with HiFi tag polymerase (Thermo Fisher Scientific) and the forward DNA
primer containing the pDONR P2RP3 Gateway element (Invitrogen), which binds to
GFP and the same reverse poly dT DNA primer used in the first strand reaction. The BP

Gateway kit (Invitrogen) was once again used to clone the cDNA which contains the
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polyA tail into pPDONR P2RP3. These constructs were then transfected into Top10
competent cells (Thermo Fisher Scientific) and plated on agar plates containing
20mg/uL of Kanamycin. About 8-10 colonies were then sequenced with Sanger

sequencing using the M13F DNA primer to map the location of the cleavage site.

Updated miRanda Predictions

We downloaded a complete list of C. elegans miRNAs from miRBase (Griffiths-Jones et
al. 2006) and the miRanda algorithm v3.3a (John et al. 2004) from the microrna.org
website. We queried the 3’-UTRome v2 with the miRanda algorithm using both standard
and stringent parameters. The stringent query used was ‘-strict -sc -1.2’. The standard
query produced 58,330 putative miRNA targets; the stringent query produced 12,136
putative miRNA targets. Both these predictions are included in WormBase (Lee et al.

2018) as individual tracks.

Homology model building

Homology modeling was performed using SWISS_MODEL (Waterhouse et al.
2018) with a matched templated of human CPSF160-WDR33-CPSF30 complex
(PDB code: 6DNF) (Sun et al. 2018). The molecular graphics were prepared

using the UCSF ChimeraX software (version 0.8) (Goddard et al. 2018).
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