g gegin e oo e i e e e e G g e e e e g e e g
##SCRIPT 1

This script opens the fast raw data datasets located in a known directory and extracts the DNA
sequence downstream 23As or upstream 23Ts. This script then aligns the reads using bowtie and
further prepare the data using Samtools suite. Please cite the manuscript attached to this code if
you use it entirely or part of it. Code written by Marco Mangone

g gegin e ge g e e i e e e e G g e e e g e e g g

#!/usr/bin/perl

use File::stat;
use URI::Escape;
use Bio::Seql0;
use strict;

my $file = "outfile";
open OUTFILE, ">$file.fasta" or die $!;
my $directory = '/home/mangone/fastq';
opendir(DIR, $directory) or die $!;
while (my $file = readdir(DIR)) {
if ($file =~ m/cumulative plus/) {
print "processing -> $file\n";
open DATABASE, $file or die "cannot find the file";
my $i = 1;
my $dataset;
my $trueStart;
my @seq;
my $length;
while (my $line = <DATABASE>) {
chop $line;
if (($1line =~ m/\@/) and ($line =~ m/length/)) {
$line =~ m/\@(.+?) /;
$dataset = $1;
#print ">$dataset|$i\n";
#$1++;

}
if ($1line =~ m/"[ATCG]+$/) {
my @seq = split(/AAAAAAAAAAAAAAAAAAAAAAA/, $line);
#my @seq = split(/TTTTTTTTITTTTITITTITITTITITITITIT/, $line);
my $length = length($seq[0]);
if ($length > 20) {
print OUTFILE ">$dataset|$i\n";
print OUTFILE "$seq[O@]\n";

$i++;
}
else {
}

}
close OUTFILE;

print "convert fasta file in a fake fastqg file\n";

system("perl fasta_to fastqg.pl outfile.fasta > outfile.fastq");
print "running bowtie2 for $file\n";

system(

"bowtie2 -x /home/mangone/Genomes/elegans/WS250/WS250 -p 16 outfile.fastq
-S outfile.sam"

)
system("sleep(5)");

print "running samtools for $file\n";

system(

"samtools view -bt /home/mangone/Genomes/elegans/WS250/WS250.fa. fai
outfile2.sam > outfile.bam"

)

system("sleep(5)");

print "sorting $file\n";

system("samtools sort -@ 16 outfile.bam outfile.bam.sorted");
system("sleep(5)");

system("samtools index outfile.bam.sorted.bam");

print "$file completed!\n";

g gegin e ge g e e i e e g e e G g e e e e g e e g e
##SCRIPT 2

This script opens the samtools .sam files, extracts from the CIGAR the reads that map 100% to
the reference genome WS250, prepares the bedgraph file, and the clusters used to map 3’UTRs.
Please cite the manuscript attached to this code if you use it entirely or part of it. Code written by
Marco Mangone

e gegie e oo e i e e e e e G g e e e g e e g

#!/usr/bin/perl

use File::stat;

use URI::Escape;

use Bio::SeqlO;

use Bio::DB::SeqFeature::Store;
use DBI;

use strict;

use Bio::Perl;

my $db2 = Bio::DB::SeqFeature::Store->new(
-adaptor => 'DBI::mysql’,
-dsn => 'dbi:mysql:WS250"',
-user = '',

-password => s

)
my $mySQL = getMySQLHandle();

##name of the aligned bam file
my $name = "outfile";

open ENDS, ">end.fa" or die "cannot find the file";

B B B R A B L R i L A Rt A iR I R St s R g st T g
#HHHHHA#HHREVERSE STRANDH#H#H##HHHHHHHHHH AR BRI HH AR BRI HH AR R H AR R AR R R R
B R B R R B L i L A R T iR I R St R i s I st T d s

##extract reverse strands

print "extracting sam reads for NEGATIVE strand from $name\n";

system(

"samtools view -f 16 $name.bam.sorted.bam | grep XM:i:0 > $name.negative.sam
)

print "done!\n";

##map PAS end in the positive strand

HHH
print "map PAS end in the negative strand from $name.negative.sam\n";

open NEGATIVE_SAM, "$name.negative.sam" or die "cannot find the file";

open NEGATIVE_BED, ">$name.negative.bedgraph" or die "cannot find the file";
while (my $line = <NEGATIVE_SAM>) {

#print "<<$line>>\n";

chop $line;

my @string = split("\t", $line);
my $chr = $string[2];

my $map_start = $string[3];

my $seq = $string[9];

my $cigar = $string[5];

$cigar =~ s/M//;
my $seq_length = length($seq);

#print "<<$seq_length $cigar>>\n";
#exit;
if ($cigar ne $seq_length) {

#print "error!!!\n";

}
else {

#make final cluster of 5nt long

my $start = $map_start;

my $end = $start + 1;

print NEGATIVE_BED "$chr\t$start\t$end\n";
}

}

close NEGATIVE_SAM;

print "sorting the file\n";

system("bedtools sort -i $name.negative.bedgraph > tmp.bed");

print "done!!!\n";

print "merging the file\n";

system("bedtools merge -c 1 -o count -i tmp.bed > $name.negative.cluster");
print "done!!!\n";

#check numbers of As in the genome
print "check numbers of As in the genome\n";
open DATABASE, "$name.negative.cluster" or die "cannot find the file";
open CLUSTER_MINUS, ">$%$name.negative.cluster.final"
or die "cannot find the file";
while (my $line = <DATABASE>) {

chop $line;

my @string = split(/\t/, $line);
my $chr = $string[0];

my $start = $string[l1];

my $stop = $string[2];

my $cluster_coverage = $string[3];

##use only cluster with at least 5 reads
if ($cluster_coverage >= 5)
my $seq = $db2->seq($chr, $start - 19 => $start);

#print "chr$chr:$start-$stop $seq\n";
my $totalAs = $seq =~ tr/t//;

#print "total Ts = $totalAs\n";
#remove if more than 13 As
if ($totalAs >= 13) {

else {
my $left = $start - 10;

#map closest downstream gene within 2k in the positive orientation
my $sentence =
"SELECT WBGene, name, CDS_stop, description FROM tissues_stop WS250 where chr='$chr' and

strand='-"' and $start between $left and CDS_stop ORDER BY “tissues_stop_WS250° . CDS_stop ™ ASC";

my $query = $mySQL->prepare($sentence)
or die "Couldn't syn prepare statement: " . DBI->errstr;
$query->execute();
my ($wb, $name, $cds_stop, $description) =
$query->fetchrow_array();

#print CLUSTER_MINUS"chr$chr:$start-$stop $cluster_coverage $seq $name\n";
my $length = $cds_stop - $start;

my $UTR_seq $db2->seq($chr, $start => $cds_stop + 3);
my $UTR_end $db2->seq($chr, $start - 2 => $start + 30);
my $rev = reverse_complement_as_string($UTR _seq);

my $UTR end_rev = reverse_complement_as_string($UTR end);
if ($length > 2000) {

else {

print CLUSTER_MINUS
"chr$chr:$start-$stop length=$length cluster_coverage=$cluster_coverage downstream seg=$seq
UTR_seq=$rev $name\n";

if ($cluster_coverage > 200) {

#print ENDS "$UTR_end_rev\n";
print ENDS ">$%$name_$cluster_coverage\n$UTR_end_rev\n";

else {

}

}
}
print "completed negative strand\n";

B R B R R B L Rt L A R T iR I S R St R i s I T st d s
########H#FORWARD S TRAND#H#H#H#HHHHHHHHIH AR BRI HH AR B R HH AR R H AR BB R AR R
B R B R R B L i L A R T iR I R St R i s I st T d s

extract forward strands

print "extracting sam reads for POSITIVE strand from $name\n";

system(

"samtools view -F 20 $%$name.bam.sorted.bam | grep XM:i:0 > $name.positive.sam
)

print "done!\n";

##map PAS end in the positive strand

HHH
print "map PAS end in the positive strand from $name.positive.sam\n";

open POSITIVE_SAM, "$name.positive.sam" or die "cannot find the file";

open POSITIVE_BED, ">$name.positive.bedgraph" or die "cannot find the file";
while (my $line = <POSITIVE_SAM>) {

#print "<<$line>>\n";

chop $line;

my @string = split("\t", $line);
my $chr = $string[2];

my $map_start = $string[3];

my $seq = $string[9];

my $cigar = $string[5];

$cigar =~ s/M//;
my $seq_length = length($seq);

if ($cigar ne $seq_length) {

#print "error!!!\n";

}
else {
#make final cluster of 5nt long
my $end = $map_start + $seq length - 1;
my $start = $end - 1;
print POSITIVE_BED "$chr\t$start\t$end\n";
}

}

close POSITIVE_SAM;

print "sorting the file\n";

system("bedtools sort -i $name.positive.bedgraph > tmp.bed");

print "done!!!\n";

print "merging the file\n";

system("bedtools merge -c 1 -o count -i tmp.bed > $name.positive.cluster");
print "done!!!\n";

#check numbers of As in the genome
print "check numbers of As in the genome\n";
open DATABASE, "$name.positive.cluster" or die "cannot find the file";
open CLUSTER_PLUS, ">$name.positive.cluster.final"
or die "cannot find the file";
while (my $line = <DATABASE>) {
chop $line;

my @string = split(/\t/, $line);
my $chr = $string[0];
my $start = $string[l1];
my $stop = $string[2];
my $cluster_coverage = $string[3];

##use only cluster with at least 5 reads
if ($cluster_coverage >= 5)
my $seq = $db2->seq($chr, $stop => $stop + 19);

#print "chr$chr:$start-$stop $seq\n";
my $totalAs = $seq =~ tr/a//;

#print "total As = $totalAs\n";
#remove if more than 13 As
if ($totalAs >= 13) {

else {
my $right = $stop + 10;

#map closest downstream gene within 2k in the positive orientation

my $sentence =
"SELECT WBGene, name, CDS_stop, description FROM tissues_stop WS250 where chr='$chr' and
strand='+' and $stop between CDS_stop and $right ORDER BY ‘tissues_stop_WS250° . CDS_stop’ DESC";

#print "$sentence\n";
my $query = $mySQL->prepare($sentence)
or die "Couldn't syn prepare statement: " . DBI->errstr;
$query->execute();
my ($wb, $name, $cds_stop, $description) =
$query->fetchrow_array();
my $length = $start - $cds_stop;

my $UTR_seq $db2->seq($chr, $cds_stop - 3 => $stop);
my $UTR_end $db2->seq($chr, $stop - 30 => $stop + 2);
if ($length > 2000) {

else {

print CLUSTER_PLUS
"chr$chr:$start-$stop length=%$length cluster_coverage=$cluster _coverage downstream seqg=$seq
UTR_seq=$UTR _seq $name\n";
if ($cluster_coverage > 200) {
print ENDS
">$name_$cluster_coverage_reads_$length(nt)\n$UTR _end\n";

#print ENDS "$UTR_end\n";

else {

}

}

sub getMySQLHandle {
my $db
my $host
my $port
my $userid
my $passw "
my $connectionInfo "DBI:mysql:database=%db;$host:$port";
my $dbh = DBI->connect($connectionInfo, $userid, $passw) or die "Couldn't
#connect to database ($db): " . DBI->errstr;
return $dbh;
}

)
)
nwno.
)
nwno.

)

