

1
2

3
4

5

6

7

8

9

10

11

12

13

SUPPLEMENTAL INFORMATION FOR

14

SYNCHRONIZED REPLICATION OF GENES ENCODING THE SAME PROTEIN COMPLEX IN
15
FAST-PROLIFERATING CELLS

16

17

18

Y. Chen, K. Li, X. Chu, L. B. Carey, and W. Qian

19

20

21

22

23

24

25

26

27

28

29

Supplemental information includes Supplemental Tables S1-3 and Supplemental
Figures S1-7.

30

1 **SUPPLEMENTAL TABLES**

2 **Table S1. Cell-cycle phase-specific genes used in this study**

Gene	Phase
ENSG00000119640	G ₁ /S
ENSG00000169188	G ₁ /S
ENSG00000156802	G ₁ /S
ENSG00000105173	G ₁ /S
ENSG00000094804	G ₁ /S
ENSG00000164649	G ₁ /S
ENSG00000167670	G ₁ /S
ENSG00000092853	G ₁ /S
ENSG00000159147	G ₁ /S
ENSG00000143476	G ₁ /S
ENSG00000101412	G ₁ /S
ENSG00000131153	G ₁ /S
ENSG00000112312	G ₁ /S
ENSG00000119969	G ₁ /S
ENSG00000116679	G ₁ /S
ENSG00000073111	G ₁ /S
ENSG00000104738	G ₁ /S
ENSG00000100297	G ₁ /S
ENSG00000132780	G ₁ /S
ENSG00000132646	G ₁ /S
ENSG00000145604	G ₁ /S
ENSG00000163950	G ₁ /S
ENSG00000163781	G ₁ /S
ENSG00000276043	G ₁ /S
ENSG00000092470	G ₁ /S
ENSG00000165724	G ₁ /S
ENSG00000105011	S
ENSG00000156802	S
ENSG00000012048	S
ENSG00000175455	S
ENSG00000146670	S
ENSG00000100162	S
ENSG00000228716	S
ENSG00000106462	S
ENSG00000187741	S
ENSG00000168496	S
ENSG00000119969	S

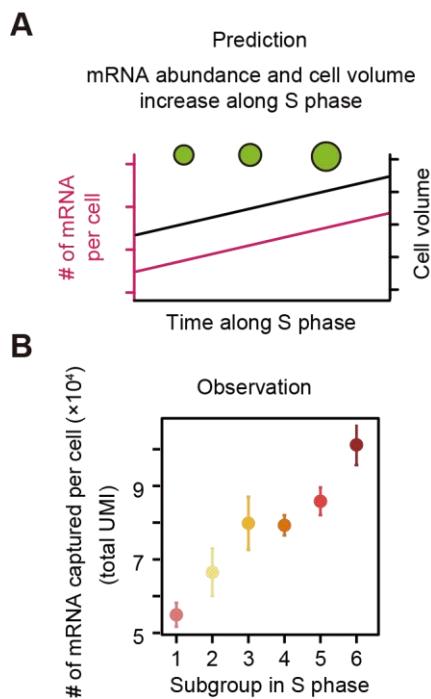
ENSG00000197061	S
ENSG00000006576	S
ENSG00000127564	S
ENSG00000111247	S
ENSG00000101773	S
ENSG00000049541	S
ENSG00000117748	S
ENSG00000167325	S
ENSG00000171848	S
ENSG00000131747	S
ENSG00000176890	S
ENSG00000077152	S
ENSG00000162607	S
ENSG00000122952	S
ENSG00000011426	G ₂ /M
ENSG00000104442	G ₂ /M
ENSG00000178999	G ₂ /M
ENSG00000154473	G ₂ /M
ENSG00000145386	G ₂ /M
ENSG00000111665	G ₂ /M
ENSG00000134690	G ₂ /M
ENSG00000170312	G ₂ /M
ENSG00000123080	G ₂ /M
ENSG00000120334	G ₂ /M
ENSG00000136108	G ₂ /M
ENSG00000136485	G ₂ /M
ENSG00000132002	G ₂ /M
ENSG00000101447	G ₂ /M
ENSG00000188486	G ₂ /M
ENSG00000164104	G ₂ /M
ENSG00000138182	G ₂ /M
ENSG00000137807	G ₂ /M
ENSG00000182481	G ₂ /M
ENSG00000143815	G ₂ /M
ENSG00000113368	G ₂ /M
ENSG00000164109	G ₂ /M
ENSG00000165304	G ₂ /M
ENSG00000129534	G ₂ /M
ENSG00000137804	G ₂ /M
ENSG00000166965	G ₂ /M
ENSG00000164105	G ₂ /M

ENSG00000113810	G ₂ /M
ENSG00000137203	G ₂ /M
ENSG00000120802	G ₂ /M
ENSG00000131747	G ₂ /M
ENSG00000116830	G ₂ /M
ENSG00000196230	G ₂ /M
ENSG00000188229	G ₂ /M
ENSG00000175063	G ₂ /M
ENSG0000011426	M
ENSG00000143401	M
ENSG00000170540	M
ENSG00000087586	M
ENSG00000089685	M
ENSG00000145386	M
ENSG00000157456	M
ENSG00000117399	M
ENSG00000101224	M
ENSG00000004897	M
ENSG00000111665	M
ENSG00000115163	M
ENSG00000117724	M
ENSG00000138180	M
ENSG00000136108	M
ENSG00000175216	M
ENSG00000173207	M
ENSG00000123975	M
ENSG00000024526	M
ENSG00000139734	M
ENSG00000114346	M
ENSG00000111206	M
ENSG00000075218	M
ENSG00000072571	M
ENSG00000109971	M
ENSG00000142945	M
ENSG00000170759	M
ENSG00000118193	M
ENSG00000138182	M
ENSG00000143815	M
ENSG00000129534	M
ENSG00000148773	M
ENSG00000204899	M

ENSG00000010292	M
ENSG00000110713	M
ENSG00000137804	M
ENSG00000168078	M
ENSG00000166851	M
ENSG00000068489	M
ENSG00000116560	M
ENSG00000171241	M
ENSG00000013810	M
ENSG00000149483	M
ENSG00000088325	M
ENSG00000071539	M
ENSG00000188229	M
ENSG00000100526	M/G ₁
ENSG00000088986	M/G ₁
ENSG00000170759	M/G ₁
ENSG00000133703	M/G ₁
ENSG00000145220	M/G ₁
ENSG00000123562	M/G ₁
ENSG00000122140	M/G ₁
ENSG00000069275	M/G ₁
ENSG00000108256	M/G ₁
ENSG00000111845	M/G ₁
ENSG00000168078	M/G ₁
ENSG00000113575	M/G ₁
ENSG00000198901	M/G ₁
ENSG00000164611	M/G ₁
ENSG00000132341	M/G ₁
ENSG00000169371	M/G ₁
ENSG00000112081	M/G ₁
ENSG00000149483	M/G ₁
ENSG00000198900	M/G ₁

1
2

1 **Table S2. Data sources of 19 cell lines/types used in this study¹.**

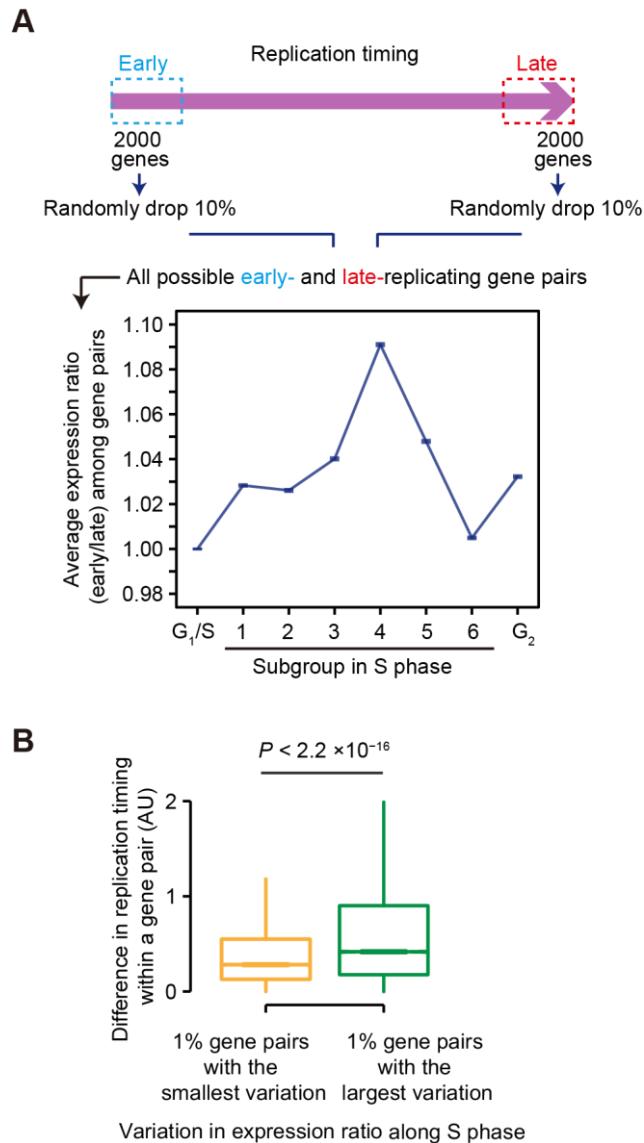

Cell line/type	Replication timing	Gene expression	FACS data
ESC (BG01)	Int61646100	GSE72923	
ESC (BG02)	Int87960943	GSE72923	
ESC (CyT49)	Int83608519	GSE63592	Yes
ESC (H1)	Int79529114	GSE67915	
ESC (H7)	Int97847336	GSE52657	
ESC (H9)	Ext29405702	GSE67915	
Immature hepatocyte	Int54607190	GSE63592	Yes
Hepatoblast	Int79325459	GSE63592	Yes
Primitive hepatocyte	GSE63428	GSE63592	Yes
Primitive gut tube	GSE63428	GSE63592	Yes
Posterior foregut	GSE63428	GSE63592	Yes
Pancreatic endoderm	Int56654336	GSE63592	Yes
Smooth muscle	Int16405711	GSE63592	
Mesothelium	Int51173422	GSE63592	Yes
Adenocarcinoma (MCF-7)	Int67688290	GSE33480	
Colon carcinoma (HCT116)	Int90617792	GSE33480	
Cervical carcinoma (HeLa S3)	Int95117837	GSE33480	
Neuroblastoma (SK-N-SH)	Int67184500	GSE90265	
Hepatocellula carcinoma (HepG2)	Int49277082	GSE87999	

2 ¹ Int* and Ext* are accession numbers in the ReplicationDomain database3 (www.replicationdomain.org). GSE* are accession numbers in the NCBI GEO4 (www.ncbi.nlm.nih.gov/geo/).

1 **Table S3. Meta-PCNA genes used in this study.**

Name
<i>AURKA</i>
<i>BIRC5</i>
<i>CDC20</i>
<i>CDCA4</i>
<i>CKLF</i>
<i>FEN1</i>
<i>GINS1</i>
<i>GTPBP2</i>
<i>LBR</i>
<i>LSM6</i>
<i>MAD2L1</i>
<i>MCM4</i>
<i>MKI67</i>
<i>NUSAP1</i>
<i>PCNA</i>
<i>PSMD9</i>
<i>RFC3</i>
<i>RFC4</i>
<i>RRM2</i>
<i>SMC4</i>
<i>SNF8</i>
<i>SNRPB</i>
<i>TACC3</i>
<i>TCF3</i>
<i>TFDPI</i>
<i>TROAP</i>
<i>TYMS</i>
<i>UBE2C</i>
<i>VRK1</i>
<i>ZWINT</i>

1 **SUPPLEMENTAL FIGURES**

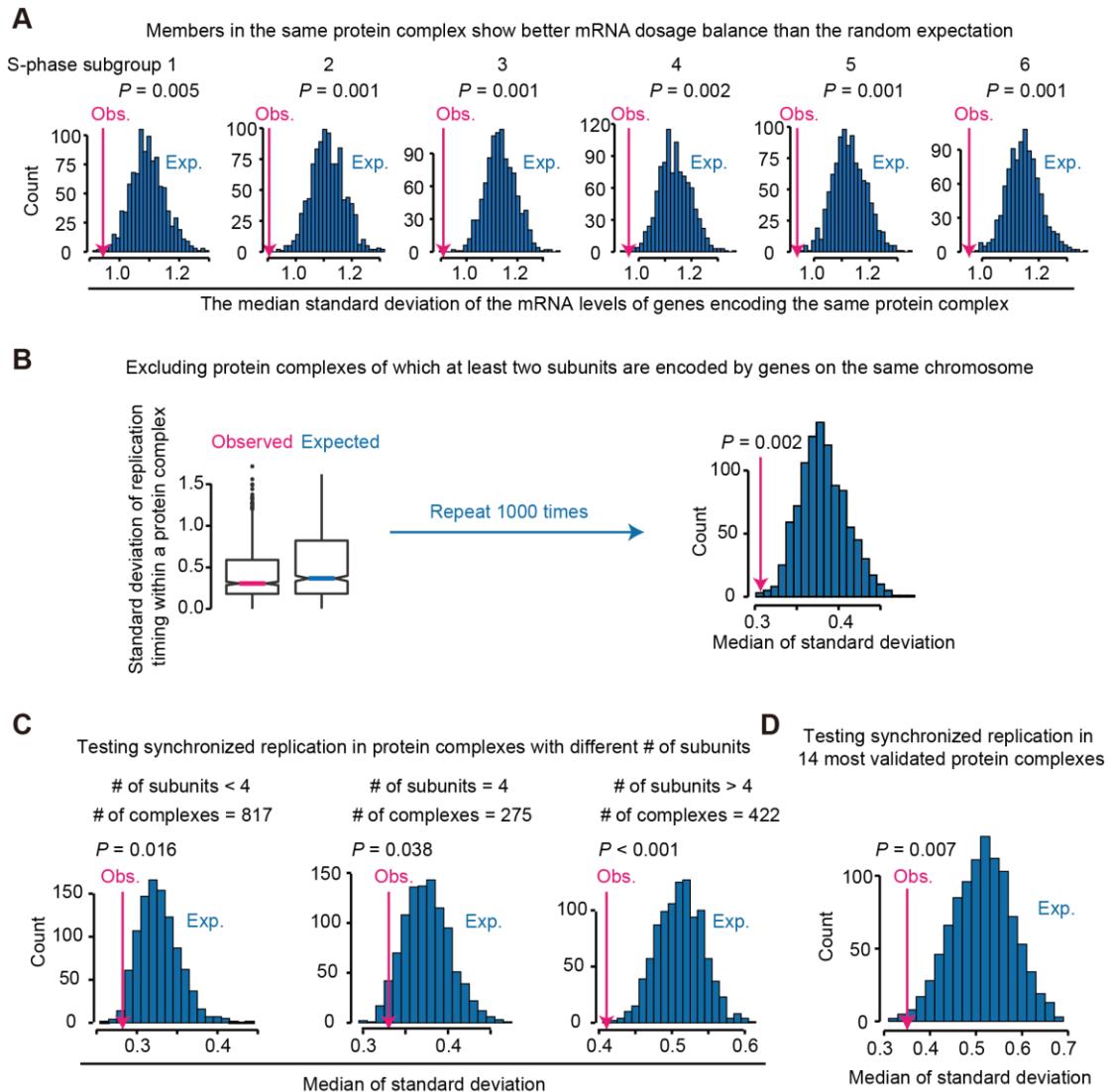


2 **Supplemental Figure S1. The mRNA abundance per cell increases along S phase.**

3 (A) Both cell volume (black) and RNA content (magenta) were reported to increase
4 through S phase.

5 (B) The mRNA content per cell increases as the S phase progresses in our scRNA-seq
6 data. The total number of unique molecular identifiers (UMI) of all genes in each cell
7 is used to represent the mRNA content. Error bars represent the standard errors of the
8 mean.

9



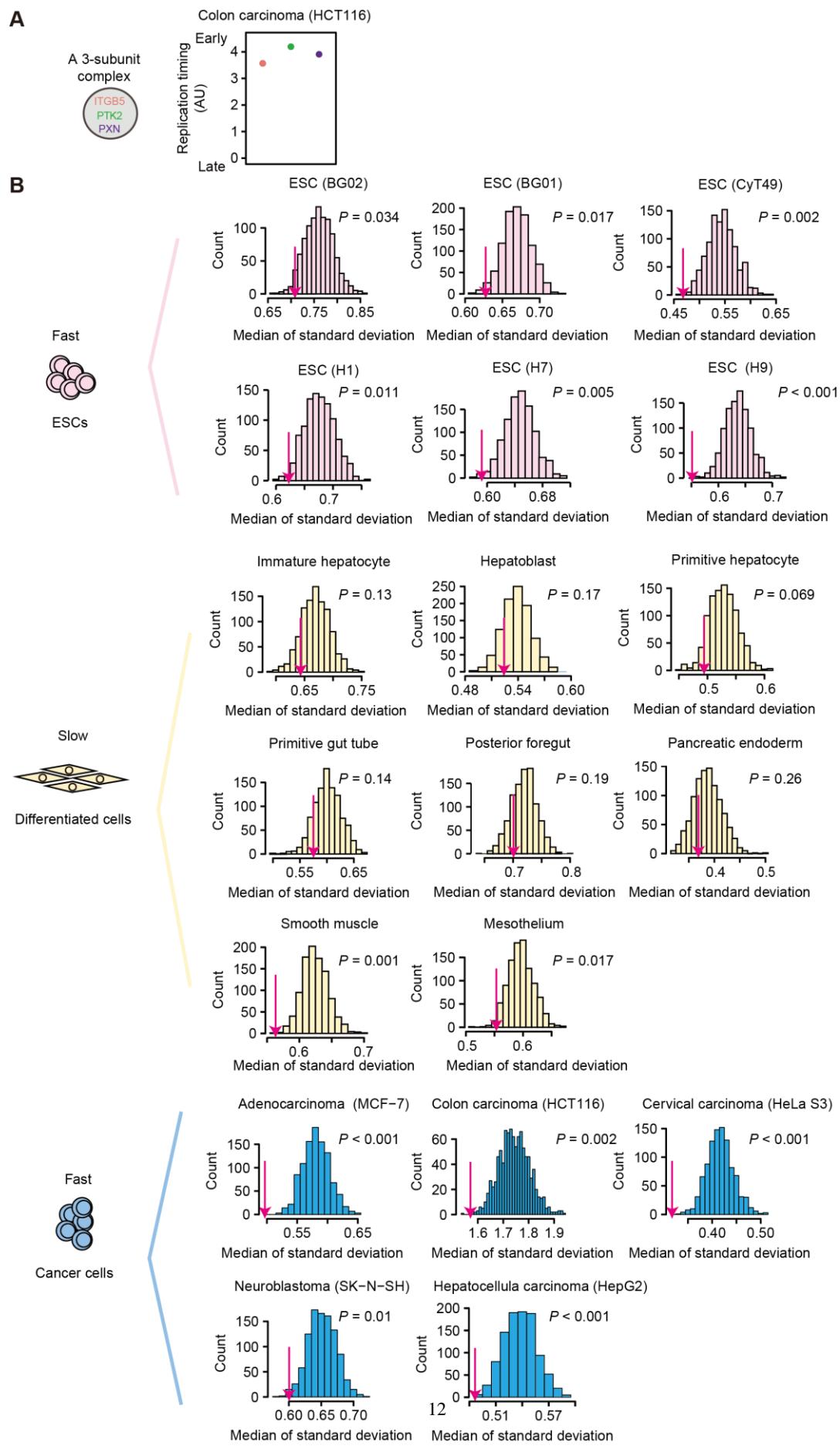
1

2 **Supplemental Figure S2. Early-replicating genes are overexpressed during S**
 3 **phase, and *vice versa*.**

4 (A) The same analysis was performed as in Fig. 2B when 10% of the 2000 early- or
 5 late-replicating genes are randomly dropped. Error bars represent the standard
 6 deviation of 1000 replicates.

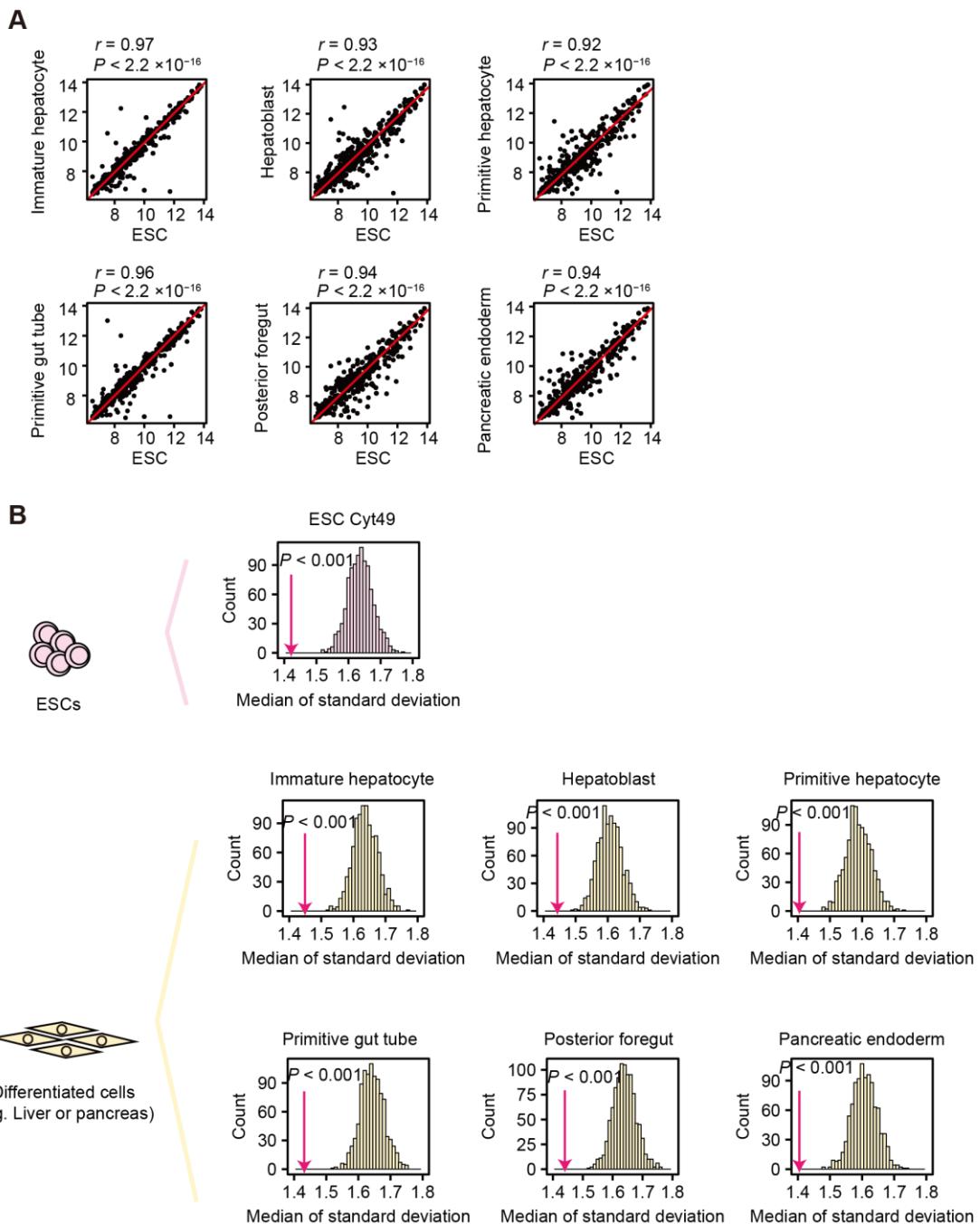
7 (B) All possible gene pairs between two random genes expressed in S phase are
 8 generated. The expression ratio within each gene pair was calculated in each of the six
 9 subgroups in S phase, of which the coefficient of variation (CV) among subgroups
 10 was calculated. The gene pairs with the largest CV (ranking top 1%) exhibit a greater
 11 difference in replication timing than those with the smallest CV (ranking bottom 1%),
 12 indicating that the variation of the expression ratio between two genes through S
 13 phase is associated with their difference in replication timing. Outliers in the box plots
 14 are omitted.

2 **Supplemental Figure S3. The synchronized replication remained after
3 controlling for confounding factors.**


4 (A) For each subgroup in S phase, the standard deviation of the expression level
5 ($\log_2(RPKM+1)$) of genes encoding the same protein complex was calculated. The
6 expression levels of the genes encoding protein complexes were shuffled 1000 times
7 to generate the random expectation. The median of the observed standard deviation
8 (the pink arrow) was significantly smaller than the random expectation (blue) in each
9 of the six subgroups. Note that we assumed genes encoding the same protein complex
10 having a stoichiometric relationship of 1:1 since the stoichiometric data of protein
11 complexes are not entirely available. Nevertheless, the test here was conservative
12 because the observed standard deviation would be overestimated if the actual
13 stoichiometric relationship was not 1:1.

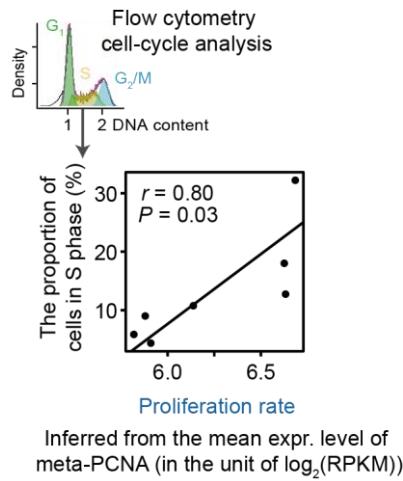
1 (B) The median of the observed standard deviations of replication timing within a
2 protein complex is significantly smaller than the random expectation after we
3 excluded protein complexes of which at least two subunits are encoded by genes on
4 the same chromosome.

5 (C) Protein complexes are separated into three classes according to the subunit
6 number. The synchronized replication was tested in each class by only shuffling genes
7 in this class. Note that we did not further separate complexes into 2-subunit and 3-
8 subunit classes because the former has only 23 protein complexes.


9 (D) Test of synchronized replication in 14 most validated protein complexes. These
10 protein complexes were identified by at least four methods in DIP, including
11 transcription factor II D complex (TFIID, # of subunits = 12), exon junction complex
12 (# of subunits = 4), and cyclin-dependent kinase 8 subcomplex (CDK8, # of subunits
13 = 4).

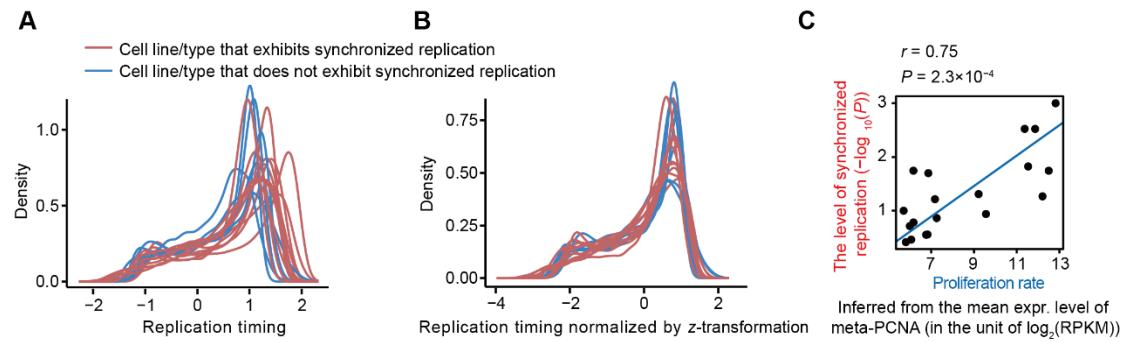
14

1 **Supplemental Figure S4. Test of synchronized replication in each of the 19 cell**
2 **lines/types.**


3 (A) Replication timing of three genes encoding a 3-subunit protein complex in
4 HCT116 cell line.
5 (B) The observed median of the standard deviation of replication timing within a
6 protein complex for each cell type (magenta arrow) is shown on the distribution of the
7 random expectation of 1000 shuffling.

Supplemental Figure S5. The expression levels of genes encoding protein complexes in the liver and pancreas cells.

4 (A) Expression levels are highly correlated between ESC (Cyt49) and each of the six
 5 types of differentiated cells that do not exhibit synchronized replication. Each dot
 6 represents a protein complex-encoding gene. Pearson's correlation coefficients r and
 7 the corresponding P values are shown.


8 (B) Test of mRNA dosage balance among members of the same protein complex in
 9 the liver and pancreas cells as well as in ESC (Cyt49).

1

2 **Supplemental Figure S6. The fraction of cells in S phase estimated by flow-**
 3 **cytometry can be predicted from the transcriptome-based proliferation rate.**
 4 Therefore, the transcriptome-based proliferation rate can be used as an indicator of the
 5 fraction of time in S phase (S%) in the rest of this study.

6

Supplemental Figure S7. The S% dependent synchronized replication was observed after the z-transformation of the replication-timing programs.

- (A) The distribution of replication timing of all genes in 18 cell lines/types. HCT116 is not shown because it significantly deviates from others in replication timing).
- (B) The distribution of replication timing after the z -transformation of the replication-timing programs.

(C) The level of synchronized replication remained positively correlated with the fraction of time in S phase after the z -transforming. Pearson's correlation coefficient and the corresponding P -value are shown.