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1 Supplemental Methods

Here, we describe the model and inference algorithm of SiCloneFit, a Bayesian nonpara-
metric framework for simultaneous reconstruction of clonal populations of cells, clonal
genotypes and clonal phylogeny from noisy somatic single nucleotide variant (SNV) pro-
files of single cells. This probabilistic framework jointly solves different aspects of intra-

tumor phylogeny problem and automatically
1. estimates the number of clonal populations,
2. infers the clonal population of origin for each single cell,
3. estimates the clonal genotypes, and

4. places the clonal clusters at the leaves of a clonal phylogeny, a phylogenetic tree that

reflects the evolutionary relationships between different clonal populations.

For an ease of exposition, we first describe the basic singlet (all cells are assumed to be

singlets) model and later on extend that model to account for doublets.



1.1 Singlet Model of SiCloneFit
1.1.1 Model Overview

We derive the SiCloneFit model in the following section. The probabilistic graphical model
is presented in Supplemental Fig. A list of model variables is provided in Supplemental
Table[S2] hyper-parameters are described in Supplemental Table[S3|and associated indices

have been described in Supplemental Table [ST]

1.1.2 Model Description

We assume that we have measurements from m single cells. For each cell, n somatic
single nucleotide variant (SN'V) sites have been measured. The data can be represented by
amatrix D,,y,, = (D;;) of observed genotypes, where D;; is the observed genotype at the
ith site of cell j. Let g, be the set of possible true genotype values for the SNVs, and g, be
the set of observable values for the SN'Vs. For binary measurements for SNVs, g, = {0, 1},
whereas g, = {0,1, X}, where 0, 1 and X denote the absence of mutation, presence of
mutation, and missing value respectively. If ternary measurements are available for SN'Vs,
g+ = {0,1,2} and g, = {0, 1,2, X}, where 0 denotes homozygous reference genotype, 1
and 2 denote heterozygous, and homozygous non-reference genotypes, respectively, and
X denotes missing data.

We assume that there is a set of K clonal populations from which m single cells are
sampled and the clonal populations can be placed at the leaves of a clonal phylogeny, 7.
Each clonal population consists of a set of cells that have identical genotype (with respect
to the set of mutations in consideration) and a common ancestor. The genotype vector
associated with a clone c is called clonal genotype (denoted by G.) and it records the geno-
type values for all n sites for the corresponding clone. The true genotype vector of each
cell is identical to the clonal genotype of the clonal population where it belongs to. The
clonal genotype matrix, G g «,,, represents the clonal genotypes of K clones. It is important
to note that, &', the number of clones is unknown. To automatically infer the number of
clones and assign the cells to clones, we introduce a tree-structured infinite mixture model.

[18] describes a nonparametric Bayesian prior over trees similar to mixture models using



a Chinese restaurant process (CRP) [21]] prior. For this tree-structured CRP, each node of
the tree represents a cluster. In our model, we extend this idea to define a nonparametric
Bayesian prior over binary trees, leaves of which represent the mixture components (clonal
clusters). A Chinese restaurant process defines a distribution for partitioning customers
into different tables. In our problem, single cells are analogous to customers and clonal
clusters are analogous to tables. Let ¢; denote the cluster assignment for cell j and assume
that cells 1 : j — 1 have already been assigned to clonal clusters {1,...,|ci;j_1]}, Where
|c1:j—1| denotes the number of clusters induced by the cluster indicators of j — 1 cells. The
cluster assignment of cell j, c; is based on the distribution defined by a Chinese restaurant

process is given by

( | ) ne
c; = c|C1:(j—_1),Qy) = —————
pic 1:(j—1); @0 P —1+ag 0
. Qp
. Vk; < (i—1)s =
plej # Jler-1), ao) i —1+a

where n,. denotes the number of cells already assigned (excluding cell 7) to cluster c. « is
the concentration parameter for the CRP model.

The clonal phylogeny, 7, is a rooted directed binary tree whose number of leaves is
equal to the number of clonal clusters, X = |c| defined by the assignment of m cells to
different clusters by the CRP. The root of T represents normal (unmutated) genotype and
somatic mutations are accumulated along the branches of the phylogeny. Each leaf in the
clonal phylogeny corresponds to a clonal cluster, ¢ € {1,..., K} and is associated with
a clonal genotype G, that records the set of mutations accumulated along the branches
from the root. To model the evolution of the clonal genotypes, we employ a finite-site
model of evolution, M, that accounts for the effects of point mutations, deletion and
loss of heterozygosity on the clonal genotypes. The model of evolution assigns transition
probabilities to different genotype transitions along the branches of the clonal phylogeny.
The true genotype of each cell is identical to the clonal genotype of the clonal cluster where
it is assigned. However, observed genotypes of single cells differ from their true genotype
due to amplification errors introduced during the single-cell sequencing work flow. The

effect of amplification errors is modeled using an error model distribution parameterized



by FP error rate, o and FN error rate, 3. The generative process can be described as follows:
1. draw op ~ Gamma(a,b), o ~ Beta(aq, b, ), B ~ Beta(ag, bg)

2. Forj € {1,2,...,m}, draw ¢; ~ CRP (o).
From this, derive K = |c|, the total number of clusters (or clones) implicitly defined

by c.
3. draw T ~ Tpprjor (K).
4. For A € M, draw X\ ~ Beta(ans,, bar,)
5. Fork € {1,2,..., K}, draw G}, ~ F(Gy|T, M.,).
6. Forj € {1,2,...,m}andi € {1,2,...,n},draw D;; ~ E(Dy;|G i, o, 3).

c denotes the clonal assignments of all cells. 7}, is the prior distribution on phylo-
genetic trees for a fixed number of leaves. M, denotes the set of parameters in the
finite-sites model of evolution. F' denotes a distribution on the genotypes at the leaves
of a phylogenetic tree and can be computed using Felsenstein’s pruning algorithm [6]
given the phylogeny and a finite-site model of evolution. E is the error model distribu-
tion that relates the observed genotype at locus ¢ for cell j, D;; to clonal genotype G ;.

a,b,aq, by, ap,bg,an, by denote different hyperparameters used in this model.

1.1.3 Model of Evolution

To capture the effect of point mutations, LOH and deletion on the clonal genotypes along
the branches of clonal phylogeny, we employ a finite-site model of evolution similar to the
one introduced in SiFit [29]. The finite-site model of evolution, M, is modeled using
a continuous-time Markov chain that assigns a probability with each possible transition
of genotypes. The branches of clonal phylogeny 7, have associated branch lengths that
represent expected number of mutations per locus. We assume that the genomic loci evolve
identically and independently. For ternary genotype, g; = {0,1,2}, a 3 x 3 transition
probability matrix describes the model of evolution. The transition probability matrix, F;,

along a branch of length ¢ is given by P, = exp(Qt), where, ) denotes the transition

9



rate matrix of the Markov chain. The transition rate matrix consists of the infinitesimal
rates (during infinitesimally small time, At) for switching between genotype states for the
continuous-time Markov chain. As in SiFit, we assume that only one event can occur at
a site during At, the smallest unit of time. The parameter A\, accounts for the effect of
recurrent mutation and the parameter \; captures mutation loss due to deletion and LOH.

The product of the transition rate matrix and the branch length (%) is given by:

—t t 0
Qt = | Qrtdlxt )\ ) x ¢t Qetixt (2)
0 Ar Xt -\ Xt

In Eq. , Qt(i, j) denotes the rate of genotype i changing to genotype j along a branch
of length ¢, 7,5 € {0,1,2}. We assume that the parameters \, and ); are Beta distributed
as they represent relative rates with value between 0 and 1. P;(4, j) denotes the probabality
of transition of genotype 7 to genotype j along a branch of length ¢. Each entry of F; is a
function of ¢, A\, and \;.

For binary genotype states, the product of transition rate matrix and branch length is
given by:

—t t
Ot — (3)

()\7—+)\l)><t (/\r+)\l)><t

2 2

1.1.4 Single-cell Error Model

The FP and FN errors in single-cell SNV profiles have been modeled using two parameters
o and j3 respectively as in SiFit [29]. The error model distribution, E(D;;|G.;,a, 3),
gives the probability of observing genotype D;; for locus 7 in cell j, given the true clonal
genotype G.;; and Supplemental Table shows it for ternary genotype. Supplemental
Table [S5|shows the error model distribution for binary genotype. « and [ are assumed to

be Beta distributed variables as they represent probability of FP and FN errors respectively.

10



1.1.5 Posterior Distribution

The SiCloneFit model has several hidden variables as well as some observed variables.

The posterior distribution, /P over the latent variables is given by

Ple,G, T, My, a,B,a0|D,an,ba,as, bg, anr,bar, a,b) o<
P(D|e,G, T, My, a, 5,0, a4, ba, ag, bg, an, bar, a,b)x
P(c,G, T, My, o, B, aolag, ba, ag, bg, an, by, a,b)
— E(D|c, G, o, B)F(G|T, My)P(clag) P(T)
P(alaa, ba)P(Blag, bg) P(Ma|anr, bar) Plagla, b)  (4)
The hidden variables that we want to estimate from this model are

1. ¢, a vector containing the cluster assignment for all cells,

2. G, a K x n clonal genotype matrix, where (G, denotes the genotype of clone £,

K = |c|, the number of clusters defined by c,

3. T, the clonal phylogeny, representing the genealogical relationships between the

clones,
4. M, parameters of the model of evolution,
5. «, false positive rate, and
6. [, false negative rate.

The number of clones is implicitly defined by the vector c. The posterior probability is a

product of likelihood function and prior. These are described in the following.
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1.1.6 Likelihood Function

The likelihood function employed by SiCloneFit is given by

P(D’C7 G,T,M)\,O[,ﬂ,Oéo,aa,ba,CLg,bIB,CLM,bM,CL,b> = E<D’C7 G,Oé,ﬁ)

:H E(Dij|GCji7a75)
=1 j=1

In Eq. , E(Dyj|G.;i, @, B) is obtained from the error model distribution for binary and
ternary genotype as defined in Supplemental Table [S5] and Supplemental Table [S4]respec-

tively.

1.1.7 Prior Distributions

The SiCloneFit model incorporates a compound prior given by

P(C, G,T,M/\,a,ﬁ,ozdaa,ba,ag,bg,aM,bM,a, b) =
F(G|T, M\)P(c|lag)P(T)P(c|aa, ba)P(Blag, bg) P(Ma|anr, bar) Plagla, b)  (6)

Below we describe each prior distribution.

1.1.7.1 Prior on Clonal Genotypes
F(G|T, M,) denotes the prior distribution on the clonal genotype matrix keeping the
clonal phylogeny and parameters of model of evolution fixed. F(G|T, M) can be effi-

ciently calculated using Felsenstein’s pruning algorithm [6] as

n

F(GIT,M)) = [[F(GlT, M) 7

i=1
Here, G.; denotes the genotype of all clones at i** site. The prior probability for site i,
F(G.|T, M,) is given by the partial likelihood of the root r of clonal phylogeny 7 for
genotype 0 and is computed using Felsenstein’s pruning algorithm, a dynamic program-
ming on clonal phylogeny that marginalizes over all possible mutational histories along

the branches of the phylogeny.
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1.1.7.2 Prior on Partition of Cells into Clonal Clusters
P(c|ay) denotes the prior probability of partitioning m single cells into |c| clusters under

a CRP with concentration parameter oy and is given by
(o)l
P(c|ay) = Tlao)ag” [T (8)

In Eq. (8), I’ denotes Gamma function, which is defined as I'(N) = (N — 1)! for a positive
integer N. ny; denotes the number of cells assigned to a clonal cluster k£ in the current

cluster assignment c.

1.1.7.3 Prior on Phylogeny

P(T) denotes the prior probability on the clonal phylogeny. This is a product of prior on
topology and prior on branch length. We consider uniform distribution for the prior on
topology and exponential distribution for the prior on branch lengths. The overall prior

probability for the branches is given by a product over the branches in the phylogeny.

1.1.7.4 Prior on Other Parameters
The values of the parameters «, 5, My = {\., \;} lie between 0 and 1. So, we use Beta
prior for these parameters. The hyperparameters for o and  are computed from the mean
and standard deviation of these prior distribution and are kept fixed. The mean is computed
from a simple estimation of o and 3 from the observed genotype matrix assuming usual
rate for these parameters and wide standard deviation is used to cover a wide range of
values.

For the concentration parameter o, we assume a Gamma prior as suggested in [S)]. We
set the value of hyperparameters for the Gamma distribution to a = 1,0 = 1 for all the

analyses performed, but this is also a configurable parameter in the software.

1.1.8 Inference

As analytically computing the posterior distribution given by Eq. is computationally

intractable, we implemented a Markov chain Monte Carlo (MCMC) sampling procedure

13



based on the Gibbs sampling algorithm. Different classes of Gibbs sampling algorithm
have been designed to infer from infinite mixture models based on conjugate as well as non-
conjugate prior distributions [16), 20]. Our algorithm is inspired by a partial Metropolis-
Hastings partial Gibbs Sampling algorithm described in [20]. In our case, while performing
the partial Metropolis-Hastings steps, the dimensionality of the sample may change due to
addition of a new cluster (resulting in addition of new edge in the clonal phylogeny) or
removal of an existing singleton cluster (resulting in removal of edges from the clonal
phylogeny). In case the dimensionality changes, the absolute value of the determinant
of the Jacobian matrix is also taken into account, which results in partial reversible-jump
MCMC [9] updates. The resulting algorithm is a partial reversible-jump MCMC partial
Gibbs sampling algorithm.

Our sampling algorithm samples the hidden variables from their corresponding condi-
tional posterior distributions. In each iteration, it first samples the cluster indices for each
cell, then the parameters of the model of evolution and the clonal phylogeny (on a num-
ber of leaves equal to the number of clones defined by cluster indices vector) is sampled.
After that the clonal genotypes are sampled followed by sampling of « and . Finally, the

concentration parameter « is sampled. The sampling algorithm is outlined below.

1.1.9 Partial Reversible-jump MCMC Partial Gibbs Sampling Algorithm

Given aétil), {cg.t*l)};”:l, {G,(ffl) ‘,il, T, M&til), a1V and =Y from the previous
iteration, we need to sample a new set of these parameters. ¢ — 1 denotes the previous
iteration.

Set
e c=c Y ay= a(()t_l)

G = {G](f_l) \kcLl

o T=TED My=M{"

o = a(t_l)’ ﬁ — ﬁ(t_l)

14



Sample cluster indicators:

1. For j =1,...,m, update c; as follows:
e If ¢; is not a singleton (i.e., ¢; = ¢; for some [ # 7)
(a) let cj» be a newly created clone.

(b) propose a new clonal tree, 7* ~ qr(7*|T), by adding the new clone c;

to 7. gqr is the proposal distribution that adds a new leaf to the clonal

phylogeny.

(c) Sample genotype vector for the new clone, GC; ~ F (GC;

TG} M),
J
Gic,f is the clonal genotype matrix excluding the genotype vector for clone

¢;. New clonal genotype matrix after sampling GC; is denoted by G*.

(d) compute acceptance ratio a(cj, ¢;) as follows:

(o7} E(D[JHGC}W a, 6) F(G*‘T*, MA) P(C*‘OCO> Tprior<7-*) QT(T‘T*)
m — 1 E(D[jl|G;,a,B) F(G|T,Mx) P(claw) Tprior(T) qr(T*T)

min |1,

‘]q
9)

J, is the jacobian. D{j] is the 4" column of observed genotype matrix.
(e) Set the new c; to this ¢ with probability a(c}, c;)
(f) If new ¢; is set to ¢,
-SetG =G, T=T"
e Otherwise, when c; is a singleton,
(a) Sample ¢} from c_j, choosing ¢; = ¢ with probability <.
(b) Propose a new clonal tree, 7* ~ ¢r(7*|T ), by removing the clone ¢; from
T.
(c) Propose new clonal genotype matrix G*, by removing G, from G.

(d) compute acceptance ratio a(cj, c;) as follows:

15



a(c;,cj) =

m — 1 B(D[j]|Ge;, . ) F(G[T*, M) P(|ag) Tyrior(T*) ar(T1T)
ao E(D[j)|Ge;,,8) F(GIT, M) P(clao) Tprior(T) ar(T*|T)

S

man |1,

(10)

(e) Set the new c; to this ¢} with probability a(c}, ¢ ).
(f) If new c; is set to cj,
-SetG=G*, T =T*
e If the new c; is not set to c;f, itis the same as the old ¢;. G and 7 remains same.
2. For j =1,...,m, update c; as follows:

e If ¢; is a singleton, do nothing.

e Otherwise, choose a new value for ¢; from {cy,...,¢,} using the following

probabilities:

Ne

P(Cj:C’ij,D[j],G,Oé,ﬁ)OC 1E(D[j”GC7avﬁ)

Sample clonal phylogeny and evolution model parameters:
Sample new clonal phylogeny 7 * and new set of values for parameters of model of evolu-
tion, M from the joint conditional posterior distribution, Pr a4, (7, M3|T, My, G, anr, bar)

T*7 M; ~ 737’,/\/(,\ (T*7 M§|T> M/\a Ga anr, bM)

Sample clonal genotypes:
Fork =1,...,|c|

e Sample clonal genotype G}, for each clone as follows:

For: =1, ..., n, sample G; from the following distribution

Gk:i X ]:(lelT, G_ki,M) X H E(DU|G]W)

lej=k

16



Sample error rates:

1. Sample o ~ P,(a|D, ¢, G, B3, a4,bs) ~ E(D|c, G, 3,a)P(ala,, b,) using rejec-

tion sampling.

2. Sample 8 ~ Ps(B|D, ¢, G, o, a3,bs) ~ E(D|ec, G, 5,a)P(5|ag, bs) using rejec-

tion sampling.

Sample concentration parameter:

Sample o, ~ p(ag|m, ||, a,b) based on the method described in [5] assuming the prior

distribution for oy is Gammal(a, b).

1.1.9.1 Algorithm For Sampling Cluster Indicators

Partial reversible-jump MCMC partial Gibbs updates are used for sampling the cluster
indicators for cells as outlined above. In the partial reversible-jump MCMC steps, new
clusters are assigned to cells based on an acceptance ratio. The calculation of acceptance
ratio involves the calculation of likelihood ratio, prior ratio, proposal ratio and jacobian.

Below, we describe how each of these terms are computed.

1.1.9.1.1 Likelihood Ratio
The likelihood ratio, L, is defined by:

E(D[jl|Ge;, o, B)

L= Emh6., @)

(11)

In Eq. @), ¢; and ¢; are the new and old cluster indicators for cell j respectively. The

values in the numerator and the denominator can be calculated by:
E(D[j]|Gej=e, @, B) = | | E(Dy5|Geiy , B) (12)

i=1

E(D;j|Ge, ., ) is given by the error model distribution as shown in Supplemental Ta-

ble [S5]or Supplemental Table

17



1.1.9.1.2 Prior Ratio

The prior ratio, P, is given by:

_ F(GHT, My) P(e*|ao) Torior(T7)

b= (13)
F<G‘T7 M)\) P(C‘O{o) Tpm’or(T)
and is a product of three ratios from three prior distributions. The first ratio, %

P(c*|ao)
> P(clao)

can be computed using Eq. . The second ratio can be computed using Eq. @i
The third ratio is the ratio of prior probabilities on clonal phylogeny. Let us assume, the
number of clones based on the new set of cluster indicators is, |¢*| = K. For non-singleton
cells (i.e., c; = ¢; for some [ # j), when a new leaf is added to the clonal phylogeny, the

third ratio is defined by

Torior(T*) _ K —1  f)f()f() (14)
Torior(T) (K —2)2K —3)  f(v1 + 1)

In Eq. (I4), v, and v, are the new branch lengths created by adding a new leaf to the branch
of length v = v + 15 and v* is the branch length assigned to the branch connected to the
new leaf. f(v) is the edge length prior density evaluated at any branch of length v. All
other edge lengths maintain the same values before and after adding the new leaf, so all
other terms in the prior ratio cancel each other.

For singleton cells, when an existing leaf is removed from the clonal phylogeny, the

third ratio is defined by
Li(T7) _ (K =DEK 1) _f( + 1) )
Lorior(T) K fn) f(w2) f(v)

In Eq. (I5), v = 11 + 1» is the branch length of the new branch after removing the leaf
associated with branch of length *. As a result of the removal of this leaf, two branches
of length v; and 1, are merged into one branch of length v; 4+ v,. All other edge lengths
maintain the same values before and after removal of the leaf, so all other terms in the
prior ratio cancel each other. For the distribution on branch lengths (f), we use exponential

distribution.
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1.1.9.1.3 Proposal Ratio and Jacobian

The proposal or Hastings ratio, (.., is given by:

qr(T|T™)
Q, =) 16
ar (T*|T) (16)

where ¢r is the proposal distribution. We have two moves corresponding to adding a
new leaf and removing an existing leaf respectively. The moves and their corresponding

proposal ratio are described below.

Add Clone: This move is performed when a new clonal cluster is created for a cell. This
results in adding a new leaf to the existing clonal phylogeny and the new leaf corresponds to
the new cluster. As aresult, this move adds new parameters to the model. One branch of the
existing phylogeny is chosen at random. Let us assume that the length of the chosen branch
is v. A new node is created on this branch which serves as the parent of the new clone/leaf
to be added. As a result, the existing branch gets divided into two new branches of lengths
vy and v5. To choose the lengths of these new branches, we generate a uniformly random
number, w; between 0 and 1, w; ~ U(0, 1) and the branch lengths are set as vy = v x w;
and v, = v * (1 —wy ). To propose the length of the branch that connects the new leaf to its
parent, we generate another uniform random number, ws ~ U(0, 1) and it is transformed
into a random deviate from the edge length prior distribution, v* = —% In(1 — wy).

The Hastings ratio for adding a new clone to the clonal phylogeny is the probability of
proposing a remove clone move that exactly reverses the proposed add clone move, divided
by the probability of proposing the add clone move itself. Proposing an add clone move

involves the following steps:
1. Choose to perform the add clone move
2. Choose an existing branch of the phylogeny
3. Divide the branch into two branches

4. Choose a length for the newly created edge
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@Q

The probability of the first step is —70—,

as the new clone is created with this probability.
The probability of the second step is nie, where 7. is the number of branches in the phy-

logeny before the move. If we assume that the number of clones based on the new set of

cluster indicators is, |¢*| = K, then n, = 2K — 3. To divide the branch into two branches,
we generate a uniform random variate wy, so the third step has no effect on the probability
of Add Clone move because the value w; has Uniform probability density 1.0, similarly the
fourth move does not have any effect on the probability of Add Clone move as we generate

another uniform random deviate ws.

Proposing the corresponding Remove Clone move involves two steps:

1. Choose to perform Remove Clone move

2. Choose the leaf in the phylogeny to remove to restore the phylogeny that existed
before the Add Clone move.

The probability of the first step is #0_1, as size of the new clone is 1. The probability of
the second step is %, where K is the number of leaves in the phylogeny after Add Clone

move. Therefore, the Hastings ratio is given by:

1)L
Hastings ratio for Add Clone move = —/t%0—1 /(%)

(o2 ) (35
mtao—1/\2K—3 (17)
2K -3
g x K
The Jacobian term for this move is given by:
v O Ou
ov owq Ows
J = |0 Ovo Oy
q ov 8101 ng
av*  ov* ov*
ov Owy  Ows
w1 v 0 (18)
=11-— wy; —V 0
1
0 0 1=
v
n 1-— w9



Remove Clone: This move is performed when an existing clonal cluster is removed.
This results in removing a leaf from the existing clonal phylogeny. As a result, this move
removes some parameters from the model. The leaf to be removed is chosen and removed
from the phylogeny, the associated branch is also removed. The parent node of the leaf is
also removed, as a result two branches of lengths 1, and v» get merged into a single branch
of length v = vy + vs.

Hastings ratio for the Remove Clone move is given by the probability of proposing an
Add Clone move divided by the probability of the Remove Clone move and is calculated

as follows:

m+0062)71)(2K171)

Hastings ratio for Remove Clone move =

1 1
<m+ao—1>(K_+1> (19)
2K -1
The Jacobian term for this move is given by:
ov. v v
oy Oy ov*
— | ow ow ow
Jo= 50 G o
Owy  Owy  Ows
ot Ovo ov*
1 1 0 (20)
=t -1 o
0 0 e*
v

1.1.9.2 Algorithm For Sampling Clonal Phylogeny and Evolution Model Parameters

We designed a Metropolis-Hastings [[10] sampler for sampling the clonal phylogeny and

evolution model parameters from the joint conditional posterior given by:

Pra (T MAG, an, bar) o F(GIT, M3)p(T)p(M;lans, bar) 21
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We consider two different types of moves to explore the joint 7, M space. In tree chang-
ing moves, a new clonal phylogenetic tree, 7* is proposed from current state 7. In pa-
rameter changing moves, a new value of the parameter, M} is proposed from the current
parameter value M. The proposed configuration is accepted or rejected based on an ac-
ceptance ratio. The acceptance ratio for proposing a new clonal phylogenetic tree is given
by:

(22)

or = min {1, FCT MU 71T )

F(G|T, Mx)p(T)qr(T*|T)

In Eq. ti the likelihood ratio, % is computed using Felsenstein’s pruning al-
gorithm [6]. g7 denotes the proposal distribution for proposing a new phylogeny from the
current phylogeny. Here, we use a combination of branch change (alter branch lengths) and
branch-rearrangement (alter the tree topology) proposals as used in [29]. The prior ratio is

computed using uniform prior for topology and exponential prior for branch lengths.

The acceptance ratio for proposing a new parameter value is given by:

) 23
F(GIT, M)p(Mj[anr, bar)gan, (M3 M) 9

ot = min {1 (GIT, M3)p(M5aar, bar)a, (M| M5) }
In Eq. (23), the likelihood is calculated in the same way as for Eq. (22)). ga, is the proposal
distribution. The parameters, )\, and \; are beta distributed variables. For each of these
parameters, the next value is proposed from a normal distribution centered at the current
value. The standard deviation is chosen so that a wide range of values are covered. The

algorithm is shown in Algorithm

1.1.9.3 Algorithm For Sampling Clonal Genotypes
The genotype of each clone is sampled by keeping the genotypes of other clones fixed.
Genotype of each position can be sampled independently. The clonal genotype for clone
k, Gg, where k € {1,...,|c|} is sampled from the conditional posterior distribution given
by:

G ~ PG<Gk|Dj\cj:ka G\k, T, M, 0675) (24)
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Algorithm 1: Algorithm for sampling clonal phylogeny and evolution model pa-
rameters. 7 ° is the starting tree. M3 is the starting value of model parameters.
The algorithm runs for n;,, iterations. With probability p,, model parameters are
updated.

Input: G, 7%, M3, Nier, DA

Output: 7*, M%

Initialization: 7V « 7%, M())\ — M3

for i = 1...nj, do _
T T My METT
Sample r ~ U(0,1)
if » < p, then
Sample M) ~ gaq, (M |My)
F(G|T,M5)p(M4 lans bar)aay (Mxl M) }

P F(GIT M\)p(Mi Tanrbar)ar, (MYTMy)
Accept M/, with probability p 1,
M = ML, T T

Compute prg, = min {1

Sample 77 ~ g7 (T'|T)
F(GIT . Mp(Tar (TIT') }

Compute pr = min y 1, Z G A3y p(Tyar (7717

Accept 7' with probability pp
Mi = My, TH T

T = T Miter , M3 4~ Mi\l""”
return 7, MY

In Eq. , G\, denotes the genotypes of other clones and Dj.,—, denotes the observed
genotypes of the cells assigned to clone k. Clonal genotype G, is a vector of length n and
records the genotype state for n mutation loci. Genotype for locus 7 is sampled from a

categorical distribution defined by

Gri < F(Gri| T, G—ii My) x [[ E(DijlGri, . B) (25)

Jlej=k
For Gy; € g1, F(Gri|T,G_g;, M,) is calculated using Felsenstein’s pruning algorithm
and E(D,;|Gyi, o, B) is given by the error model distribution as shown in Supplemental

Table [S5] or Supplemental Table [S4]

1.1.9.4 Algorithm For Sampling Error Rates
Rejection sampling [3] is used for sampling the value of error rates « and 8 from their

corresponding conditional posterior distributions.
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1.1.9.4.1 False Positive Rate

The conditional posterior distribution from which « is sampled, is given by:

a~PylalD,c, G, B, a,,b,) ~ E(D|c, G, B, a)P(a|ay, ba) (26)

By varying « for a grid of values between 0.001 to 1, we first compute the maximum of the
posterior distribution. Based on this maximum value, we create an envelope function for
the range of values of «v and this serves as the proposal distribution using which we sample

a new value of « using rejection sampling.

1.1.9.4.2 False Negative Rate

The conditional posterior distribution from which [ is sampled, is given by:

B~ Ps(B|D,c,G,a,as,b3) ~ E(D|e, G, 3,a)P(S|ag, bs) (27)

By varying $3 for a grid of values between 0.001 to 1, we first compute the maximum of the
posterior distribution. Based on this maximum value, we create an envelope function for
the range of values of 3 and this serves as the proposal distribution using which we sample

a new value of 3 using rejection sampling.
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1.2 Doublet Model of SiCloneFit

The singlet model of SiCloneFit is extended to handle cases where some data points result
from measuring two cells. We assume that the occurrence of doublets is a rare event, and
simultaneous processing of more than two cells is extremely rare. Thus we only focus on
the extension to two cells, or doublets. We also assume that simultaneous measurement of
higher numbers of cells occurs sufficiently infrequently resulting in negligible impact.

To model multiple cell measurements, we need to define the expected genotype state
when two cells are measured together. To do that for ternary data type, we use the binary
operator & introduced in SiFit [29] and defined in Section 4| For presence/absence data

such as a binary representation of SN'Vs, we can use a logical or to define @.

1.2.1 Model Overview

The probabilistic graphical model for the extended SiCloneFit model for handling doublets
is shown in Supplemental Fig.[S2] The new variables introduced in this model are explained

in Supplemental Table

1.2.2 Model Description

To model doublets, we introduce a new variable Y; corresponding to single cell j. Y is a
Bernoulli variable that takes the value 0 if cell j is a singlet and the value 1 when cell j is a
doublet. The probability of sampling a doublet is modeled by the variable 9, which is again
another Beta distributed variable with hyper-parameters as, bs. Instead of a single cluster
indicator for each cell as defined in the SiCloneFit model (Supplemental Fig. [ST)), in the
extended model, we introduce two cluster indicators for each cell. c} is the primary cluster
indicator for cell j with a Chinese restaurant process prior based on hyper-parameter o,
2

whereas ¢; 1s a secondary cluster indicator for cell j that can uniformly take values in the

range {1,...,|c'|}. If Y; = 1, ¢} denotes the clone of origin of the cell that forms a doublet
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by merging with cell j from clone cjl-. The extended model is defined as

alagy, by ~ Beta(ag, by)
Blag, bg ~ Beta(ag, bg)
d|as, bs ~ Beta(as, bs)
Y;|0 ~ Bernoulli(Y;|0)
ag ~ Gamma(a,b)
cilag ~ CRP(ay)
AGley ~uf{l1,|c'}
T ~ Trior(I€'])
Malans, , bar, ~ Beta(an,, bar, )

Gui| T, My ~ F (G| T, My)

cli

G
g]Z|G’Cj7C]7Y - !

Z]|C]7 C]’Y77 Gc 9 GC2’L7 « B ~ E(Dl]|g]17 (I,B)
1.2.3 Posterior Distribution

The posterior distribution for the doublet model of SiCloneFit, P, is given by

P(c', )Y, G, T, My, a,B,5,a0| D, aa, ba, ag, bg, as, bs, ans, bar, a, b) o
P(D|c', ¢ Y,G, T, My, a,B,6, Q0, Ao, by ag, bg, as, bs, anr, bar, a, b) x
P(c', 2 Y,G, T, My, a,j,0, aplaa, ba, ap, b, as, bs, anr, bar, a, b)
= E(D|c", )Y ,G,a,B)F(G|T, M) P(c'|ag) P(c®|c") P(T)
P(Y'|6)P(eaa, ba) P(Blag, bs) P(d]as, bs) P(Milanr, bar) P(apla, b) (28)

The hidden variables that we want to estimate from this model are

1. ', a vector containing the primary clone indicator for each cell
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2. ¢?, a vector containing the secondary clone indicator for cells that are inferred as

doublets

3. Y, a vector containing the indicator for each cell that denotes if the cell is a doublet

or singlet

4. G, a K x n clonal genotype matrix, where G5, denotes the genotype of clone £,

K =|c

5. T, the clonal phylogeny, representing the genealogical relationships between the

clones
6. M, parameters of the model of evolution
7. «, false positive rate
8. [, false negative rate
9. 4, doublet rate

The number of clones is implicitly defined by the vector c¢!. The posterior probability is
a product of likelihood function and prior. The likelihood function is described in Sec-
tion|(1.2.4] The prior distributions for the same variables as in the singlet model are already
explained in Section and the prior distributions for the new variables are described in
Section

1.2.4 Likelihood Function

The likelihood function for the extended SiCloneFit model is given by

(29)
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where g;; is given by Eq.
G Y,
9ji = ! (30)

E(D;|9ji, o, ) is given by the error model distribution as shown in Supplemental Table[S4]
and Supplemental Table [S5]

1.2.5 Prior Distributions

The complete prior of the extended SiCloneFit model is given by

P(Cl,cz,Y,G,T,MA,O[,B,(s,OZ()'aa,ba7aﬁ7b57a5,b§7(lM7bM7(l, b)
= F(G|T, My)P(c'|ag)P(c?|c")P(T)P(Y|0)P(a, B, 6, My, ap|H) (31)

where,
P(Oé,ﬁ,é,M)\,O[O'H) = P(Oé|aa,ba)P(ﬁ|a5,bﬁ)P(é’a(g,b(;)P(M)\‘CLM,bM)P<()éo‘a, b)

H denotes the set of hyperparameters, 1 = {aq, b, as, bg, as, bs, arr, bar, a, b}. The prior
distributions F(G|T, M,), P(T), P(a|aa,bs), P(Blag,bs), P(Mx|anr,bar), P(aola,b)
have been described in Section[l.1.7] P(c*|ay) denotes the prior probability of partitioning
m single cells into |c? |

in Section

clusters under a CRP with concentration parameter oy, as described

P(c?|ct) denotes the prior distribution on the secondary cluster indicators given the
primary cluster indicators. We use a uniform distribution as the prior for c?, the secondary
cluster indicator for cell j. The value of ¢? is drawn uniformly from the range {1, ..., [c'[},
|c!| is the number of clusters implicitly defined by c*.

Y; is a Bernoulli variable that indicates whether cell j is a doublet or a singlet. The
Bernoulli distribution is parameterized by d, the doublet rate, which gives the success prob-

ability.
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We assume 0 to be a Beta distributed variable as it denotes the probability of sampling

a doublet and takes value between 0 and 1.

1.2.6 Inference

We extended the Gibbs sampler designed for the basic SiCloneFit model (Supplemental
Fig.[ST) to obtain a Markov Chain Monte Carlo sampler for the extended SiCloneFit model

(Supplemental Fig.[S2). The sampler is outlined below.

1.2.7 Partial Reversible-jump MCMC Partial Gibbs Sampling Algorithm

. t—1 1(t—=1)ym 2(t—1)ym m t—1)q|ct _ t—1 _
Given 0‘(() ! {Cj( : j=1° {Cj( : = {Y51ks {G; )}L:L T, ME\ ', alty,
1 and 61 from the previous iteration, we need to sample a new set of these pa-

rameters. t — 1 denotes the previous iteration.

Set
o cl =ctY qf = a(()t_l)
o 2 — 2t-1)
oY =YD

G={G )

o T =T My=M{"

o = a(t_l)’ ﬁ = /B(t_l)’ 5 = 5(t_1)

Sample primary cluster indicators:

1. For j = 1,...,m, update ¢; as follows:
e If ¢ is not a singleton (i.e., ¢; = ¢; for some | # j)
(a) let c}* be a newly created clone.

(b) propose a new clonal tree, 7* ~ qp(7*|T), by adding the new clone c;*

to 7. gqr is the proposal distribution that adds a new leaf to the clonal
phylogeny.
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(c) Sample genotype vector for the new clone, GC}* ~F (chl_* T, Gic}-* ,M.y).

Gicl.* is the clonal genotype matrix excluding the genotype vector for clone
J

cjl*. New clonal genotype matrix after sampling chl_* is denoted by G*.

(d) compute acceptance ratio a(ct*, c!) as follows:
p p i €5

;*,c;) = min[l,7]
L E(D[jllGa- G, Yj, . 8) F(G*|T*, My) P(c™|0) Torior(T*) qr(T|T*) ;
m — 1 E(D[]HGC;7G0327Y;,O(,B) F(G|TaM)\) P(Cl|O_/0) Tprior(T) qT(T*lT) I

(32)

a(c

J, is the jacobian. D[j] is the j'* column of observed genotype matrix.

1 : R 13 1x 1
(e) Set the new ¢; to this ¢;* with probability a(c;*, ¢;)

(f) If new cj is set to c}*,
-SetG=G*,T=T*

e Otherwise, when cjl is a singleton,

Nc
m—1"°

1x 1 : 1 __ : 13
(a) Sample ¢;* from c_;, choosing ¢;* = ¢ with probability

(b) Propose a new clonal tree, 7* ~ qr(7*|T), by removing the clone cj from
T.
(c) Propose new clonal genotype matrix G*, by removing Gc} from G.

(d) Propose a new secondary cluster indicator vector ¢* in which for cells

| ¢ = cj,set ¢ = ¢;*. Secondary cluster indicators for other cells

remain the same.

(e) compute acceptance ratio a(c}*, le) as follows:

a(cjl*,c}) = min[1, 7]

m—1 E(D[J”Gc;*v chzv Y}v «, 6) F(G*|T*, M) P(Cl*’&o) Tprior(T*) QT(T’T*)

= J,
: Qp E(D[]Hchlach%Y}aavﬁ) F(G’TaM) P(CHQO) Tprior(T) QT(T*‘T) I

(33)

1 : 1x : 13 1x 1
(f) Set the new c; to this ¢;* with probability a(c;*, ¢;).
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(2) If new c; is set to ¢;*,
- SetG=G*, T =T* ¢c* =c*

e If the new cjl- is not set to cjl-*, it is the same as the old cjl-. G, ¢? and T remain

the same.

2. Forjy =1,...,m, update cjl- as follows:
o If cjl- is a singleton, do nothing.

e Otherwise, choose a new value for cj from {cy,...,c;,} using the following

probabilities:

. N
P(le = Clcl—jaD[]]aGai/}v&7B) X m —

1E(D[j]|GC7GcJ2-7Yj’a’6>

Sample secondary cluster indicators:
For j =1,...,m, update c; as follows:
e IfY; = 0, do nothing.
e Otherwise, choose a new value for ¢ from {1,...,|c'|} using the following proba-
bilities:

P(CJQ = C|C}’D[j]?GaY}7a75) X E(D[j”Gc}aGcay}aa@ﬁ)

Sample clonal phylogeny and evolution model parameters:

Sample new clonal phylogeny 7 * and new set of values for parameters of model of evolu-

tion, M from the joint conditional posterior distribution, Pr a, (7, M3|T, My, G, anr, bar)
T*7 M; ~ 737—,/\/(,\ (T*7 M§|T7 M/\7 Ga anr, bM)

Sample clonal genotypes:

Fork=1,...|c!|
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e Sample clonal genotype G}, for each clone as follows:

For: =1, ..., n, sample Gi; from the following distribution

Gki OCf(sz|T7 G—ki7M) X H E(Dl]|Gk27Gc?z7}/]7aa6>

ol
]|cj7k

Sample error rates:

1. Sample o ~ Py (a|D,c', Y, G, 3,a4,bs) ~ E(D|c', Y, G, 3,a)P(alay, bs)

using rejection sampling.

2. Sample § ~ Ps(8|D. ¢, %, Y, G, a,as,b5) ~ E(D|c', 2, Y, G, 3,a) P(Blas, bs)

using rejection sampling.

3. Sample 6 ~ P5(5]Y, as, bs)
d ~ Ps(0|Y, as, bs) ~ Beta(as + ZY], bs +m — ZYJ)
s j=1

Sample doublet indicators:

For j = 1,...,m, sample Y} based on the following distribution:

P(Y; = 01Dl ¢k, & G, ., 8,8) o E(D[j]|Go, v, B)P(Y; = 019)

[y e

P(Y; = 1|D[j],c}, 5, G, a, 3,6) E(D[j]|Ge,Ge,Y; = 1,0, B)P(Y; = 1]0) (34)

AR R

In Eq. , E(D[j]\Gc;,@,ﬂ) or E(D[j]]Gc},GC?,Yj = 1,a, ) is calculated based on
the likelihood function for cell j and P(Y}|d) is given by the prior distribution on Y,
Bernoulli(Y;]0).

Sample concentration parameter:

Sample o), ~ p(ag|m, |c'|, a,b) based on the method described in [5] assuming the prior

distribution for oy is Gammal(a, b).
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2 Supplemental Results

2.1 Benchmarking on Simulated Datasets

Ground truth clonal structure and clonal phylogeny is not known for real tumor datasets.
Consequently, simulation experiments become the approach of choice. To evaluate the
performance of SiCloneFit, we performed comprehensive simulations. The simulation

studies were aimed at analyzing the following:

1. How accurately SiCloneFit clusters the cells into different clones.
2. How accurately SiCloneFit infers the genotypes of the clones.

3. How accurately SiCloneFit infers the clonal phylogeny.

Here, we describe in detail the benchmarking of SiCloneFit along with other competitor
methods on a wide variety of simulation experiments. The remainder of this section is or-
ganized as follows. Section [2.1.1] describes the simulation strategy for generating realistic
ground truth data set for benchmarking purposes. In Section [2.1.2] the methods for sum-
marizing the posterior samples of SiCloneFit are explained. In Section [2.1.3] we introduce
the competitor methods against which we compared SiFit’s performance. We describe the
metrics used for comparing the different phylogeny inference methods in Section [2.1.4]

Finally, we show and discuss the results of different experiments in Section [2.1.5]

2.1.1 Simulation of Synthetic Datasets

2.1.1.1 Simulation of Clonal Clusters
To simulate a number of clones and draw cells from the clones, we first fix the number of
clones, K. For each clone k, we first sample observed prevalences % = {®%s dgbs . Pbs}

from a Dirichlet distribution
OO ~ Dir(\, ®) k=1,2,...,K (35)

where @' = {Plrue plrue - piruel are the true prevalences for clones 1 to K sampled

from a beta distribution. Let us assume, m is the number of cells that we want to simulate in
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our experiment. The m cells are sampled from a multinomial distribution with parameters
& as given by:
N1, Mo, ... g ~ Mult(®) (36)

where, n; is the number of cells sampled from clone k£ and Zle nr = m. The cells
sampled from clone £ have the true genotype which is same as the clonal genotype of
clone k. This process of sampling cells is equivalent to sampling the cells from a Dirichlet-
multinomial distribution, i.e., n1,no, . .., ngx ~ Dirichlet — multinomial(\, ®"*¢). The

simulation of clonal clusters follows the steps introduced in [25]].

2.1.1.2 Simulation of Clonal Phylogeny

A clonal phylogeny is a binary leaf labeled phylogenetic tree where the leaves represent
clones. [4] described different models of tumor evolution, linear and branching being the
most notable one for point mutations. We construct linear and branching topologies for
clonal phylogeny using the Beta-splitting model [24]] parameterized by two parameters o
and fr. First, a generating sequence (.5;);>1, a realization of a sequence of independent and
identically distributed random variables is generated. To construct the generating sequence,
a sequence of i.i.d random variables, (b1, b, . ..) are sampled from the distribution B(ar +
1, 87 + 1), where B(ar, fr) is a distribution on [0, 1] with density B(ar, fr) tz*r~1(1 —
2)P1=L, B(ar, Br) is defined by:

1
B(@T,BT):/ o7 N1 — )P e (37)
0

Another sequence of i.i.d random variables (u, us, . . .) are sampled from the uniform dis-
tribution on [0, 1]. The generating sequence is defined as (S; = (u;, b;))ien. Once, the
generating sequence is fixed, a nonrandom organizing process helps to create ranked planar
binary tree with the desired number of leaves (clones). The organizing process incremen-
tally creates a tree with K leaves (for a clonal phylogeny with K clones) starting from a

single root node, labelled by the interval [0, 1] as follows:

e Step 1: The root is split into a left leaf labelled by [0, b;] and a right leaf labelled by
(b1, 1].
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e Step 2: If uy € [0, by], the left child node of the root is further split into two nodes, the
left one is labeled by [0, b;b-] and the right one is labeled by [bybs, 1]. If uy € [by, 1],
the right child node of the root is split into left and right leaves with respective labels

[bl, bl + (1 - bl)bg] and [bl + (]. - b1>b2, ].]

e Step i: The leaf whose internal label [a, b] contains u; is chosen. It is split into a left

leaf with label [a, a + (b — a)b;] and a right leaf with label [a + (b — a)b;, b].
e The process is stopped at the end of Step K — 1.

To generate a linear tree topology, values of a7 and 1 are chosen very close to —1. We
choose ar = —0.9999999999999999 and Sy = —0.9999999999999999 for generating
linear, comb like tree.

For generating a branching tree topology, we set ar = 10000000 and S = 10000000.
After choosing a topology, the branch lengths are sampled from the prior distribution on

branch length.

2.1.1.3 Simulation of Clonal Genotypes

To generate the genotype of each clone at the leaves of the clonal phylogeny, we first
specify the number of mutation sites, n that we want to simulate. The root node of the
phylogeny is populated with homozygous reference genotype (¢ = 0) at each site. In each
branch of the tree, a Poisson distributed number of sites, p, are mutated. If ¢ is the branch
length, the parameter for the Poisson distribution is chosen as ¢ X n, so that on an average,
a child node in the tree differs from its parent by a proportion of loci which is given by the
branch length. When mutating a new site, the genotype changes from homozygous refer-
ence (g = 0) to heterozygous (¢ = 1). Recurrent mutations are introduced with probability
r. If the locus in the node, for which a recurrent mutation happens, has a homozygous
reference genotype (¢ = 0), then a parallel mutation happens in that branch, i.e, the geno-
type changes from homozygous reference (¢ = 0) to heterozygous (¢ = 1). If the locus
in the node already contains a mutated genotype then a back mutation results in reverting
the genotype to homozygous reference (g = 0). To simulate loss of heterozygosity (LOH)

events, the loci with heterozygous (g = 1) genotypes are set to either homozygous refer-
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ence (g = 0) or homozygous non-reference (g = 2) genotypes with probability w. If LOH
happens at a locus, either of the homozygous genotypes are chosen with equal probability.
Deletion is simulated with probability d at a branch. Deletion can affect multiple loci at a
time. For a heterozygous site, deletion can happen for any of the copies resulting in either
of the homozygous genotypes (¢ = 0 or g = 2). Deletion does not affect the homozygous
reference genotypes but can change the homozygous non-reference genotypes to heterozy-
gous genotype. In this way, sites are evolved at each branch of the tree. At the corner
case, when there is no new locus to mutate at a branch, recurrent mutations are introduced.
After considering all the branches of the tree, we have the clonal genotypes at the leaves
of the clonal phylogeny. The simulation of recurrent mutations, deletions and LOH are

performed in the same way as introduced in SiFit [29].

2.1.1.4 Simulation of Noisy Single-cell Genotypes
The true genotype of a cell is same as the clonal genotype of the clone from which the
cell was sampled. To obtain the noisy genotype for each cell, we introduce doublets, false

positive and false negative errors and missing values.

2.1.14.1 Simulating Doublets
Doublets are events when two cells get trapped in the same well resulting in merging the
genotypes of the two cells. The expected genotype of doublets can be constructed using
the & operator defined in Section[d] In simulating doublets, we use similar strategy as used
previously in [29]. ¢ denotes the fraction of cells that are doublets. With probability ¢, a
cell is chosen to be a doublet. The co-trapped cell with which the candidate cell merges
to form a doublet can originate from any of the existing clones. We uniformly randomly
choose the parent clone for the co-trapped cell and its genotype is combined with that of

the candidate cell to form the new genotype of the doublet.

2.1.1.4.2 Simulating False Negative and False Positive Errors
False negative (FN) and false positive (FP) errors are introduced in the single-cell geno-

types. For the datasets without doublets, FN and FP are introduced to true genotypes of
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single cells. For the datasets with doublets, FN and FP are introduced to singlets as well as
to doublets formed after simulation of doublet genotypes. FP and FN are introduced in the

same way as described in [29].

2.1.1.4.3 Simulating Missing Data
To introduce missing values in the datasets, uniformly randomly genotype information of
sites are removed with probability equal to the fraction of missing values that we want to

introduce.

2.1.2 Summarizing Posterior Samples from SiCloneFit

To summarize the clustering samples from the Gibbs sampler of SiCloneFit, we utilized
the maximum posterior expected adjusted rand (MPEAR) method introduced in [7]. In our
case, the number of clusters can vary from one sample to another and the labels associated
with the clusters can also change. As a result, we used a method based on posterior simi-
larity matrix. The MPEAR method first computes a posterior similarity matrix, an m X m
matrix (for m cells), in which each entry contains the posterior probability of two cells
belonging to the same clonal clusters. Given the posterior similarity matrix, the posterior
expected adjusted rand (PEAR) index can be utilized as a metric for assessing the perfor-
mance of a proposed clustering configuration. We reported the clustering configuration
that achieves the highest PEAR index as the summary cluster configuration. For the singlet
model of SiCloneFit, the cluster samples, ¢ were used for computing MPEAR clustering
estimate. For the doublet model of SiCloneFit, we used the primary cluster indicator vec-
tor, ¢! for computing MPEAR clustering estimate. The R package mcclust was used for
computing MPEAR clustering summary.

To summarize the clonal phylogeny samples from the Gibbs sampler of SiCloneFit, we
constructed a maximum clade credibility topology (MCCT) from the posterior samples. In
this method, each sampled phylogeny is evaluated and each clade is given a score based on
the posterior probability of appearing in the set of sampled phylogenies, and the product of
the clade posterior probabilities is chosen as the score of a phylogeny. The phylogeny with

the highest score is reported as the maximum clade credibility topology. In this process,
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the branch lengths are also summarized over the posterior samples. We used the SumTrees
program of the DendroPy [2]] package to compute the MCCT.

From the posterior samples, we computed the posterior probability of the genotype of
each cell at each site. The posterior probability of genotype g for cell j at position 7 is

given by
Ns
1
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where S denotes the set of Ng posterior samples. The genotype with the highest posterior
probability is assigned as the inferred genotype, /;; of that cell at that position.
The doublets are inferred when using the doublet-aware model of SiCloneFit based on

the posterior probability computed from posterior samples as shown in Eq.

Ng
1
P(Y; = 1|S) = N > Ty (39)
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Since, we consider a very low prior probability for a cell being a doublet, if the doublet

posterior probability for a cell exceeds 0.05, we infer it as a doublet.

2.1.3 Competitor Methods

We compared SiCloneFit’s performance to four other methods.
1. SCG (Single Cell Genotyper) [23]
2. OncoNEM [22]
3. SCITE [12]
4. SiFit [29]

OncoNEM, SCITE and SiFit were developed for the inference of tumor phylogeny from
SCS data, whereas SCG was developed for the inference of clones from SCS data. From
now on, we will use the term ‘phylogeny-based methods’ to refer to OncoNEM, SCITE

and SiFit together.
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2.1.3.1 SCG

Single Cell Genotyper (SCG) [23]] is a statistical method that infers clonal genotypes and
clonal structures from single cell somatic SNV profiles. However, it does not infer the
clonal phylogeny and their inference procedure does not account for the phylogenetic struc-
ture underlying the clonal populations. We used SCG to infer the clones and clonal geno-
types from the single-cell SNV profiles. The clonal phylogeny was obtained by running a

maximum parsimony algorithm [26]] on the clonal genotypes as suggested in [23]].

2.1.3.2 OncoNEM

OncoNEM is a likelihood-based method that employs a heuristic search algorithm to find
the maximum likelihood clonal tree. Nodes of the clonal tree represent the clonal clusters
and the branches denote the evolutionary relationship between the clones. It is also possible
to obtain the clonal genotypes by inferring the occurrence of the mutation on the branches
of the clonal tree. OncoNEM’s inference is also based on the “infinite sites assumption”
and it does not account for the presence of doublets. We compared against OncoNEM
only for the datasets without doublets. OncoNEM ran properly on small sized datasets
(m = 100) but we were unable to get any result on larger datasets (m = 500). Comparison

against OncoNEM are only shown for small sized datasets (m = 100).

2.1.3.3 SCITE

SCITE is an MCMC algorithm that allows one to infer the maximum likelihood mutation
tree from imperfect somatic mutation profiles of single cells. The nodes of the mutation
tree represent the mutations and the branches denote the order of the mutations in the
evolutionary history. In the mutation tree, the sequenced cells can be attached to the nodes
that correspond to their mutation states. Just like OncoNEM, SCITE also relies on the
“infinite sites assumption” so that the mutation tree represents a perfect phylogeny and
does not account for the presence of doublets. SCITE’s results were compared only for the
datasets without doublets. The genotypes for each cell can be inferred from the mutation
tree and cell attachment inferred by SCITE. However, the cells were not clustered into

clones. To obtain the clusters, first we computed an m x m distance matrix for the cells
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based on their distances in the mutation tree. The distance between two cells was calculated
by summing the number of mutation nodes on the shortest path that connects the two
cells (essentially the hamming distance between the inferred genotypes of two cells). The
resulting distance matrix was subject to K-medoids clustering (using ‘clustering’ library
of R, http://www.r-project.org) for a varying number of clusters (2 to 20). The
number of clusters and the clustering assignment that maximized the average silhouette
score was inferred as the optimal clustering. To obtain the clonal tree, the cells that belong
to a single cluster were attached to a node that was formed by collapsing the mutation nodes
representing the parents of the corresponding cells in the mutation tree. The collapsed
node’s position in the tree was chosen so that its distance from the root (normal) node is
minimized. The mutation nodes that did not have any cell attachment and had only one

mutation node as the children were removed.

2.1.34 SiFit

SiFit is a likelihood-based algorithm that infers a tumor lineage tree under a finite-site
model of evolution. It infers a tumor phylogeny, leaves of which represent the single cells
and in doing so it also accounts for possible mutation recurrence and losses along the
branches of the phylogeny. After reconstructing a maximum likelihood phylogeny, it also
infers the mutations on the branches of the phylogeny using a maximum likelihood ap-
proach. Just like the other phylogeny-based methods (OncoNEM and SCITE), it does not
account for the presence of doublets. We compared SiFit’s results only for the datasets
without doublets. SiFit’s mutation placement algorithm infers the genotype of each cell for
constructing the inferred genotype matrix. SiFit infers a full binary tree on a leafset of size
equal to the number of cells. To infer the clonal clusters from this tree, the branch lengths
were set to the number of mutations inferred on the branch. Then, an m x m distance ma-
trix was computed for the cells, where each entry represents the distance between two cells
in the tree. The distance between two cells was computed by summing the branch lengths
on the shortest path that connects the two cells. K-medoids clustering was performed on
the distance matrix using ‘clustering’ library of R (http://www.r-project.org),

the number of clusters was varied from 2 to 20. The number of clusters and the cluster-
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ing assignment that maximized the average silhouette score was inferred as the optimal
clustering. To obtain the clonal tree, the branches in the subtree that contained the cells
of a cluster were collapsed by setting the branch length to 0 and the branches connecting

subtrees representing different clusters were set to 1.

2.1.4 Performance Metrics

When comparing the various methods, we wanted to quantify three different aspects of

their performance
1. How accurately the method clusters the cells into different clones.
2. How accurately the method infers the genotypes of each clone.
3. How accurately the method reconstructs the clonal phylogeny.

To measure each of these aspects, we introduced three different performance metrics as

described below.

2.1.4.1 Accuracy of Clustering

2.1.4.1.1 Adjusted Rand Index
For the datasets without doublets, we used the adjusted rand index [[11] to assess clustering
accuracy. The rand index computes a similarity measure between two clusterings by con-
sidering all pairs of samples and counting pairs that are assigned in the same or different
clusters in the predicted and true clusterings. The raw rand index score is then “adjusted
for chance” into the adjusted rand index score. The adjusted rand index is thus ensured to
have a value close to 0.0 for random labeling independently of the number of clusters and
samples and exactly 1.0 when the clusterings are identical. For SiCloneFit, the MPEAR

clustering estimate based on the posterior samples was used as the predicted clustering.
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2.14.1.2 B-Cubed F-score
When considering doublets, the problem becomes more difficult as cells may belong to
multiple clusters. This changes the problem from a strict clustering problem, to a restricted
feature allocation problem [2]. We used the B-Cubed F-score, extended to handle feature
allocations, for comparing the performance of the algorithms in the presence of doublets
[1]. Both SCG and SiCloneFit can detect doublets. The cells detected as doublets were
removed and the clustering of the rest was considered for measuring the B-cubed metric.

Again, for SiCloneFit, the MPEAR clustering estimate was used as the predicted clustering.

2.1.4.2 Accuracy in Inferring Clonal Genotypes
In the absence of doublets, we measured the hamming distance between the predicted geno-
type of the clone where a cell is assigned and the true genotype of the cell. We computed
the sum of hamming distances for all the cells and normalized it to summarize a method’s
genotyping performance. The genotyping error (g.) is defined by,

_ Z?:l 27:1 H<GTij 7 G]ij)
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where G is the true genotype matrix, GG is the inferred genotype matrix and I is the
indicator function. The genotyping error represents the number of incorrectly predicted
genotypes per each cell per each genomic site. We distinguished the methods which predict
only the binary genotype, that is the presence or absence of the B allele, from those, which
attempt to predict the three state genotype A, AB, B. The predictions for any method which
predicts the three state genotype can be converted to a binary representation by mapping
the AB, B states to the B allele present state.

When considering datasets with doublets, we removed the cells that were inferred as
doublets by the method and considered the rest of the cells for measuring the genotyping
error as given by,
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where S; is the set of singlets inferred by the method. For SiCloneFit, we used the inferred

genotypes based on posterior probability to compute the genotyping error.
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2.1.4.3 Accuracy in Inferring Clonal Phylogeny

To measure the accuracy of the inferred clonal phylogeny, we used pairwise cell shortest-
path distance introduced in [22] as the tree reconstruction error. The pairwise cell shortest-
path distance is computed between the true and inferred clonal phylogenies. In our case,
both the true tree 77 and the inferred tree 7; are built on the same set of m cells but
potentially can differ in the number of internal nodes. The internal nodes that are direct
parents of the leaves (cells) represent the clonal clusters, each leaf is connected to its parent
by a branch of length 0. For every pair of cells ¢ and j, we computed the shortest-path
d;;(.) between the two cells in each tree. If the two cells belong to the same clone, their
shortest-path distance is 0, otherwise the shortest-path distance equals the number of edges
(regardless of direction) that separate the clones of the two cells. Finally, we summed up
the absolute differences between the shortest-path distances of all unordered pairs of cells

in the two trees to obtain the overall pairwise cell shortest-path distance:

m—1 m
d(Tr, Tr) = Z Z \dij(Tr) — dij(T7)] (42)
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For datasets without doublets, all cells were considered for measuring the above tree re-
construction error. For datasets that had doublets, we only considered the cells that were
inferred as singlets by the method. For SiCloneFit, we used the MCCT phylogeny as the

inferred clonal tree and computed its pairwise cell shortest-path distance.

2.1.5 Results and Discussion

2.1.5.1 Testing the Finite-site Model

SiCloneFit assumes a finite-site model of evolution that accounts for the effects of muta-
tion loss and recurrence along the branches of the clonal phylogeny. To analyze how well
this model captures the effects of such losses and recurrences, we simulated single-cell
datasets with varying rates of mutation loss and recurrence. In our simulation, we used
three different parameters for introducing loss of heterozygosity (LOH), deletion and re-
current mutations respectively. Corresponding to these three parameters, we performed

three different sets of experiments
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e The first set of experiment analyzes SiCloneFit’s performance in different regimes
of deletion probability (d). Deletion can result in mutation losses and in our simula-
tions, deletion events can affect multiple loci at a time essentially violating the site
independence assumption used for inference. These datasets only featured mutation

losses, no parallel mutations were introduced.

e The second set of experiment analyzes SiCloneFit’s performance in different regimes
of the probability of LOH (w). LOH can also result in mutation losses affecting each
locus independently as used in [23]]. These datasets only featured mutation losses,

no parallel mutations were introduced.

e The third set of experiment analyzes SiCloneFit’s performance in different regimes
of the probability of recurrent mutation (7). This parameter introduces parallel mu-
tations in the datasets. These datasets did not contain any mutation loss due to dele-
tion or LOH. An extreme setting of this parameter (r = () generated datasets under

infinite-sites model as no mutation loss or recurrence were introduced in the datasets.

For these experiments, SiCloneFit’s performance was compared against that of SiFit that
also employs a finite-site model to account for mutation losses and recurrence. We wanted
to test whether SiCloneFit’s ability to cluster the cells into clones gives it an edge over SiFit

in recovering the clonal genotypes for varying amount of mutation losses and recurrences.

2.1.5.1.1 Performance on Datasets with Varying Deletion Probability

We first simulated a clonal phylogeny with number of clones (leaves), X' = 10. The
number of cells, m was set to m = 100 and the number of sites was set to n = 100. At the
root of the clonal tree, each site has homozygous reference genotype. The sequences were
evolved along the branches of the tree starting from the root. In each branch of the tree,
new mutations and mutation losses were simulated. No recurrent point mutations were
introduced. For introducing mutation losses, the probability of deletion (d) was varied
from 0.05 to 0.2 in steps of 0.05 i.e, d € {0.05,0.1,0.15,0.2}. Such deletion events can
potentially alter the genotypes of multiple sites at a time. The range of d is chosen such

that the expected number of deletion events during the evolutionary history of the tumor
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remain reasonable. The probability of LOH was fixed at w = 0.1 to introduce mutation
losses that independently affected some sites. This process gave us the clonal genotypes at
the leaves of this clonal phylogeny. True genotype matrix corresponding to m single cells
was constructed by sampling the clonal genotype of each cell. Errors were introduced into
the true genotype matrix to simulate single-cell errors. The false negative rate for cell c,
B, was sampled from a normal distribution with mean [3,,,..,, = 0.2 and standard deviation
Bsa = ’8”1%. False negatives were introduced in the genotype matrix with probability 3. for
cell c. We introduced false positives to the genotype matrix with error rate, o = 0.05, by
converting homozygous reference genotypes to heterozygous genotypes with probability
a.

SiCloneFit’s results were compared against that of SiFit. The clustering accuracy of
each method is shown in Supplemental Fig. [S3h. For each experimental setting, SiClone-
Fit achieved better clustering accuracy than SiFit. SiCloneFit maintained a high clustering
accuracy (> 0.95 for d € {0.05,0.1,0.15} and > 0.9 for d = 0.2) for each value of the
deletion probability. For d = 0.2, SiCloneFit’s clustering accuracy degraded slightly as the
introduction of more deletion events also incorporates more violations of the site indepen-
dence assumption. SiCloneFit performed much better than SiFit by achieving lower tree
reconstruction error (Supplemental Fig. [S3b) and genotype error (Supplemental Fig. [S3k)
for all values of d. SiCloneFit achieved 2 — 5 times reduction in genotyping error compared
to SiFit. It shows that SiCloneFit’s ability to cluster the cells into clones combined with
the finite-site model makes it more powerful than SiFit in recovering the clonal genotypes

of the single cells.

2.1.5.1.2 Performance on Datasets with Varying Probability of LOH
In the second set of experiments, we first simulated a clonal phylogeny on K = 10 clones.
The number of cells, m was set to lm = 100 and the number of sites was set to n =
100. In each branch of the tree, new mutations and mutation losses were simulated. For
introducing mutation losses, this time we varied the probability of LOH (w) from 0.05 to
0.2 in steps of 0.05 i.e, w € {0.05,0.1,0.15,0.2}. LOH events independently affect the

genomic sites. The range of w was chosen such that only a small fraction of mutated sites
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suffer from mutation loss. The deletion probability (d) was fixed at d = 0.1 so that a small
number of sites simultaneously get affected by deletion to allow for a deviation of site
independence assumption. This process gave us the clonal genotypes at the leaves of the
clonal phylogeny. True genotype matrix corresponding to m single cells was constructed
by sampling the clonal genotype of each cell. Errors were introduced into the true genotype
matrix to simulate single-cell errors in the same way as done for the first set of experiments.

SiCloneFit’s results were compared against that of SiFit. The clustering accuracy of
each method is shown in Supplemental Fig. [S4p. For each value of LOH probability, w,
SiCloneFit achieved better or similar clustering accuracy compared to SiFit. SiCloneFit
also achieved lower tree construction error (Supplemental Fig. [S4p) and lower genotype
error (Supplemental Fig. [S4c) compared to SiFit for each experimental setting. SiFit’s
median tree reconstruction error was more than 4 times higher than that of SiCloneFit for
w = 0.1 and w = 0.2. SiCloneFit’s median genotype error was 3 — 17 times lower than

that of SiFit for different values of w.

2.1.5.1.3 Performance on Datasets with Varying Probability of Recurrent Muta-
tion
For the third set of experiments, we varied the probability of recurrent mutation, r, while
generating the datasets. The number of clones, K was set to X = 10, the number of
cells, m was set to m = 100 and the number of sites was set to n = 100. In each
branch of the tree, new mutations and recurrent point mutations were simulated. Dele-
tion probability, d and probability of LOH, w were set to 0, so that no mutation loss oc-
curs. The probability of recurrent mutation was varied from 0.0 to 0.2 in steps of 0.05 i.e,
r € {0.0,0.05,0.1,0.15,0.2}. The setting corresponding to » = 0.0 generated datasets
under the infinite-sites model as no mutation loss or parallel mutation occurred during the
evolutionary history of the tumor. After simulating the clonal genotypes, the erroneous
genotype matrix for m single cells was constructed following the same procedure as de-
scribed in previous experiments.

SiCloneFit’s results were compared against that of SiFit. For the datasets that corre-

spond to infinite-sites model (r = 0), both SiCloneFit and SiFit achieved high clustering
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accuracy (Supplemental Fig. [S5a). However, for such datasets, SiCloneFit achieved much
lower tree reconstruction error (Supplemental Fig.[S5p) and genotyping error (Supplemen-
tal Fig. [S5c) compared to that of SiFit. SiCloneFit’s clustering accuracy was comparable
to that of SiFit for all values of r except for » = 0.05, when SiFit’s clustering accuracy was
better. For all values of r, SiCloneFit achieved lower tree reconstruction error compared to
SiFit. Similarly, SiCloneFit’s genotyping error was lower than that of SiFit for all values

of r.

2.1.5.2 Performance on Datasets with Varying Number of Cells Without Doublets
To compare SiCloneFit’s performance against other methods, we first simulated single-
cell datasets with varying number of cells. These datasets did not have any doublet. For
these experiments, we first simulated a clonal phylogeny with number of clones (leaves),
K = 10. The number of cells, m, sampled from the K clones, was varied as m = 100
and m = 500. The number of sites, n, was varied as n = 50 and n = 100 respectively.
These datasets well represent the experimental targeted sequencing datasets. At the root
of the clonal tree, each site has homozygous reference genotype. The sequences were
evolved along the branches of the tree starting from the root. In each branch of the tree,
we simulated four types of events that can alter the genotype of a site: new mutation,
deletion, loss of heterozygosity (LOH) and recurrent point mutation. This process gave
us the clonal genotypes at the leaves of this clonal phylogeny. The true genotype for the
cells sampled from clone k is identical to the clonal genotype of clone k. m genotype
sequences corresponding to m single cells constituted the true genotype matrix. Errors
were introduced into the true genotype matrix to simulate single-cell errors. The false
negative rate for cell ¢, 3., was sampled from a normal distribution with mean f,,,¢q, = 0.2
and standard deviation ;4 = B”{—B‘”‘. False negatives were introduced in the genotype
matrix with probability 5. for cell c. We introduced false positives to the genotype matrix
with error rate, = (.05, by converting homozygous reference genotypes to heterozygous
genotypes with probability «.

SiCloneFit’s results were compared against SCG, OncoNEM, SiFit and SCITE. Same

imperfect genotype matrix was used as input to SiCloneFit, SCG, SiFit and SCITE. For
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OncoNEM, the genotype matrix was binarized by converting the heterozygous and ho-

mozygous non-reference genotypes to 1, i.e., presence of mutation.

2.1.5.2.1 Clustering Accuracy
The clustering accuracy of each method is shown in Supplemental Fig.[S6] For all datasets,
SiCloneFit’s results were compared against that of SCG, SiFit and SCITE. OncoNEM’s re-
sults could only be compared for smaller sized datasets (/m = 100), as OncoNEM failed to
run for larger sized datasets (m = 500). Performance for each algorithm improved as the
value of n increased. In each experimental setting, SiCloneFit outperformed all other algo-
rithms. Specifically for m = 500 and n = 100, it achieved perfect clustering for almost all
the datasets. SCG performed better than the phylogeny based methods (OncoNEM, SiFit
and SCITE) for most experimental settings. SiFit’s performance was the best among the
phylogeny-based methods. For m = 100 and n = 100, it’s median clustering accuracy was
even higher than that of SCG. OncoNEM had the lowest clustering accuracy for smaller

sized datasets, SCITE had the lowest for larger number of cells.

2.1.5.2.2 Genotyping Accuracy
For these datasets, we further wanted to evaluate the genotyping accuracy of each of
these methods. The genotyping performance was measured in terms of hamming dis-
tance per cell per site, lower the hamming distance, better the genotyping. The geno-
typing performance is shown in Supplemental Fig. For all experimental settings,
SiCloneFit achieved the lowest genotyping error, SCITE had the highest genotyping error.
Performance of each algorithm improved as the number of mutation sites (n) increased.
Again SCG performed better than the phylogeny-based methods but worse than SiClone-

Fit. SiFit’s performance was the best among the phylogeny-based methods.

2.1.5.2.3 Clonal Phylogeny Inference Accuracy
Finally, we compared each of the methods for their accuracy in reconstructing the geneal-
ogy of the clones. SiCloneFit directly reports the clonal phylogeny, but SCG does not infer

any phylogeny. For SCG, we inferred the phylogeny using maximum parsimony method
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on the inferred clonal genotypes (method suggested in the original study [23]). OncoNEM
also reports a clonal phylogeny. SiFit infers a cell lineage tree, which was converted to an
equivalent clonal phylogeny after inference of clonal clusters via K-medoids clustering as
described in Section[2.1.3] SCITE infers a mutation tree that was converted to an equivalent
clonal phylogeny after inference of clonal clusters via K-medoids clustering as described
in Section [2.1.3] The comparison is shown in Supplemental Fig. S8 SiCloneFit achieved
major improvement in reducing the tree reconstruction error for each experimental setting,
it outperformed all other methods. With an increase in the number of sites, performance
of each of the algorithms improved. For smaller sized datasets, OncoNEM performed
the worst. SiCloneFit was followed by SCG owing to its better clustering accuracy. For
smaller sized datasets, SiFit and SCITE performed comparably (SCITE performing slightly
better) but worse than SCG. For larger sized datasets, SCITE performed better than SiFit

for n = 50, for n = 100, SiFit achieved lower tree reconstruction error than that of SCITE.

2.1.5.3 Performance on Datasets With Varying Number of Clonal Populations
Next, we evaluated the performance of the methods in the presence of higher numbers of
clones. As the number of clones increases, the problem becomes more difficult. First, we
simulated clonal phylogenies with varying number of clones, X' = 10 and K = 15. For
each of these settings, m = 100 cells were sampled from K clones. The number of sites
was set to n = 100. After obtaining the true genotypes of each cell by evolving clonal
genotypes along the phylogeny, we introduced FP and FN errors using the same error rates
as in the previous experiment. For each setting of K, m and n, we generated 10 datasets.
SiCloneFit’s results were compared against that of SCG, OncoNEM, SiFit and SCITE
and are shown in Supplemental Fig. For different values of clones, SiCloneFit outper-
formed all algorithms based on all three metrics. SCG performed better than the phylogeny-
based methods when smaller number of clones (KX = 10) were present in the datasets.
However, for larger number of clones, SiFit performed better than SCG by achieving
higher clustering accuracy and lower genotype error. Among the phylogeny-based meth-
ods, SiFit’s performance was the best. OncoNEM performed the worst based on clustering

accuracy and tree reconstruction error, whereas SCITE had the highest genotyping error in
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each experimental setting. For each of the methods, performance degraded as the number
of clones increased, which is expected as mere increase of the number of clones without
an increase in number of cells makes the problem more difficult. However, compared to
SCG, SiCloneFit’s performance was more robust against the increase in number of clones.
SiCloneFit’s mean clustering accuracy reduced by 3.9% when number of clones increased
from 10 (mean ARI = 0.978) to 15 (mean ARI = 0.939), whereas there was a 10% reduction
in SCG’s mean clustering accuracy when number of clones increased from 10 (mean ARI

=0.933) to 15 (mean ARI = 0.84).

2.1.5.4 Performance on Datasets with Increasing Error Rates
The single-cell sequencing datasets show a range of variation in the error rates. As a
consequence, we tested SiCloneFit’s performance on datasets for which the error rates

were higher.

2.1.5.4.1 Robustness to Increasing False Negative Rate
Allelic dropout is the major source of error in single-cell sequencing data resulting in false
negatives [19]. To test the robustness of SiCloneFit to increase in false negative rate, 3,
we simulated datasets with increased false negative rate. The number of clones, /K was set
to 10, the number of cells, m was set to 100 and the number of sites, n, was set to 100.
Mean false negative rate, [3,,cqn, Was varied from 0.2 to 0.4 in steps of 0.1 i.e, Bean €
{0.2,0.3,0.4}. The false negative rate of cell ¢, 5. was sampled from a normal distribution
as described in the previous experiments. The false positive rate was set to o = 0.05. With
these settings, for each value of (,,cqn € {0.2,0.3,0.4}, 10 datasets were simulated.

Performance of SiCloneFit was compared against that of SCG, OncoNEM, SiFit and
SCITE as shown in Supplemental Fig. SiCloneFit achieved the best clustering accu-
racy for all values of false negative rate. SCG and SiFit achieved similar mean clustering
accuracy (lower than that of SiCloneFit) for each experimental setting. SiFit had the best
clustering accuracy among the phylogeny-based methods. For f3,,c., € {0.2,0.3}, On-
coNEM performed the worst in terms of clustering accuracy, whereas for S,,cen = 0.4,

SCITE had the lowest clustering accuarcy. With an increase in false negative rate, the clus-
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tering accuracy of each method degraded. However, SiCloneFit’s clustering accuracy was
robust to increase in FN rate.

In reconstructing the clonal phylogeny, SiCloneFit performed the best in all settings.
OncoNEM had the highest tree reconstruction error for all settings. SiFit performed the
best among the phylogeny-based methods, but it performed worse than SCG. SCG was the
second best method after SiCloneFit. SiCloneFit’s tree reconstruction performance was
robust to increase in false negative rate, its tree reconstruction error only increased slightly
when FN rate increased to 5 = 0.4.

SiCloneFit’s genotyping performance was the best in all experimental settings, whereas
SCITE had the highest genotyping error. SiFit performed better than OncoNEM and
SCITE but worse than SCG. Genotyping error of each method increased with an ncrease
in the false negative rate. However, SiCloneFit’s performance was robust, there was only
a slight increase in genotyping error of SiCloneFit when FN rate increased from 5 = 0.2
to # = 0.3 and then 8 = 0.4. SiCloneFit’s superior performance based on all metrics over
the other methods for all values of false negative rate shows that SiCloneFit is more robust

against an increase in false negative rate.

2.1.5.4.2 Robustness to Increasing False Positive Rate
We performed another set of experiments to test how robust are the methods against in-
creasing FP rate. The number of clones, K was set to 10, the number of cells, m was
set to 100 and the number of sites, n, was set to 100. False negative rate [3,,c4,, Was set
to 0.2 and the false negative rate of cell ¢, 5. was sampled from a normal distribution as
described in the previous experiments. We varied false positive rate from 0.05 to 0.1 in
steps of 0.05, i.e, « € {0.05,0.1}. With these settings, for each value of o € {0.05,0.1},
10 datasets were simulated. Performance of SiCloneFit was compared against that of SCG,
OncoNEM, SCITE and SiFit as shown in Supplemental Fig. [STI]

For different values of false positive rate, SiCloneFit performed the best by achieving
the highest clustering accuracy, OncoNEM had the lowest clustering accuracy. SCG and
SiFit achieved similar mean clustering accuracy for o = 0.05, but for higher false positive

rate, « = 0.1, SiFit’s performance was better than that of SCG. SCITE performed better
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than OncoNEM but worse than the other methods.

SiCloneFit also performed the best by achieving the lowest tree reconstruction error for
all values of FP rate. Based on this metric too, OncoNEM performed the worst. SCG’s
performance was better than the phylogeny-based methods but worse than SiCloneFit.

Based on genotyping error, SiCloneFit outperformed all other methods for all experi-
mental settings. Among the phylogeny-based methods, SiFit’s performance was the best.
SCITE had the highest mean genotyping error. SCG’s genotyping performance was af-
fected by the increase in FP rate. For two datasets generated with o = 0.1, SCG reported
a large number of incorrect genotypes (~ 40 x median value), which shows that SCG’s
genotypes failed to converge.

SiCloneFit’s clustering accuracy did not get affected by the increase in FP rate. Same
trend was observed for SiCloneFit’s tree reconstruction error. SiCloneFit’s genotyping
performance did not suffer much by the increase in FP rate. This shows its robustness
against an increase in FP rate.

Based on all our previous experiments, SCG was the best competitor method. In our
subsequent experiments that required comparison, we only compared SiCloneFit’s perfor-

mance to that of SCG.

2.1.5.5 Performance on Datasets with Missing Data

Due to uneven coverage and amplification bias, current single-cell sequencing datasets are
challenged by missing data points where genotype states are unobserved. To investigate
how missing data affect the performance of each method, we performed additional sim-
ulation experiments. For K = 10, m = 500 and n = {50,100}, we generated datasets
using the same error rates as before. For each combination of K, n and m, we generated
10 datasets, for each of which, two other datasets with missing data = {15%,30%} were

generated. SiCloneFit’s results were compared against SCG.

2.1.5.5.1 Clustering Accuracy
The clustering accuracy of each method under different levels of missing data is shown in

Supplemental Fig. [ST2] For each setting, each method performed better when more sites
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(n = 100) were present. This is expected given the fact that sequencing more sites result
in more data and incorporates more information. As the amount of missing data increased,
performance of each method degraded. SiCloneFit performed either better than SCG (no
missing data, 15% missing data) or similar to SCG (30% missing data). Even for datasets
with 30% missing data, where overall performance of SiCloneFit was similar to that of
SCQG, the mean accuracy of SiCloneFit was higher for all values of number of sites n. For
datasets with n = 100 sites, each method performed well even after removal of significant
amount of data. This shows that the clustering performance of both SiCloneFit and SCG
are robust against increasing missing data when sufficient number of genomic sites are

sequenced.

2.1.5.5.2 Genotyping Accuracy
The genotyping performance of each method under different levels of missing data is
shown in Supplemental Fig. [SI3] Genotyping error increased with an increase in the
amount of missing data. SiCloneFit outperformed SCG in all cases except for the setting
n = 100 and 30% missing data. For both the methods, the genotyping error was higher
for datasets with number of sites n = 100. This is expected because of the increase in the

number of sites.

2.1.5.5.3 Clonal Phylogeny Inference Accuracy
The performance of each method in inferring clonal phylogeny under different levels of
missing data is shown in Supplemental Fig. Under each setting, SiCloneFit outper-
formed SCG. With an increase in the number of sites, the phylogeny inference improved
for SiCloneFit. But for SCG, phylogeny inference did not improve much with the increase
in number of sites. It degraded for datasets with 15% missing data. SiCloneFit’s phylogeny
inference was not affected much by the increase in the amount of missing data. This shows

that SiCloneFit’s phylogeny inference is robust to the presence of missing values.

2.1.5.6 Performance on Datasets Generated Under Neutral Evolution

Neutral evolution (NE) represents an extreme case of branching evolution and postulates
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that intratumor heterogeneity (ITH) is caused by accumulation of random mutations that
lack any functional significance or selection advantage in the progression of a tumor [4]].
Tumors evolved under this model should consist of many subpopulations without any evi-
dence of a single clone being selected and expanded. Even though in most human cancers
there is evidence of at least weak selection, which leads to the prevalence of clonal sub-
populations that harbor driver mutations [8]], some tumors might undergo neutral evolution
as shown in [[15, 28]]. To analyze SiCloneFit’s performance under neutral evolution that
can lead to an absence of clonal structure, we conducted simulation experiments under the
neutral evolution model proposed in Williams et al. [28]].

According to the NE model proposed in [28], under neutral evolution, the number of
subclonal mutations should follow % power law distribution (f being the allelic frequency
of a mutation). The cumulative distribution, M (f) of subclonal mutations should have
a linear relationship with % and the R? goodness-of-fit measure should be R* > (.98
for neutral evolution. In our simulation, to ensure that the cumulative distribution of the
subclonal mutations follow the % power law, we sampled clonal prevalences from a normal
distribution with narrow standard deviation (to obtain very similar clonal prevalence for
each clone) and the branch lengths of the tumor phylogeny were chosen to be of the same
order. The cumulative distribution of subclonal mutations for two representative datasets
are shown in Supplemental Fig.

We generated datasets consisting of 100 and 200 cells. Following the study of Ling
et al. [15], which reported on potential evidence of neutral evolution in a hepatocellular
carcinoma by identifying 20 clones, we fixed the number of clones, K to 20. n = 100
mutation sites were simulated for each dataset. For each combination of K, n and m, we
generated 5 datasets. Same error rate values as discussed in the previous experiment were
used. We compared SiCloneFit’s results to that of SCG, SiFit and SCITE (Supplemental
Fig. [ST16). As we see, for these datasets, SiCloneFit performed either similarly or better
than the other methods based on the different metrics. For the smaller datasets (100 cells),
SiFit had slightly better clustering and genotyping accuracy than SiCloneFit, but SiClon-
eFit’s tree reconstruction error was lower. For the larger datasets (200 cells), SiCloneFit

outperformed all other methods based on all metrics. These results show that SiCloneFit
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performs well even under neutral model of evolution.

2.1.5.7 Estimation of Error Rates by SiCloneFit
The posterior samples obtained from SiCloneFit’s Gibbs sampler can be used for inferring
the false positive and false negative rate of the SCS dataset.

To assess SiCloneFit’s estimation of false positive rate, we simulated 30 datasets from
different 30 clonal phylogenies. For these datasets, the number of clones, K was set to 10,
m = 100 cells were sampled from these clones and the number of sites, n was set to 100.
The false negative rate, § was set to 0.2. The false positive rate, & was varied from 0.01
to 0.15 in steps of 0.005. SiCloneFit’s inference algorithm was used to obtain posterior
samples from the resulting noisy matrices. False positive rate was inferred by averaging
the posterior samples. SiCloneFit performed very well for estimating false positive rate
as shown in Supplemental Fig. [ST7a. The estimated values of a were highly correlated
(0.998) to the original FP rates used for generating the datasets.

We performed another set of experiment to analyze SiCloneFit’s performance in esti-
mating the false negative rate. Just like the previous experiment, we simulated 30 datasets
from different 30 clonal phylogenies, the number of clones, K was set to 10, m = 100
cells were sampled from these clones and the number of sites, n was set to 100. The false
positive rate, o was set to 0.05. The false negative rate, [ was varied from 0.1 to 0.4 in steps
of 0.01. The resulting noisy matrices were given to SiCloneFit for inference. False neg-
ative rate was inferred by averaging the posterior samples. Again, SiCloneFit’s estimated
values of beta were highly correlated (0.992) to the original FN rates used (Supplemental
Fig.[ST7p).

These experiments show that SiCloneFit is able to precisely infer FP rate () and FN

rate () from the SCS datasets.

2.1.5.8 Estimation of Number of Clusters by SiCloneFit
To analyze whether SiCloneFit accurately infers the number of clonal clusters, we simu-
lated three sets of datasets with different levels of sampling distortion. For these datasets,

the number of clones, K was set to 10, m = 100 cells were sampled from these clones and
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the number of sites, n was set to 100. The FN rate, 5 was set to 0.2 and the FP rate was set
to 0.05. For the three sets, A, the concentration coefficient for the Dirichlet-multinomial
distribution used for sampling the cells from the clones, was set to A = 10, A = 100 and
A = 1000 respectively. Single-cell datasets may show sampling bias due to random sam-
pling of cells from the tissue. Larger the value of )\, the closer the Dirichlet-multinomial
distribution approximates the true prevalences of the clones. At higher values of A, the
sampled cells better represent the true proportions of the clones, whereas, for smaller val-
ues of A, the sampled cells deviate from the true prevalences of the clones. As a result,
inference of the number of clusters becomes difficult when the value of A is small. In all
our experiments, we used a smaller value of A\ = 10 to introduce sampling distortion that
is likely in real SCS datasets.

The number of clusters estimated by SiCloneFit for different values of A is shown
in Supplemental Fig. [SI§] As the sampled single cells more closely followed the true
prevalences (increasing value of \) of the clones, SiCloneFit’s estimate of the number
of clusters got better. Even for datasets with fair amount of sampling bias (A = 10),
SiCloneFit was able to infer the actual number of clusters for some datasets. The clusters
that were missed by SiCloneFit mostly consisted of 1 cell with a genotype very similar to
another more populated clone. For larger A\, SiCloneFit was able to infer the actual number

of clusters for most of the datasets.

2.1.5.9 Scalability of SiCloneFit for Large Datasets
To analyze SiCloneFit’s applicability on datasets containing large number of cells, we sim-
ulated datasets with m = 2000 cells. For these datasets, the number of clones, X was set to
10, and the number of sites, n was set to 100. The FN rate, 5 was set to 0.2 and the FP rate
was set to 0.05. We compared SiCloneFit’s result on these datasets to that on the datasets
containing m = 500 cells. The results are shown in Supplemental Fig.[SI9 SiCloneFit
performed well for these large datasets. There was only a small drop in performance when
number of cells increased from 500 to 2000.

We also simulated datasets with higher number of genomic sites to evaluate SiClone-

Fit’s scalability with the number of sequenced mutation sites. We generated datasets with
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n = 400 sites, the number of clones, K was set to 10 and the number of cells was set to
m = 100. The FN rate, § was set to 0.2 and the FP rate was set to 0.05. SiCloneFit’s result
for these datasets are shown in Supplemental Fig.[S20] SiCloneFit’s performance improved
for higher number of sites based on all metrics compared to datasets with n = 100 genomic
sites.

These experiments show that SiCloneFit scales well with both the number of cells and

number of genomic sites making it suitable for potentially larger future SCS datasets.

2.1.5.10 Performance on Datasets with Varying Number of Cells with Doublets
To assess the performance of SiCloneFit in the presence of doublets, we generated datasets
with doublets. The doublet rate, d, was set to 0.1 to introduce 10% doublets. We first
simulated a clonal phylogeny with number of clones (leaves), X = 10. The number of
cells, m, sampled from the K clones, was varied as m = 100 and m = 500. The number
of sites, n, was varied as n = 50 and n = 100 respectively. The clonal genotypes were
simulated by introducing point mutations, LOH, deletion and recurrent mutations along the
branches of the phylogeny as discussed previously. The true genotype matrix consisted of
m genotype sequences corresponding to m single cells, where the true genotype of cell j
is identical to the clonal genotype of the clone where cell j belongs to. After that, doublets
were formed by merging the genotypes of two single cells with probability §. The false
negative rate for cell ¢, ., was sampled from a normal distribution with mean f,,¢q,, = 0.2
and standard deviation ;4 = ﬂ"{%. False negatives were introduced in the genotype
matrix with probability (. for cell c. We introduced false positives to the genotype matrix
with error rate, o = 0.05, by converting homozygous reference genotypes to heterozygous
genotypes with probability a.

SiCloneFit’s performance was compared against that of SCG. For these datasets, the
extended model of SiCloneFit that can handle doublets was used for inference. Similarly,
for SCG, its doublet aware model was used for inference. Comparisons were done with

respect to the different metrics as explained in Section[2.1.4]
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2.1.5.10.1 Clustering Accuracy
The clustering accuracy of each method is compared in Supplemental Fig.[S21] For smaller
sized datasets (m = 100), SiCloneFit’s clustering accuracy was much higher than that of
SCG. Clustering accuracy of both methods improved with the increase in number of sites
or the increase in number of cells. For larger sized datasets, SCG’s clustering accuracy
significantly improved but for all experimental settings, SiCloneFit performed better than
SCG. For some datasets, SCG failed to converge resulting in very low clustering accuracy.

In such cases, SCG mostly reported just a single cluster.

2.1.5.10.2 Genotyping Accuracy
The genotyping performance was measured by hamming distance excluding the inferred
doublets, lower the hamming distance, better the genotyping. The genotyping performance
is shown in Supplemental Fig. For genotyping, SiCloneFit either outperformed SCG
or performed similarly. The total genotyping error was lower for datasets with smaller
number of sites. Again, SCG’s failure to converge for some datasets was also visible in its

genotyping performance. For such datasets, SCG’s genotyping error was very high.

2.1.5.10.3 Clonal Phylogeny Inference Accuracy
Finally, we also compared the clonal phylogeny inference accuracy of each of these meth-
ods. SiCloneFit directly reports clonal phylogeny, whereas SCG does not infer any phy-
logeny. For SCG, we inferred phylogeny by running maximum parsimony method on
inferred clonal genotypes (method suggested in the original study [23]). The comparison
is shown in Supplemental Fig. [S23] SiCloneFit performed better than SCG in all experi-
mental settings except for m = 500, n = 100. Specifically, SiCloneFit’s performance was
substantially better for datasets with 100 cells. With an increase in number of cells, SCG’s
performance also improved. For some datasets, SCG’s tree reconstruction error was very
high because it did not converge and assigned all the cells in a single cluster resulting in a

clonal phylogeny with a single node.
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2.1.5.11 Performance on Datasets Containing Doublets with Varying Number of
Clonal Populations

For the datasets with doublets, we next varied the number of clones. First, we simulated
clonal phylogenies with varying number of clones K = 10 and K = 15. For each of
these settings, m = 100 cells were sampled from K clones. The number of sites was set
to n = 100. After obtaining the true genotypes of each cell by evolving clonal genotypes
along the phylogeny, we introduced doublets with rate 6 = 0.1. Then we introduced FP
and FN errors using the same error rates as described previously. For each setting of 9, K,
m and n, we generated 10 datasets.

SiCloneFit’s results were compared against SCG and shown in Supplemental Fig. [S24]
For different values of clones, SiCloneFit outperformed SCG in terms of all three met-
rics. For each of the methods, performance degraded as the number of clones increased,
which is expected as mere increase of number of clones without increasing the number
of cells makes the problem more difficult. However, SiCloneFit’s performance was more
robust against the increase in number of clones. For clustering accuracy, SiCloneFit’s per-
formance did not degrade much with the increase in number of clones, but for SCG, the
clustering accuracy significantly reduced when the number of clones increased. The tree
reconstruction error was much higher for the clonal phylognies inferred from SCG’s clonal
genotypes when number of clones increased. Similarly, genotyping error of SCG increased
at a higher rate than that of SiCloneFit. This shows that SiCloneFit performed much better

for more difficult inference problems.

2.1.5.12 Performance on Datasets Containing Doublets and Missing Data

To assess the performance of SiCloneFit in the presence of both doublets as well as missing
values, we generated datasets for X' = 10, m = 500, n = {50,100} and § = 0.1. FP and
FN error rates were the same as used previously. For each combination of K, n, m, and
0 we generated 10 datasets, for each of which, two other datasets with missing data =

{15%, 30%} were generated. SiCloneFit’s results were compared against that of SCG.
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2.1.5.12.1 Clustering Accuracy
The clustering accuracy of each method under different levels of missing data is shown in
Supplemental Fig. [S25] For each experimental setting, SiCloneFit’s clustering accuracy
was either better or similar compared to SCG. SiCloneFit’s clustering accuracy did not
suffer much by the presence of missing values. For some of such datasets, SCG failed
to cluster them into separate groups and sometimes incorrectly inferred every cell as a
doublet. For these datasets, SCG’s clustering accuracy was very low because mostly all the

cells were grouped in a single cluster.

2.1.5.12.2 Genotyping Accuracy
The genotyping performance of each method under different levels of missing data is
shown in Supplemental Fig.[S26] Genotyping error increased with the increase in amount
of missing data. SiCloneFit outperformed SCG in all cases. In each experimental set-
ting with missing data, for some datasets, SCG completely failed to converge and wrongly

inferred every cell as a doublet. For these datasets, SCG’s genotyping error was very high.

2.1.5.12.3 Clonal Phylogeny Inference Accuracy
The performance of each method in inferring clonal phylogeny under different levels of
missing data is shown in Supplemental Fig. SiCloneFit mostly performed better than
SCG. However, SCG’s performance was better for datasets with m = 500, n = 100 and
with missing data = {0%, 15%}. Again for some datasets, SCG clustered every cell in
a single group, as a result the inferred clonal phylogeny had just one node and the tree
reconstruction error was very high. For most of the datasets, SiCloneFit correctly identified

the doublets and removed them.

2.2 Inference of Clonal Clusters, Genotypes and Phylogeny from Ex-
perimental SCS Data

We applied SiCloneFit to two experimental single-cell DNA sequencing datasets from two
metastatic colon cancer patients, obtained from the study of Leung et al. [13]]. These

datasets were generated using a highly-multiplexed single-cell DNA sequencing process
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[14] and a 1000 cancer gene panel was used as the target region for sequencing. These are
two of the most recent SCS datasets and contain large numbers of cells and small numbers
of mutation sites making the inference difficult. The application of SiCloneFit on these

datasets shows its broad applicability to modern SCS datasets.

2.2.1 Analysis of Patient CRC1

This dataset consisted of 178 cells [[13]] obtained from both primary colon tumor and liver
metastasis. The original study reported 16 somatic SNVs after variant calling. The reported
genotypes were binary values, representing the presence or absence of a mutation at the
SNV sites.

After running SiCloneFit on this dataset, we collected the samples from the posterior
and computed a maximum clade credibility tree based on the posterior samples.

Five different clusters were identified from the SiCloneFit posterior samples. The
largest cluster (N) consisted of normal cells without any somatic mutation. The primary
tumor cells were clustered into two subclones (P1 and P2). Metastatic aneuploid tumor
cells were clustered into one subclone (M). There was another cluster (D) consisting of
diploid cells (mostly metastatic). The clonal genotype of each cluster was inferred based
on the posterior samples. The inferred genotypes are shown in Supplemental Fig.
Based on the clonal genotypes, we inferred the ancestral sequences at the internal nodes
and this enabled us to find the maximum likelihood solution for placing the mutations on
the branches of the clonal phylogeny. The inferred clonal phylogeny suggested that the
mutation in GATAI occurred twice (in the diploid and metastatic subclones) indicating
it as a potential convergent evolution. To evaluate the accuracy of this, we performed a
mixture-model Bayesian binomial test as used in the original study [13]. This test utilized
the reference and variant read counts of all the cells for this mutation to determine if it
was present in the diploid (D) subclone as indicated by the clonal phylogeny. 4 (out of
5) cells in the diploid subclone (D) displayed high posterior probability (0.9661, 0.8181,
0.914, 0.9587 respectively) of harboring this mutation indicating a strong evidence for its
recurrence.

For comparison, we ran SCG on this dataset. SCG reported 4 clonal clusters: a cluster
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(SN) consisting of unmutated normal cells, a cluster (SD) consisting of 3 metastatic diploid
cells, a cluster (SP) consisting of primary diploid and aneuploid cells and another cluster
(SM) consisting of metastatic cells. The clonal genotypes of the cells inferred by SCG
is shown in Supplemental Fig. SCG could not distinguish the primary tumor cells
on the basis of the presence/absence of the TPM+4 mutation and genotyped all of them to
contain TPM4. Thus it did not report two primary tumor subclones that were detected
by SiCloneFit and instead only one primary tumor subclone (all primary tumor cells were
assigned to this cluster) is inferred. The distinction of primary tumor cells based on the
presence and absence of TPM4 mutation was also inferred by SCITE in the original study
[13]. In the original study, SCITE tree reported that the TPM4 mutation was gained in
the primary tumor cells after the metastatic divergence (Fig. 6A in [13]). As a result, a
number of primary tumor cells placed before the metastatic divergence did not harbor the
TPM4 mutation, it was only present in the primary tumor cells that were placed after the
metastatic divergence. This further supports that SiCloneFit’s inference of two primary
tumor subclones is more plausible compared to SCG’s inference of single primary tumor
subclone. In addition, SCG being a clonal clustering method did not infer the phylogeny

of the subclones.

2.2.2 Analysis of Patient CRC2

This dataset consisted of 182 cells [[13] obtained from both primary colon tumor and liver
metastasis. The original study reported 36 somatic SN'Vs after variant calling. The reported
genotypes were binary values, representing the presence or absence of a mutation at the
SNV sites.

After running SiCloneFit on this dataset, we collected the samples from the poste-
rior and computed a maximum clade credibility tree based on the posterior samples. Six
different clusters were identified in the MPEAR solution based on the posterior samples.
The largest cluster (N) consisted of normal cells that did not harbor any somatic mutation.
There were two clusters consisting of primary aneuploid tumor cells (P1 and P2) and two
clusters consisting of metastatic aneuploid tumor cells (M1 and M2). There was one more

cluster (I) comprised of diploid cells that had somatic mutations completely different from
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the primary or metastatic clusters, representing an independant clonal lineage consistent
with the findings reported by Leung ef al. [13]. The clonal genotype of each cluster was
inferred based on the posterior samples. The inferred genotypes are shown in Supplemen-
tal Fig. Based on the clonal genotypes, we inferred the ancestral sequences at the
internal nodes and this enabled us to find the maximum likelihood solution for placing the
mutations on the branches of the clonal phylogeny. In the original study [13]], SCITE tree
identified two metastatic divergence events for this patient and also identified 4 mutations
that occurred between the two metastatic divergence points. These were termed as ‘bridge
mutations’ (FHIT, APC, CHNI and ATP7B). These bridge mutations were identified to be
present in primary tumor cells as well as cells in the second metastatic subclone but absent
in the cells in the first metastatic subclone. SiCloneFit also identified two metastatic sub-
clones but reported on two ‘bridge mutations’ (FHIT and ATP7B) that differed between the
two metastatic subclones. These two mutations were reported to be present in the primary
tumor subclone P2 and the metastatic tumor subclone M2, but were absent in metastatic
tumor subclone M1. On the other hand, the other two mutations (APC and CHN1) were re-
ported to occur before any metastatic divergence and subsequently were present in all three
subclones (P2, M2 and M1). To verify this, we performed the mixture-model Bayesian
binomial test proposed in [[13] based on the read counts for these 4 mutations. The results
are shown in Supplemental Fig. and Supplemental Fig. Supplemental Fig.
supports SiCloneFit’s inference of FHIT and ATP7B to be the two ‘bridge mutations’. Sup-
plemental Fig.[S32]shows that the mutations CHNI and APC had high posterior probability
in a number of cells in all three subclones (P2, M2 and M1) indicating they potentially oc-
curred before the first metastatic divergence and were present in all three subclones. This
indicates that SiCloneFit’s placement of these mutations in the tumor phylogeny is more
plausible than that of SCITE.

Other than the precursor mutations shared with the primary tumor clones, the metastatic
tumor clones had three more mutations in common (PTPRD, FUS and LINGO?2). This is
an evidence for a potential convergent evolution. To evaluate the accuracy of this, we per-
formed the mixture-model Bayesian binomial test [[13] with the reference and variant read

counts for these three recurrent mutations to determine if they were present in both the
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metastatic subclones. The resulting posterior probabilities and heat map (Supplemental
Fig. [S33) provided strong evidence that LINGO2 and FUS were present in both the sub-
clones. PTPRD had strong evidence of being present in the second metastatic subclone
(M2) but weak evidence of occurring in the first metastatic subclone (M1). The posterior
probability pattern of PTPRD also suggested that this mutation might have been affected
by allelic dropout.

For comparison, we ran SCG on this dataset. SCG reported 5 clonal clusters: a cluster
(SN) consisting of unmutated normal cells, a cluster (SP) consisting of primary aneuploid
cells, two metastatic clusters (SM1 and SM2), and another cluster (SI) consisting of pri-
mary diploid cells. The clonal genotypes of the cells inferred by SCG is shown in Supple-
mental Fig. Clustering and genotyping of SCG mostly agreed with that of SiCloneFit.
However, SCG failed to detect two primary tumor subclones and instead clustered them
together into one subclone (SP). As a result, the genotyping of the corresponding primary
tumor cells were also incorrect and this can also affect the reconstruction of the mutational

order.

2.3 Identification of Doublets from Experimental SCS Data

Neither SiCloneFit nor SCG detected any doublet from the above two colorectal cancer
SCS datasets evidencing the absence of doublets in those datasets. In order to validate
SiCloneFit’s doublet detection from experimental SCS data, we applied SiCloneFit on a
high grade serous ovarian cancer dataset introduced in McPherson et al. [17]]. This dataset
consisted of 370 cells and 43 somatic mutations were reported from these cells. SiClon-
eFit’s doublet-aware model reported 20 doublets from this dataset. Since, ground truth
doublets were not known for this dataset, we also ran SCG’s doublet-aware model on this
dataset. SCG reported 28 doublets for this dataset. Out of the 20 doublets identified by
SiCloneFit, 17 were also reported by SCG. We further tested the 11 cells that were reported
as doublets by SCG but not by SiCloneFit. 10 of them had similar posterior probabilities
(computed by SCG) of being a doublet or a singlet. In other words, SiCloneFit inferred

the most confident doublets inferred by SCG. The posterior probabilities of the inferred
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doublets are shown in Supplemental Fig. This experiment shows SiCloneFit’s ability

in detecting potential doublets from empirical single-cell datasets.
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3 Supplemental Figures

Qo , Do

Supplemental Figure S1: Probabilistic graphical model representing the SiCloneFit
model. The indices and variables of the model are described in Supplemental Table [ST]|
and Supplemental Table [S2|respectively. Shaded nodes represent observed values or fixed
values, while the un-shaded nodes represent hidden variables and their values are estimated.
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Supplemental Figure S2: Probabilistic graphical model representing the extended
SiCloneFit model for handling doublets. The new variables introduced in this model
are described in Supplemental Table Shaded nodes represent observed values or fixed
values, while the un-shaded nodes represent hidden variables and their values are estimated.
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Supplemental Figure S3: Performance comparison on datasets generated under vary-
ing values of probability of deletion. SiCloneFit’s performance is compared against that
of SiFit for varying values of the probability of deletion, d. On the x-axis, we have results
corresponding to d € {0.05,0.1,0.15,0.2}. The number of clones was set to K = 10, the
number of cells was set to m = 100, and the number of sites was set to n = 100. Each
box plot summarizes results for 5 simulated datasets with varying clonal phylogeny and
varying size of clonal clusters. (a) Comparison of clustering accuracy measured in terms
of adjusted rand index that compares the inferred clustering against the ground truth. (b)
Comparison of tree reconstruction error in inferring the clonal phylogeny. (c) Comparison
of genotyping error measured in terms of hamming distance per cell per site between the
true genotype matrix and inferred genotype matrix.
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Supplemental Figure S4: Performance comparison on datasets generated under vary-
ing values of probability of LOH. SiCloneFit’s performance is compared against that of
SiFit for varying values of the probability of LOH, w. On the x-axis, we have results cor-
responding to w € {0.05,0.1,0.15,0.2}. The number of clones was set to KX = 10, the
number of cells was set to m = 100, and the number of sites was set to n = 100. Each
box plot summarizes results for 5 simulated datasets with varying clonal phylogeny and
varying size of clonal clusters. (a) Comparison of clustering accuracy measured in terms
of adjusted rand index that compares the inferred clustering against the ground truth. (b)
Comparison of tree reconstruction error in inferring the clonal phylogeny. (c) Comparison
of genotyping error measured in terms of hamming distance per cell per site between the
true genotype matrix and inferred genotype matrix.
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Supplemental Figure S5: Performance comparison on datasets generated under vary-
ing values of the probability of recurrent mutation. SiCloneFit’s performance is com-
pared against that of SiFit for varying values of the probability of recurrent mutation, . On
the x-axis, we have results corresponding to r € {0.0,0.05,0.1,0.15,0.2}. The number of
clones was set to X' = 10, the number of cells was set to m = 100, and the number of
sites was set to n = 100. Each box plot summarizes results for 5 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Comparison of clustering
accuracy measured in terms of adjusted rand index that compares the inferred clustering
against the ground truth. (b) Comparison of tree reconstruction error in inferring the clonal
phylogeny. (c) Comparison of genotyping error measured in terms of hamming distance
per cell per site between the true genotype matrix and the inferred genotype matrix.
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Supplemental Figure S6: Clustering accuracy on datasets with varying number of cells.
SiCloneFit’s clustering accuracy is compared against that of SCG, OncoNEM, SiFit and
SCITE. The y-axis denotes the clustering accuracy measured in terms of adjusted rand
index that compares the inferred clustering against the ground truth. On the x-axis, we
have results corresponding to n = 50 and n = 100. Each box plot summarizes results for
10 simulated datasets with varying clonal phylogeny and varying size of clonal clusters. (a)
Results for m = 100 (comparison against SCG, OncoNEM, SiFit and SCITE). (b) Results
for m = 500 (comparison against SCG, SiFit and SCITE).
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Supplemental Figure S7: Genotyping performance on datasets with varying number of
cells. SiCloneFit’s genotyping performance is compared against that of SCG, OncoNEM,
SiFit and SCITE. The y-axis denotes the genotyping error measured in terms of hamming
distance per cell per site between the true genotype matrix and inferred genotype matrix.
On the x-axis, we have results corresponding to n = 50 and n = 100. Each box plot
summarizes results for 10 simulated datasets with varying clonal phylogeny and varying
size of clonal clusters. (a) Results for m = 100 (comparison against SCG, OncoNEM,
SiFit and SCITE). (b) Results for m = 500 (comparison against SCG, SiFit and SCITE).
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Supplemental Figure S8: Performance in inferring clonal phylogeny on datasets with
varying number of cells. SiCloneFit’s performance in inferring clonal phylogeny is com-
pared against that of SCG, OncoNEM, SiFit and SCITE. The y-axis denotes the tree re-
construction error measured in terms of pairwise cell shortest-path distance between the
true clonal phylogeny and inferred clonal phylogeny. On the x-axis, we have results cor-
responding to n = 50 and n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. (a) Results
for m = 100 (comparison against SCG, OncoNEM, SiFit and SCITE). (b) Results for
m = 500 (comparison against SCG, SiFit and SCITE).
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Supplemental Figure S9: Performance comparison on datasets with varying number
of clones. SiCloneFit’s performance is compared against that of SCG, OncoNEM, SiFit
and SCITE for varying number of clones. On the x-axis, we have results corresponding
to K = 10 and K = 15. The number of cells was set to m = 100, and the number of
sites was set to n = 100. Each box plot summarizes results for 10 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Comparison of clustering
accuracy measured in terms of adjusted rand index that compares the inferred clustering
from the ground truth. (b) Comparison of tree reconstruction error in inferring the clonal
phylogeny. (c¢) Comparison of genotyping error measured in terms of hamming distance
per cell per site between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S10: Performance comparison on datasets with varying false neg-
ative rate. SiCloneFit’s performance is compared against that of SCG, OncoNEM, SiFit
and SCITE for varying false negative rates. On the x-axis, we have results corresponding
to = 02,8 = 0.3and § = 0.4. The number of cells was set to m = 100, and the
number of sites was set to n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. (a) Comparison
of clustering accuracy measured in terms of adjusted rand index that compares the inferred
clustering from the ground truth. (b) Comparison of tree reconstruction error in inferring
the clonal phylogeny. (c) Comparison of genotyping error measured in terms of hamming
distance per cell per site between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S11: Performance comparison on datasets with varying false pos-
itive rate. SiCloneFit’s performance is compared against that of SCG, OncoNEM, SiFit
and SCITE for varying false positive rates. On the x-axis, we have results corresponding
to a = 0.05 and o« = 0.1. The number of cells was set to m = 100, and the number of
sites was set to n = 100. Each box plot summarizes results for 10 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Comparison of clustering
accuracy measured in terms of adjusted rand index that compares the inferred clustering
from the ground truth. (b) Comparison of tree reconstruction error in inferring the clonal
phylogeny. (c) Comparison of genotyping error measured in terms of hamming distance
per cell per site between the true genotype matrix and inferred genotype matrix.
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tering from the ground truth. On the x-axis, we have results corresponding to n =

and n = 100. Each box plot summarizes results for 10 simulated datasets with varying
clonal phylogeny and varying size of clonal clusters. (a) Results for the datasets without
any missing data. (b) Results for datasets with 15% missing data. (c) Results for datasets

with 30% missing data.
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Supplemental Figure S13: Genotyping performance on datasets with missing data.
SiCloneFit’s genotyping performance is compared against that of SCG. The y-axis denotes
the genotyping error measured in terms of hamming distance per cell per site between the
true genotype matrix and inferred genotype matrix. On the x-axis, we have results cor-
responding to n = 50 and n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. (a) Results for
the datasets without any missing data. (b) Results for datasets with 15% missing data. (c)
Results for datasets with 30% missing data.
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Supplemental Figure S14: Performance in inferring clonal phylogeny on datasets with
missing data. SiCloneFit’s performance in inferring clonal phylogeny is compared against
that of SCG. The y-axis denotes the tree reconstruction error measured in terms of pair-
wise cell shortest-path distance between the true clonal phylogeny and inferred clonal phy-
logeny. On the x-axis, we have results corresponding to n = 50 and n = 100. Each box
plot summarizes results for 10 simulated datasets with varying clonal phylogeny and vary-
ing size of clonal clusters. (a) Results for the datasets without any missing data. (b) Results
for datasets with 15% missing data. (c¢) Results for datasets with 30% missing data.
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Supplemental Figure S16: Performance comparison on datasets generated under neu-
tral evolution. SiCloneFit’s performance is compared against that of SCG, SiFit and
SCITE on simulated datasets under neutral evolution. On the x-axis, we have results cor-
responding to m = 100 and m = 200. The number of clones was set to K = 20, and
the number of sites was set to n = 100. Each box plot summarizes results for 5 simulated
datasets. (a) Comparison of clustering accuracy measured in terms of Adjusted Rand In-
dex that compares the inferred clustering against the ground truth. (b) Comparison based
on the genotyping error measured in terms of hamming distance per cell per site between
the true genotype matrix and inferred genotype matrix. (c) Comparison based on the tree
reconstruction error measured in terms of pairwise cell shortest-path distance between the
true clonal phylogeny and inferred clonal phylogeny.
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Supplemental Figure S17: Estimation of error rates by SiCloneFit. Error rates inferred
by SiCloneFit are compared against the true error rates used for generating the data. The
green dots correspond to the results of SiCloneFit. The black line represents a fitted regres-
sion line. (a) SiCloneFit’s estimate of false positive rates is compared against the true false
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Supplemental Figure S18: Estimation of number of clusters by SiCloneFit. Number
of clusters inferred by SiCloneFit is compared against the true number of clusters in the
simulated datasets. On the x-axis, we have results corresponding to A = 10, A = 100 and
A = 1000. X denotes the concentration parameter of the Dirichlet distribution used for
sampling the observed prevalences of the clones. Each box plot summarizes results for 10
simulated datasets with varying clonal phylogeny and varying size of clonal clusters.
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Supplemental Figure S19: Scalability of SiCloneFit for large number of cells. Perfor-
mance of SiCloneFit for datasets containing large number of cells. On the x-axis, we have
results corresponding to m = 500 and m = 2000. Each box plot summarizes results for
10 simulated datasets with varying clonal phylogeny and varying size of clonal clusters.
(a) Clustering accuracy measured in terms of adjusted rand index that compares the in-
ferred clustering from the ground truth. (b) Tree reconstruction error in inferring the clonal
phylogeny. (c) Genotyping error measured in terms of hamming distance per cell per site
between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S20: Scalability of SiCloneFit for large number of genomic sites.
Performance of SiCloneFit for datasets with large number of mutation sites. On the x-
axis, we have results corresponding to n = 100 and n = 400. Each box plot summarizes
results for 10 simulated datasets with varying clonal phylogeny and varying size of clonal
clusters. (a) Clustering accuracy measured in terms of adjusted rand index that compares
the inferred clustering from the ground truth. (b) Tree reconstruction error in inferring the
clonal phylogeny. (c) Genotyping error measured in terms of hamming distance per cell
per site between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S21: Clustering accuracy on datasets containing doublets with
varying number of cells. SiCloneFit’s clustering accuracy is compared against that of
SCG for datasets containing doublets. The y-axis denotes the clustering accuracy measured
in terms of B-Cubed F-score that compares the inferred clustering from the ground truth.
On the x-axis, we have results corresponding to n = 50 and n = 100. Each box plot
summarizes results for 10 simulated datasets with varying clonal phylogeny and varying
size of clonal clusters. The top panel shows the results for m = 100 and the bottom panel
shows the results for m = 500.
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Supplemental Figure S22: Genotyping performance on datasets containing doublets
with varying number of cells. SiCloneFit’s genotyping performance is compared against
that of SCG for datasets containing doublets. The y-axis denotes the genotyping error
measured in terms of hamming distance between the true genotype matrix and inferred
genotype matrix excluding the inferred doublets. On the x-axis, we have results corre-
sponding to n = 50 and n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. The top panel
shows the results for m = 100 and the bottom panel shows the results for m = 500.
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Supplemental Figure S23: Performance in inferring clonal phylogeny on datasets con-
taining doublets with varying number of cells. SiCloneFit’s performance in inferring
clonal phylogeny is compared against that of SCG for datasets that contain doublets. The
y-axis denotes the tree reconstruction error measured in terms of pairwise cell shortest-
path distance between the true clonal phylogeny and inferred clonal phylogeny excluding
the inferred doublets. On the x-axis, we have results corresponding to n = 50 and n = 100.
Each box plot summarizes results for 10 simulated datasets with varying clonal phylogeny
and varying size of clonal clusters. The top panel shows the results for m = 100 and the
bottom panel shows the results for m = 500.
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Supplemental Figure S24: Performance comparison on datasets containing doublets
with varying number of clones. SiCloneFit’s performance is compared against that of
SCG on datasets containing doublets for varying number of clones. On the x-axis, we have
results corresponding to K = 10 and K = 15. The number of cells was set to m = 100,
and the number of sites was set to n = 100. Each box plot summarizes results for 10
simulated datasets with varying clonal phylogeny and varying size of clonal clusters. (a)
Comparison of clustering accuracy measured in terms of B-Cubed F-score that compares
the inferred clustering from the ground truth. (b) Comparison based on the performance in
inferring the clonal phylogeny. (c) Comparison based on the genotyping error measured in
terms of hamming distance between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S25: Clustering accuracy on datasets containing doublets and
missing entries. SiCloneFit’s clustering accuracy is compared against that of SCG for
datasets that contain doublets as well as missing values. The y-axis denotes the clustering
accuracy measured in terms of B-cubed F-score that compares the inferred clustering from
the ground truth excluding inferred doublets. On the x-axis, we have results corresponding
ton = 50 and n = 100. Each box plot summarizes results for 10 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Results for the datasets
without any missing data. (b) Results for the datasets with 15% missing data and (c) Results
for the datasets with 30% missing data.
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Supplemental Figure S26: Genotyping performance on datasets containing doublets
and missing entries. SiCloneFit’s genotyping performance is compared against that of
SCG for datasets that contain doublets as well as missing values. The y-axis denotes the
genotyping error measured in terms of hamming distance between the true genotype matrix
and inferred genotype matrix. On the x-axis, we have results corresponding to n = 50 and
n = 100. Each box plot summarizes results for 10 simulated datasets with varying clonal
phylogeny and varying size of clonal clusters. (a) Results for the datasets without any
missing data. (b) Results for the datasets with 15% missing data and (c) Results for the
datasets with 30% missing data.
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Supplemental Figure S27: Performance in inferring clonal phylogeny on datasets con-
taining doublets and missing entries. SiCloneFit’s performance in inferring clonal phy-
logeny is compared against that of SCG for datasets that contain doublets as well as missing
values. The y-axis denotes the tree reconstruction error measured in terms of pairwise cell
shortest-path distance between the true clonal phylogeny and inferred clonal phylogeny.
On the x-axis, we have results corresponding to n = 50 and n = 100. Each box plot sum-
marizes results for 10 simulated datasets with varying clonal phylogeny and varying size
of clonal clusters. (a) Results for the datasets without any missing data. (b) Results for the
datasets with 15% missing data and (c) Results for the datasets with 30% missing data.
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Supplemental Figure S28: Inferred genotypes of cells from the posterior samples ob-
tained using SiCloneFit for metastatic colorectal cancer patient CRCI1.
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Supplemental Figure S29: Clonal genotypes of cells inferred using SCG for metastatic
colorectal cancer patient CRC1.
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Supplemental Figure S30: Inferred genotypes of cells from the posterior samples ob-
tained using SiCloneFit for metastatic colorectal cancer patient CRC2.
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Supplemental Figure S31: Probability heatmap of the FHIT and ATP7B mutations
in CRC2. Heatmaps of the posterior probabilities of two bridge mutations (FHIT, and
ATP7B) in patient CRC2 are listed for the primary and metastatic tumor clusters. Both
SiCloneFit and SCITE identify these two mutations as ‘bridge mutations’ between the two
metastatic divergence events. Heatmaps for the two metastatic subclones (M1 and M2) and
the primary subclone (P2) are shown separately. Each variant is colored in the heatmap
based on the corresponding posterior probability value.
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Supplemental Figure S32: Probability heatmap of the CHNI, and APC mutations in
CRC2. Heatmaps of the posterior probabilities of two mutations (CHNI, and APC) in
patient CRC?2 are listed for the primary and metastatic tumor clusters. These two mutations
were identified as ‘bridge mutations’ in the original study when using SCITE, however,
SiCloneFit placed them to occur before any metastatic divergence (classifying them as
‘non-bridge’). Heatmaps for the two metastatic subclones (M1 and M2) and the primary
subclone (P2) are shown separately. Each variant is colored in the heatmap based on the
corresponding posterior probability value.
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Supplemental Figure S33: Probability heatmap of the recurrent mutations in CRC2.
Heatmaps of the posterior probabilities of the three recurrent mutations (PTPRD, FUS and
LINGO?2) in patient CRC2 are listed for the metastatic tumor cells. Heatmaps for the two
metastatic subclones (M1 and M2) are shown separately. Each variant is colored in the
heatmap based on the corresponding posterior probability value.

98



CRC2 (CO8) I No Mutation I Mutation

SN SISM1 SM2 SP

S '1HIllmms

s T i
ey AT TR AT AT AT AT AT AT AT AT
s oo M o e i
rox iU
cons [ it
o= g fom i i iU
Ot 1T TR TAT AT
s [ i ma it

arc L AR TR
g AT TAT TR AT AATTATAATTATAATATTAATATT
e [ A i
L oagr AT AT AT AT FATATTATTATTATT
e A P TR FATERFTATERTTATEATTATAATTATAA
e et T AT AT
cowco. - AR RN R RO RRC RO RO ORS00 O A T At
e IO OO AR AR RO OO0 O
ooz NN AR R R OO RO AR AR AR AR R
ereeo - RO OO0 N NN VR AR RO
os-{ NN RO RO AR AR RO O SRS A LA AN RO
- AR RO OO RCATCAMUACARRCARRRC AR AR
- RO R R OSSR RO
ez TR AR R R RO RO OO SRS A R
stz 0RO AR AR RO O
e RN R R RO RO RO SRR R RO
sees2-{ IR AR RROOAROAROAROR
ecsca- AR AR CARRO RO AR AROCROCCRRCRAO O OARRO AR AROARORCOACRRAR O
cases- RN R RO OO OO AR AR AR CARRRCARRRC AR AR
ooz IR AR AR R R OO RO ACRASR A RO RA R A R AORAR
cowcoz. | RO RO RO N R R RO
- AR R RO SR AR R R

ce-N RO RSOOSR RO
e - RO R R RO RN RS R RO CA RO RO
re- NN R AR RO R RO SR RO R R RO
sescz- RO RO ROCRRRCO AR RO RO RO A
e RO R0

Genes

Supplemental Figure S34: Clonal genotypes of cells inferred using SCG for metastatic
colorectal cancer patient CRC2.
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Supplemental Figure S35: Posterior probabilities of the doublets inferred by SCG and
SiCloneFit from the high grade serous ovarian cancer dataset. The dataset consisted
of 370 cells and 43 somatic mutations. The posterior probabilities are computed by SCG.
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4 Supplemental Tables

Supplemental Table S1: Indices used in SiCloneFit model (Supplemental Fig. .

’ Index \ Range \ Description ‘
i {1,...,n} Index of SNV site
j {1,...,m} | Index of Single-cell sample
k {1,...,00} | Index of Clone (cluster)

Supplemental Table S2: Variables used in SiCloneFit model (Supplemental Fig. .

’ Variable \ Range \ Description
Qo (0, 00) Model parameter for the
Chinese Restaurant Process (CRP) model
Cj {1,..., 00} cluster indicator for cell j
T all trees on |c| leaves Clonal Phylogenetic Tree
Ma(={ N} 0,1] Parameters of the model of evolution
G {0,..., ]9} True genotype of clone k for genomic locus ¢
Observed genotype of i* SNV
D;; {0,..., 90|} from single cell j. Observed as the
input data inferred from a variant caller.
o 0,1] False-positive error rate
6} 0,1] False-negative error rate

Supplemental Table S3: Hyper-parameters used in SiCloneFit model (Supplemental

Fig. [ST).

| Hyper-parameter |

Description

|

a,b Hyper-parameters for Prior distribution of o
Qg oy Hyper-parameters for Prior distribution of «
ag, bg Hyper-parameters for Prior distribution of 3

any, by Hyper-parameters for Prior distribution of M,
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Supplemental Table S4: Error model distribution for ternary genotype.

i ‘
0 1 2
0 1—(15 0‘2—[3 o a?f
Gei|1| £~ 1-p L
2 0 0 1

Supplemental Table S5: Error model distribution for binary genotype.

L[ [ Dy |
0 1
Gei|0]1-a e
1 I6] 1-p

Supplemental Table S6: Expected genotype state after combining two genotypes using the
binary operator ®.

© |g=0|g=1|g=2
g=20 0 1 1
g=1 1 1 1
g=72 1 1 2

Supplemental Table S7: New variables used in extended SiCloneFit model for handling
doublets (Supplemental Fig. [S2).

’ Variable \ Range \

Description ‘
c; {1,...,00} Primary cluster indicator for cell j
& {1,...,]c'} Secondary cluster indicator for cell j.
Y; {0,1} Bernoulli variable indicating if cell j
is a singlet (0) or doublet (1)
J 0,1] Doublet rate
ag, bs Hyper-parameters for Prior distribution of §
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