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1 Supplemental Methods

Here, we describe the model and inference algorithm of SiCloneFit, a Bayesian nonpara-

metric framework for simultaneous reconstruction of clonal populations of cells, clonal

genotypes and clonal phylogeny from noisy somatic single nucleotide variant (SNV) pro-

files of single cells. This probabilistic framework jointly solves different aspects of intra-

tumor phylogeny problem and automatically

1. estimates the number of clonal populations,

2. infers the clonal population of origin for each single cell,

3. estimates the clonal genotypes, and

4. places the clonal clusters at the leaves of a clonal phylogeny, a phylogenetic tree that

reflects the evolutionary relationships between different clonal populations.

For an ease of exposition, we first describe the basic singlet (all cells are assumed to be

singlets) model and later on extend that model to account for doublets.
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1.1 Singlet Model of SiCloneFit

1.1.1 Model Overview

We derive the SiCloneFit model in the following section. The probabilistic graphical model

is presented in Supplemental Fig. S1. A list of model variables is provided in Supplemental

Table S2, hyper-parameters are described in Supplemental Table S3 and associated indices

have been described in Supplemental Table S1.

1.1.2 Model Description

We assume that we have measurements from m single cells. For each cell, n somatic

single nucleotide variant (SNV) sites have been measured. The data can be represented by

a matrix Dn×m = (Dij) of observed genotypes, where Dij is the observed genotype at the

ith site of cell j. Let gt be the set of possible true genotype values for the SNVs, and go be

the set of observable values for the SNVs. For binary measurements for SNVs, gt = {0, 1},
whereas go = {0, 1, X}, where 0, 1 and X denote the absence of mutation, presence of

mutation, and missing value respectively. If ternary measurements are available for SNVs,

gt = {0, 1, 2} and go = {0, 1, 2, X}, where 0 denotes homozygous reference genotype, 1

and 2 denote heterozygous, and homozygous non-reference genotypes, respectively, and

X denotes missing data.

We assume that there is a set of K clonal populations from which m single cells are

sampled and the clonal populations can be placed at the leaves of a clonal phylogeny, T .

Each clonal population consists of a set of cells that have identical genotype (with respect

to the set of mutations in consideration) and a common ancestor. The genotype vector

associated with a clone c is called clonal genotype (denoted by Gc) and it records the geno-

type values for all n sites for the corresponding clone. The true genotype vector of each

cell is identical to the clonal genotype of the clonal population where it belongs to. The

clonal genotype matrix, GK×n, represents the clonal genotypes ofK clones. It is important

to note that, K, the number of clones is unknown. To automatically infer the number of

clones and assign the cells to clones, we introduce a tree-structured infinite mixture model.

[18] describes a nonparametric Bayesian prior over trees similar to mixture models using
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a Chinese restaurant process (CRP) [21] prior. For this tree-structured CRP, each node of

the tree represents a cluster. In our model, we extend this idea to define a nonparametric

Bayesian prior over binary trees, leaves of which represent the mixture components (clonal

clusters). A Chinese restaurant process defines a distribution for partitioning customers

into different tables. In our problem, single cells are analogous to customers and clonal

clusters are analogous to tables. Let cj denote the cluster assignment for cell j and assume

that cells 1 : j − 1 have already been assigned to clonal clusters {1, . . . , |c1:j−1|}, where

|c1:j−1| denotes the number of clusters induced by the cluster indicators of j− 1 cells. The

cluster assignment of cell j, cj is based on the distribution defined by a Chinese restaurant

process is given by

p(cj = c|c1:(j−1), α0) =
nc

j − 1 + α0

p(cj 6= ck∀k < j|c1:(j−1), α0) =
α0

j − 1 + α0

(1)

where nc denotes the number of cells already assigned (excluding cell j) to cluster c. α0 is

the concentration parameter for the CRP model.

The clonal phylogeny, T , is a rooted directed binary tree whose number of leaves is

equal to the number of clonal clusters, K = |c| defined by the assignment of m cells to

different clusters by the CRP. The root of T represents normal (unmutated) genotype and

somatic mutations are accumulated along the branches of the phylogeny. Each leaf in the

clonal phylogeny corresponds to a clonal cluster, c ∈ {1, . . . , K} and is associated with

a clonal genotype Gc that records the set of mutations accumulated along the branches

from the root. To model the evolution of the clonal genotypes, we employ a finite-site

model of evolution, Mλ, that accounts for the effects of point mutations, deletion and

loss of heterozygosity on the clonal genotypes. The model of evolution assigns transition

probabilities to different genotype transitions along the branches of the clonal phylogeny.

The true genotype of each cell is identical to the clonal genotype of the clonal cluster where

it is assigned. However, observed genotypes of single cells differ from their true genotype

due to amplification errors introduced during the single-cell sequencing work flow. The

effect of amplification errors is modeled using an error model distribution parameterized
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by FP error rate, α and FN error rate, β. The generative process can be described as follows:

1. draw α0 ∼ Gamma(a, b), α ∼ Beta(aα, bα), β ∼ Beta(aβ, bβ)

2. For j ∈ {1, 2, . . . ,m}, draw cj ∼ CRP (α0).

From this, derive K = |c|, the total number of clusters (or clones) implicitly defined

by c.

3. draw T ∼ Tprior(K).

4. For λ ∈Mλ, draw λ ∼ Beta(aMλ
, bMλ

)

5. For k ∈ {1, 2, . . . , K}, draw Gk ∼ F (Gk|T ,Mλ).

6. For j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}, draw Dij ∼ E(Dij|Gcji, α, β).

c denotes the clonal assignments of all cells. Tprior is the prior distribution on phylo-

genetic trees for a fixed number of leaves. Mλ denotes the set of parameters in the

finite-sites model of evolution. F denotes a distribution on the genotypes at the leaves

of a phylogenetic tree and can be computed using Felsenstein’s pruning algorithm [6]

given the phylogeny and a finite-site model of evolution. E is the error model distribu-

tion that relates the observed genotype at locus i for cell j, Dij to clonal genotype Gcji.

a, b, aα, bα, aβ, bβ, aM , bM denote different hyperparameters used in this model.

1.1.3 Model of Evolution

To capture the effect of point mutations, LOH and deletion on the clonal genotypes along

the branches of clonal phylogeny, we employ a finite-site model of evolution similar to the

one introduced in SiFit [29]. The finite-site model of evolution, Mλ, is modeled using

a continuous-time Markov chain that assigns a probability with each possible transition

of genotypes. The branches of clonal phylogeny T , have associated branch lengths that

represent expected number of mutations per locus. We assume that the genomic loci evolve

identically and independently. For ternary genotype, gt = {0, 1, 2}, a 3 × 3 transition

probability matrix describes the model of evolution. The transition probability matrix, Pt,

along a branch of length t is given by Pt = exp(Qt), where, Q denotes the transition
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rate matrix of the Markov chain. The transition rate matrix consists of the infinitesimal

rates (during infinitesimally small time, ∆t) for switching between genotype states for the

continuous-time Markov chain. As in SiFit, we assume that only one event can occur at

a site during ∆t, the smallest unit of time. The parameter λr accounts for the effect of

recurrent mutation and the parameter λl captures mutation loss due to deletion and LOH.

The product of the transition rate matrix and the branch length (t) is given by:

Qt =




−t t 0

(λr+λl)×t
2

−(λr + λl)× t (λr+λl)×t
2

0 λr × t −λr × t




(2)

In Eq. (2), Qt(i, j) denotes the rate of genotype i changing to genotype j along a branch

of length t, i, j ∈ {0, 1, 2}. We assume that the parameters λr and λl are Beta distributed

as they represent relative rates with value between 0 and 1. Pt(i, j) denotes the probabality

of transition of genotype i to genotype j along a branch of length t. Each entry of Pt is a

function of t, λr and λl.

For binary genotype states, the product of transition rate matrix and branch length is

given by:

Qt =



−t t

(λr+λl)×t
2

− (λr+λl)×t
2


 (3)

1.1.4 Single-cell Error Model

The FP and FN errors in single-cell SNV profiles have been modeled using two parameters

α and β respectively as in SiFit [29]. The error model distribution, E(Dij|Gcji, α, β),

gives the probability of observing genotype Dij for locus i in cell j, given the true clonal

genotype Gcji and Supplemental Table S4 shows it for ternary genotype. Supplemental

Table S5 shows the error model distribution for binary genotype. α and β are assumed to

be Beta distributed variables as they represent probability of FP and FN errors respectively.
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1.1.5 Posterior Distribution

The SiCloneFit model has several hidden variables as well as some observed variables.

The posterior distribution, P over the latent variables is given by

P(c,G, T ,Mλ, α, β, α0|D, aα, bα, aβ, bβ, aM , bM , a, b) ∝

P (D|c,G, T ,Mλ, α, β, α0, aα, bα, aβ, bβ, aM , bM , a, b)×

P (c,G, T ,Mλ, α, β, α0|aα, bα, aβ, bβ, aM , bM , a, b)

= E(D|c,G, α, β)F (G|T ,Mλ)P (c|α0)P (T )

P (α|aα, bα)P (β|aβ, bβ)P (Mλ|aM , bM)P (α0|a, b) (4)

The hidden variables that we want to estimate from this model are

1. c, a vector containing the cluster assignment for all cells,

2. G, a K × n clonal genotype matrix, where Gk denotes the genotype of clone k,

K = |c|, the number of clusters defined by c,

3. T , the clonal phylogeny, representing the genealogical relationships between the

clones,

4. Mλ, parameters of the model of evolution,

5. α, false positive rate, and

6. β, false negative rate.

The number of clones is implicitly defined by the vector c. The posterior probability is a

product of likelihood function and prior. These are described in the following.
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1.1.6 Likelihood Function

The likelihood function employed by SiCloneFit is given by

P (D|c,G, T ,Mλ, α, β, α0, aα, bα, aβ, bβ, aM , bM , a, b) = E(D|c,G, α, β)

=
n∏

i=1

m∏

j=1

E(Dij|Gcji, α, β)
(5)

In Eq. (5), E(Dij|Gcji, α, β) is obtained from the error model distribution for binary and

ternary genotype as defined in Supplemental Table S5 and Supplemental Table S4 respec-

tively.

1.1.7 Prior Distributions

The SiCloneFit model incorporates a compound prior given by

P (c,G, T ,Mλ, α, β, α0|aα, bα, aβ, bβ, aM , bM , a, b) =

F (G|T ,Mλ)P (c|α0)P (T )P (α|aα, bα)P (β|aβ, bβ)P (Mλ|aM , bM)P (α0|a, b) (6)

Below we describe each prior distribution.

1.1.7.1 Prior on Clonal Genotypes

F (G|T ,Mλ) denotes the prior distribution on the clonal genotype matrix keeping the

clonal phylogeny and parameters of model of evolution fixed. F (G|T ,Mλ) can be effi-

ciently calculated using Felsenstein’s pruning algorithm [6] as

F (G|T ,Mλ) =
n∏

i=1

F (G∗i|T ,Mλ) (7)

Here, G∗i denotes the genotype of all clones at ith site. The prior probability for site i,

F (G∗i|T ,Mλ) is given by the partial likelihood of the root r of clonal phylogeny T for

genotype 0 and is computed using Felsenstein’s pruning algorithm, a dynamic program-

ming on clonal phylogeny that marginalizes over all possible mutational histories along

the branches of the phylogeny.
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1.1.7.2 Prior on Partition of Cells into Clonal Clusters

P (c|α0) denotes the prior probability of partitioning m single cells into |c| clusters under

a CRP with concentration parameter α0 and is given by

P (c|α0) =
Γ(α0)α

|c|
0

Γ(α0 +m)

∏

k∈c
Γ(nk) (8)

In Eq. (8), Γ denotes Gamma function, which is defined as Γ(N) = (N − 1)! for a positive

integer N . nk denotes the number of cells assigned to a clonal cluster k in the current

cluster assignment c.

1.1.7.3 Prior on Phylogeny

P (T ) denotes the prior probability on the clonal phylogeny. This is a product of prior on

topology and prior on branch length. We consider uniform distribution for the prior on

topology and exponential distribution for the prior on branch lengths. The overall prior

probability for the branches is given by a product over the branches in the phylogeny.

1.1.7.4 Prior on Other Parameters

The values of the parameters α, β,Mλ = {λr, λl} lie between 0 and 1. So, we use Beta

prior for these parameters. The hyperparameters for α and β are computed from the mean

and standard deviation of these prior distribution and are kept fixed. The mean is computed

from a simple estimation of α and β from the observed genotype matrix assuming usual

rate for these parameters and wide standard deviation is used to cover a wide range of

values.

For the concentration parameter α0, we assume a Gamma prior as suggested in [5]. We

set the value of hyperparameters for the Gamma distribution to a = 1, b = 1 for all the

analyses performed, but this is also a configurable parameter in the software.

1.1.8 Inference

As analytically computing the posterior distribution given by Eq. (4) is computationally

intractable, we implemented a Markov chain Monte Carlo (MCMC) sampling procedure
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based on the Gibbs sampling algorithm. Different classes of Gibbs sampling algorithm

have been designed to infer from infinite mixture models based on conjugate as well as non-

conjugate prior distributions [16, 20]. Our algorithm is inspired by a partial Metropolis-

Hastings partial Gibbs Sampling algorithm described in [20]. In our case, while performing

the partial Metropolis-Hastings steps, the dimensionality of the sample may change due to

addition of a new cluster (resulting in addition of new edge in the clonal phylogeny) or

removal of an existing singleton cluster (resulting in removal of edges from the clonal

phylogeny). In case the dimensionality changes, the absolute value of the determinant

of the Jacobian matrix is also taken into account, which results in partial reversible-jump

MCMC [9] updates. The resulting algorithm is a partial reversible-jump MCMC partial

Gibbs sampling algorithm.

Our sampling algorithm samples the hidden variables from their corresponding condi-

tional posterior distributions. In each iteration, it first samples the cluster indices for each

cell, then the parameters of the model of evolution and the clonal phylogeny (on a num-

ber of leaves equal to the number of clones defined by cluster indices vector) is sampled.

After that the clonal genotypes are sampled followed by sampling of α and β. Finally, the

concentration parameter α0 is sampled. The sampling algorithm is outlined below.

1.1.9 Partial Reversible-jump MCMC Partial Gibbs Sampling Algorithm

Given α(t−1)
0 , {c(t−1)j }mj=1, {G(t−1)

k }|c|k=1, T (t−1),M(t−1)
λ , α(t−1), and β(t−1) from the previous

iteration, we need to sample a new set of these parameters. t − 1 denotes the previous

iteration.

Set

• c = c(t−1), α0 = α
(t−1)
0

• G = {G(t−1)
k }|c|k=1

• T = T (t−1),Mλ =M(t−1)
λ

• α = α(t−1), β = β(t−1)
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Sample cluster indicators:

1. For j = 1, . . . ,m, update cj as follows:

• If cj is not a singleton (i.e., cj = cl for some l 6= j)

(a) let c∗j be a newly created clone.

(b) propose a new clonal tree, T ∗ ∼ qT (T ∗|T ), by adding the new clone c∗j

to T . qT is the proposal distribution that adds a new leaf to the clonal

phylogeny.

(c) Sample genotype vector for the new clone, Gc∗j ∼ F(Gc∗j |T ∗,G∗\c∗j ,Mλ).

G∗\c∗j is the clonal genotype matrix excluding the genotype vector for clone

c∗j . New clonal genotype matrix after sampling Gc∗j is denoted by G∗.

(d) compute acceptance ratio a(c∗j , cj) as follows:

a(c∗j , cj) =

min

[
1,

α0

m− 1

E(D[j]|Gc∗j , α, β)

E(D[j]|Gcj , α, β)

F (G∗|T ∗,Mλ)

F (G|T ,Mλ)

P (c∗|α0)

P (c|α0)

Tprior(T ∗)
Tprior(T )

qT (T |T ∗)
qT (T ∗|T )

Jq

]

(9)

Jq is the jacobian. D[j] is the jth column of observed genotype matrix.

(e) Set the new cj to this c∗j with probability a(c∗j , cj)

(f) If new cj is set to c∗j ,

– Set G = G∗, T = T ∗

• Otherwise, when cj is a singleton,

(a) Sample c∗j from c−j , choosing c∗j = c with probability nc
m−1 .

(b) Propose a new clonal tree, T ∗ ∼ qT (T ∗|T ), by removing the clone cj from

T .

(c) Propose new clonal genotype matrix G∗, by removing Gcj from G.

(d) compute acceptance ratio a(c∗j , cj) as follows:
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a(c∗j , cj) =

min

[
1,
m− 1

α0

E(D[j]|Gc∗j , α, β)

E(D[j]|Gcj , α, β)

F (G∗|T ∗,M)

F (G|T ,M)

P (c∗|α0)

P (c|α0)

Tprior(T ∗)
Tprior(T )

qT (T |T ∗)
qT (T ∗|T )

Jq

]

(10)

(e) Set the new cj to this c∗j with probability a(c∗j , cj).

(f) If new cj is set to c∗j ,

– Set G = G∗, T = T ∗

• If the new cj is not set to c∗j , it is the same as the old cj . G and T remains same.

2. For j = 1, . . . ,m, update cj as follows:

• If cj is a singleton, do nothing.

• Otherwise, choose a new value for cj from {c1, . . . , cm} using the following

probabilities:

P (cj = c|c−j, D[j],G, α, β) ∝ nc
m− 1

E(D[j]|Gc, α, β)

Sample clonal phylogeny and evolution model parameters:

Sample new clonal phylogeny T ∗ and new set of values for parameters of model of evolu-

tion,M∗
λ from the joint conditional posterior distribution,PT ,Mλ

(T ∗,M∗
λ|T ,Mλ,G, aM , bM)

T ∗,M∗
λ ∼ PT ,Mλ

(T ∗,M∗
λ|T ,Mλ,G, aM , bM)

Sample clonal genotypes:

For k = 1, ..., |c|

• Sample clonal genotype Gk for each clone as follows:

For i = 1, ..., n, sample Gki from the following distribution

Gki ∝ F(Gki|T,G−ki,M)×
∏

j|cj=k
E(Dij|Gki)
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Sample error rates:

1. Sample α ∼ Pα(α|D, c,G, β, aα, bα) ∼ E(D|c,G, β, α)P (α|aα, bα) using rejec-

tion sampling.

2. Sample β ∼ Pβ(β|D, c,G, α, aβ, bβ) ∼ E(D|c,G, β, α)P (β|aβ, bβ) using rejec-

tion sampling.

Sample concentration parameter:

Sample αt0 ∼ p(α0|m, |c|, a, b) based on the method described in [5] assuming the prior

distribution for α0 is Gamma(a, b).

1.1.9.1 Algorithm For Sampling Cluster Indicators

Partial reversible-jump MCMC partial Gibbs updates are used for sampling the cluster

indicators for cells as outlined above. In the partial reversible-jump MCMC steps, new

clusters are assigned to cells based on an acceptance ratio. The calculation of acceptance

ratio involves the calculation of likelihood ratio, prior ratio, proposal ratio and jacobian.

Below, we describe how each of these terms are computed.

1.1.9.1.1 Likelihood Ratio

The likelihood ratio, Lr is defined by:

Lr =
E(D[j]|Gc∗j , α, β)

E(D[j]|Gcj , α, β)
(11)

In Eq. (11), c∗j and cj are the new and old cluster indicators for cell j respectively. The

values in the numerator and the denominator can be calculated by:

E(D[j]|Gcj=c, α, β) =
n∏

i=1

E(Dij|Gci, α, β) (12)

E(Dij|Gci, α, β) is given by the error model distribution as shown in Supplemental Ta-

ble S5 or Supplemental Table S4.
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1.1.9.1.2 Prior Ratio

The prior ratio, Pr is given by:

Pr =
F (G∗|T ∗,Mλ)

F (G|T ,Mλ)

P (c∗|α0)

P (c|α0)

Tprior(T ∗)
Tprior(T )

(13)

and is a product of three ratios from three prior distributions. The first ratio, F (G∗|T ∗,Mλ)
F (G|T ,Mλ)

can be computed using Eq. (7). The second ratio, P (c∗|α0)
P (c|α0)

can be computed using Eq. (8).

The third ratio is the ratio of prior probabilities on clonal phylogeny. Let us assume, the

number of clones based on the new set of cluster indicators is, |c∗| = K. For non-singleton

cells (i.e., cj = cl for some l 6= j), when a new leaf is added to the clonal phylogeny, the

third ratio is defined by

Tprior(T ∗)
Tprior(T )

=
K − 1

(K − 2)(2K − 3)

f(ν1)f(ν2)f(ν∗)

f(ν1 + ν2)
(14)

In Eq. (14), ν1 and ν2 are the new branch lengths created by adding a new leaf to the branch

of length ν = ν1 + ν2 and ν∗ is the branch length assigned to the branch connected to the

new leaf. f(ν) is the edge length prior density evaluated at any branch of length ν. All

other edge lengths maintain the same values before and after adding the new leaf, so all

other terms in the prior ratio cancel each other.

For singleton cells, when an existing leaf is removed from the clonal phylogeny, the

third ratio is defined by

Tprior(T ∗)
Tprior(T )

=
(K − 1)(2K − 1)

K

f(ν1 + ν2)

f(ν1)f(ν2)f(ν∗)
(15)

In Eq. (15), ν = ν1 + ν2 is the branch length of the new branch after removing the leaf

associated with branch of length ν∗. As a result of the removal of this leaf, two branches

of length ν1 and ν2 are merged into one branch of length ν1 + ν2. All other edge lengths

maintain the same values before and after removal of the leaf, so all other terms in the

prior ratio cancel each other. For the distribution on branch lengths (f ), we use exponential

distribution.
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1.1.9.1.3 Proposal Ratio and Jacobian

The proposal or Hastings ratio, Qr, is given by:

Qr =
qT (T |T ∗)
qT (T ∗|T )

(16)

where qT is the proposal distribution. We have two moves corresponding to adding a

new leaf and removing an existing leaf respectively. The moves and their corresponding

proposal ratio are described below.

Add Clone: This move is performed when a new clonal cluster is created for a cell. This

results in adding a new leaf to the existing clonal phylogeny and the new leaf corresponds to

the new cluster. As a result, this move adds new parameters to the model. One branch of the

existing phylogeny is chosen at random. Let us assume that the length of the chosen branch

is ν. A new node is created on this branch which serves as the parent of the new clone/leaf

to be added. As a result, the existing branch gets divided into two new branches of lengths

ν1 and ν2. To choose the lengths of these new branches, we generate a uniformly random

number, w1 between 0 and 1, w1 ∼ U(0, 1) and the branch lengths are set as ν1 = ν ∗ w1

and ν2 = ν ∗ (1−w1). To propose the length of the branch that connects the new leaf to its

parent, we generate another uniform random number, w2 ∼ U(0, 1) and it is transformed

into a random deviate from the edge length prior distribution, ν∗ = −1
θ

ln(1− w2).

The Hastings ratio for adding a new clone to the clonal phylogeny is the probability of

proposing a remove clone move that exactly reverses the proposed add clone move, divided

by the probability of proposing the add clone move itself. Proposing an add clone move

involves the following steps:

1. Choose to perform the add clone move

2. Choose an existing branch of the phylogeny

3. Divide the branch into two branches

4. Choose a length for the newly created edge
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The probability of the first step is α0

m+α0−1 , as the new clone is created with this probability.

The probability of the second step is 1
ne

, where ne is the number of branches in the phy-

logeny before the move. If we assume that the number of clones based on the new set of

cluster indicators is, |c∗| = K, then ne = 2K − 3. To divide the branch into two branches,

we generate a uniform random variate w1, so the third step has no effect on the probability

of Add Clone move because the value w1 has Uniform probability density 1.0, similarly the

fourth move does not have any effect on the probability of Add Clone move as we generate

another uniform random deviate w2.

Proposing the corresponding Remove Clone move involves two steps:

1. Choose to perform Remove Clone move

2. Choose the leaf in the phylogeny to remove to restore the phylogeny that existed

before the Add Clone move.

The probability of the first step is 1
m+α0−1 , as size of the new clone is 1. The probability of

the second step is 1
K

, where K is the number of leaves in the phylogeny after Add Clone

move. Therefore, the Hastings ratio is given by:

Hastings ratio for Add Clone move =
( 1
m+α0−1)( 1

K
)

( α0

m+α0−1)( 1
2K−3)

=
2K − 3

α0 ∗K

(17)

The Jacobian term for this move is given by:

Jq =

∣∣∣∣∣∣∣∣∣∣

∂ν1
∂ν

∂ν1
∂w1

∂ν1
∂w2

∂ν2
∂ν

∂ν2
∂w1

∂ν2
∂w2

∂ν∗
∂ν

∂ν∗
∂w1

∂ν∗
∂w2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

w1 ν 0

1− w1 −ν 0

0 0 1
1−w2

∣∣∣∣∣∣∣∣∣∣

=
ν

1− w2

(18)
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Remove Clone: This move is performed when an existing clonal cluster is removed.

This results in removing a leaf from the existing clonal phylogeny. As a result, this move

removes some parameters from the model. The leaf to be removed is chosen and removed

from the phylogeny, the associated branch is also removed. The parent node of the leaf is

also removed, as a result two branches of lengths ν1 and ν2 get merged into a single branch

of length ν = ν1 + ν2.

Hastings ratio for the Remove Clone move is given by the probability of proposing an

Add Clone move divided by the probability of the Remove Clone move and is calculated

as follows:

Hastings ratio for Remove Clone move =
( α0

m+α0−1)( 1
2K−1)

( 1
m+α0−1)( 1

K+1
)

=
α0 ∗ (K + 1)

2K − 1

(19)

The Jacobian term for this move is given by:

Jq =

∣∣∣∣∣∣∣∣∣∣

∂ν
∂ν1

∂ν
∂ν2

∂ν
∂ν∗

∂w1

∂ν1

∂w1

∂ν2

∂w1

∂ν∗

∂w2

∂ν1

∂w2

∂ν2

∂w2

∂ν∗

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

1 1 0

1
ν
− 1
ν

0

0 0 e−ν
∗

∣∣∣∣∣∣∣∣∣∣

=
e−ν

∗

ν

(20)

1.1.9.2 Algorithm For Sampling Clonal Phylogeny and Evolution Model Parameters

We designed a Metropolis-Hastings [10] sampler for sampling the clonal phylogeny and

evolution model parameters from the joint conditional posterior given by:

PT ,Mλ
(T ∗,M∗

λ|G, aM , bM) ∝ F (G|T ∗,M∗
λ)p(T ∗)p(M∗

λ|aM , bM) (21)
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We consider two different types of moves to explore the joint T ,Mλ space. In tree chang-

ing moves, a new clonal phylogenetic tree, T ∗ is proposed from current state T . In pa-

rameter changing moves, a new value of the parameter,M∗
λ is proposed from the current

parameter valueMλ. The proposed configuration is accepted or rejected based on an ac-

ceptance ratio. The acceptance ratio for proposing a new clonal phylogenetic tree is given

by:

ρT = min

{
1,
F (G|T ∗,Mλ)p(T ∗)qT (T |T ∗)
F (G|T ,Mλ)p(T )qT (T ∗|T )

}
(22)

In Eq. (22), the likelihood ratio, F (G|T ∗,Mλ)
F (G|T ,Mλ)

is computed using Felsenstein’s pruning al-

gorithm [6]. qT denotes the proposal distribution for proposing a new phylogeny from the

current phylogeny. Here, we use a combination of branch change (alter branch lengths) and

branch-rearrangement (alter the tree topology) proposals as used in [29]. The prior ratio is

computed using uniform prior for topology and exponential prior for branch lengths.

The acceptance ratio for proposing a new parameter value is given by:

ρMλ
= min

{
1,
F (G|T ,M∗

λ)p(M∗
λ|aM , bM)qMλ

(Mλ|M∗
λ)

F (G|T ,Mλ)p(M∗
λ|aM , bM)qMλ

(M∗
λ|Mλ)

}
(23)

In Eq. (23), the likelihood is calculated in the same way as for Eq. (22). qMλ
is the proposal

distribution. The parameters, λr and λl are beta distributed variables. For each of these

parameters, the next value is proposed from a normal distribution centered at the current

value. The standard deviation is chosen so that a wide range of values are covered. The

algorithm is shown in Algorithm 1.

1.1.9.3 Algorithm For Sampling Clonal Genotypes

The genotype of each clone is sampled by keeping the genotypes of other clones fixed.

Genotype of each position can be sampled independently. The clonal genotype for clone

k, Gk, where k ∈ {1, . . . , |c|} is sampled from the conditional posterior distribution given

by:

Gk ∼ PG(Gk|Dj|cj=k,G\k, T ,Mλ, α, β) (24)
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Algorithm 1: Algorithm for sampling clonal phylogeny and evolution model pa-
rameters. T s is the starting tree. Ms

λ is the starting value of model parameters.
The algorithm runs for niter iterations. With probability pλ, model parameters are
updated.

Input: G, T s,Ms
λ, niter, pλ

Output: T ∗,M∗λ
Initialization: T 0 ← T s,M0

λ ←Ms
λ

for i = 1...niter do
T ← T i−1,Mλ ←Mi−1

λ

Sample r ∼ U(0, 1)
if r ≤ pλ then

SampleM′λ ∼ qMλ
(M′λ|Mλ)

Compute ρMλ
= min

{
1,
F (G|T ,M′

λ)p(M′
λ|aM ,bM )qMλ

(Mλ|M′
λ)

F (G|T ,Mλ)p(M′
λ
|aM ,bM )qMλ

(M′
λ
|Mλ)

}
AcceptM′λ with probability ρMλ

Mi
λ ←M′λ, T i ← T

else
Sample T ′ ∼ qT (T ′|T )
Compute ρT = min

{
1,
F (G|T ′,Mλ)p(T ′)qT (T |T ′)
F (G|T ,Mλ)p(T )qT (T ′|T )

}
Accept T ′ with probability ρT
Mi

λ ←Mλ, T i ← T ′

T ∗ ← T niter ,M∗λ ←M
niter
λ

return T ∗,M∗λ

In Eq. (24), G\k denotes the genotypes of other clones and Dj|cj=k denotes the observed

genotypes of the cells assigned to clone k. Clonal genotype Gk is a vector of length n and

records the genotype state for n mutation loci. Genotype for locus i is sampled from a

categorical distribution defined by

Gki ∝ F(Gki|T ,G−ki,Mλ)×
∏

j|cj=k
E(Dij|Gki, α, β) (25)

For Gki ∈ gt, F(Gki|T ,G−ki,Mλ) is calculated using Felsenstein’s pruning algorithm

and E(Dij|Gki, α, β) is given by the error model distribution as shown in Supplemental

Table S5 or Supplemental Table S4.

1.1.9.4 Algorithm For Sampling Error Rates

Rejection sampling [3] is used for sampling the value of error rates α and β from their

corresponding conditional posterior distributions.
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1.1.9.4.1 False Positive Rate

The conditional posterior distribution from which α is sampled, is given by:

α ∼ Pα(α|D, c,G, β, aα, bα) ∼ E(D|c,G, β, α)P (α|aα, bα) (26)

By varying α for a grid of values between 0.001 to 1, we first compute the maximum of the

posterior distribution. Based on this maximum value, we create an envelope function for

the range of values of α and this serves as the proposal distribution using which we sample

a new value of α using rejection sampling.

1.1.9.4.2 False Negative Rate

The conditional posterior distribution from which β is sampled, is given by:

β ∼ Pβ(β|D, c,G, α, aβ, bβ) ∼ E(D|c,G, β, α)P (β|aβ, bβ) (27)

By varying β for a grid of values between 0.001 to 1, we first compute the maximum of the

posterior distribution. Based on this maximum value, we create an envelope function for

the range of values of β and this serves as the proposal distribution using which we sample

a new value of β using rejection sampling.
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1.2 Doublet Model of SiCloneFit

The singlet model of SiCloneFit is extended to handle cases where some data points result

from measuring two cells. We assume that the occurrence of doublets is a rare event, and

simultaneous processing of more than two cells is extremely rare. Thus we only focus on

the extension to two cells, or doublets. We also assume that simultaneous measurement of

higher numbers of cells occurs sufficiently infrequently resulting in negligible impact.

To model multiple cell measurements, we need to define the expected genotype state

when two cells are measured together. To do that for ternary data type, we use the binary

operator ⊕ introduced in SiFit [29] and defined in Section 4. For presence/absence data

such as a binary representation of SNVs, we can use a logical or to define ⊕.

1.2.1 Model Overview

The probabilistic graphical model for the extended SiCloneFit model for handling doublets

is shown in Supplemental Fig. S2. The new variables introduced in this model are explained

in Supplemental Table S7.

1.2.2 Model Description

To model doublets, we introduce a new variable Yj corresponding to single cell j. Yj is a

Bernoulli variable that takes the value 0 if cell j is a singlet and the value 1 when cell j is a

doublet. The probability of sampling a doublet is modeled by the variable δ, which is again

another Beta distributed variable with hyper-parameters aδ, bδ. Instead of a single cluster

indicator for each cell as defined in the SiCloneFit model (Supplemental Fig. S1), in the

extended model, we introduce two cluster indicators for each cell. c1j is the primary cluster

indicator for cell j with a Chinese restaurant process prior based on hyper-parameter α0,

whereas c2j is a secondary cluster indicator for cell j that can uniformly take values in the

range {1, . . . , |c1|}. If Yj = 1, c2j denotes the clone of origin of the cell that forms a doublet

25



by merging with cell j from clone c1j . The extended model is defined as

α|aα, bα ∼ Beta(aα, bα)

β|aβ, bβ ∼ Beta(aβ, bβ)

δ|aδ, bδ ∼ Beta(aδ, bδ)

Yj|δ ∼ Bernoulli(Yj|δ)

α0 ∼ Gamma(a, b)

c1j |α0 ∼ CRP (α0)

c2j |c1j ∼ U{1, |c1|}

T ∼ Tprior(|c1|)

Mλ|aMλ
, bMλ

∼ Beta(aMλ
, bMλ

)

Gki|T ,Mλ ∼ F (Gki|T ,Mλ)

gji|G, c1j , c2j , Yj =





Gc1j i
Yj = 0

Gc1j i
⊕Gc2j i

Yj = 1

Dij|c1j , c2j , Yj, Gc1j i
, Gc2j i

, α, β ∼ E(Dij|gji, α, β)

1.2.3 Posterior Distribution

The posterior distribution for the doublet model of SiCloneFit, P , is given by

P(c1, c2,Y ,G, T ,Mλ, α, β, δ, α0|D, aα, bα, aβ, bβ, aδ, bδ, aM , bM , a, b) ∝

P (D|c1, c2,Y ,G, T ,Mλ, α, β, δ, α0, aα, bα, aβ, bβ, aδ, bδ, aM , bM , a, b)×

P (c1, c2,Y ,G, T ,Mλ, α, β, δ, α0|aα, bα, aβ, bβ, aδ, bδ, aM , bM , a, b)

= E(D|c1, c2,Y ,G, α, β)F (G|T ,Mλ)P (c1|α0)P (c2|c1)P (T )

P (Y |δ)P (α|aα, bα)P (β|aβ, bβ)P (δ|aδ, bδ)P (Mλ|aM , bM)P (α0|a, b) (28)

The hidden variables that we want to estimate from this model are

1. c1, a vector containing the primary clone indicator for each cell
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2. c2, a vector containing the secondary clone indicator for cells that are inferred as

doublets

3. Y , a vector containing the indicator for each cell that denotes if the cell is a doublet

or singlet

4. G, a K × n clonal genotype matrix, where Gk denotes the genotype of clone k,

K = |c1|

5. T , the clonal phylogeny, representing the genealogical relationships between the

clones

6. Mλ, parameters of the model of evolution

7. α, false positive rate

8. β, false negative rate

9. δ, doublet rate

The number of clones is implicitly defined by the vector c1. The posterior probability is

a product of likelihood function and prior. The likelihood function is described in Sec-

tion 1.2.4. The prior distributions for the same variables as in the singlet model are already

explained in Section 1.1.7 and the prior distributions for the new variables are described in

Section 1.2.5.

1.2.4 Likelihood Function

The likelihood function for the extended SiCloneFit model is given by

P (D|c1, c2,Y ,G, T ,Mλ, α, β, δ, α0, aα, bα, aβ, bβ, aδ, bδ, aM , bM , a, b) = E(D|c1, c2,Y ,G, α, β)

=
n∏

i=1

m∏

j=1

E(Dij|gji, α, β)

(29)
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where gji is given by Eq. (30)

gji =





Gc1j i
Yj = 0

Gc1j i
⊕Gc2j i

Yj = 1

(30)

E(Dij|gji, α, β) is given by the error model distribution as shown in Supplemental Table S4

and Supplemental Table S5.

1.2.5 Prior Distributions

The complete prior of the extended SiCloneFit model is given by

P (c1, c2,Y ,G, T ,Mλ, α, β, δ, α0|aα, bα, aβ, bβ, aδ, bδ, aM , bM , a, b)

= F (G|T ,Mλ)P (c1|α0)P (c2|c1)P (T )P (Y |δ)P (α, β, δ,Mλ, α0|H) (31)

where,

P (α, β, δ,Mλ, α0|H) = P (α|aα, bα)P (β|aβ, bβ)P (δ|aδ, bδ)P (Mλ|aM , bM)P (α0|a, b)

H denotes the set of hyperparameters, H = {aα, bα, aβ, bβ, aδ, bδ, aM , bM , a, b}. The prior

distributions F (G|T ,Mλ), P (T ), P (α|aα, bα), P (β|aβ, bβ), P (Mλ|aM , bM), P (α0|a, b)
have been described in Section 1.1.7. P (c1|α0) denotes the prior probability of partitioning

m single cells into |c1| clusters under a CRP with concentration parameter α0 as described

in Section 1.1.7.

P (c2|c1) denotes the prior distribution on the secondary cluster indicators given the

primary cluster indicators. We use a uniform distribution as the prior for c2j , the secondary

cluster indicator for cell j. The value of c2j is drawn uniformly from the range {1, . . . , |c1|},
|c1| is the number of clusters implicitly defined by c1.

Yj is a Bernoulli variable that indicates whether cell j is a doublet or a singlet. The

Bernoulli distribution is parameterized by δ, the doublet rate, which gives the success prob-

ability.
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We assume δ to be a Beta distributed variable as it denotes the probability of sampling

a doublet and takes value between 0 and 1.

1.2.6 Inference

We extended the Gibbs sampler designed for the basic SiCloneFit model (Supplemental

Fig. S1) to obtain a Markov Chain Monte Carlo sampler for the extended SiCloneFit model

(Supplemental Fig. S2). The sampler is outlined below.

1.2.7 Partial Reversible-jump MCMC Partial Gibbs Sampling Algorithm

Given α
(t−1)
0 , {c1(t−1)j }mj=1, {c2(t−1)j }mj=1, {Yj}mj=1, {G(t−1)

k }|c1|k=1, T (t−1), M(t−1)
λ , α(t−1),

β(t−1), and δ(t−1) from the previous iteration, we need to sample a new set of these pa-

rameters. t− 1 denotes the previous iteration.

Set

• c1 = c1(t−1), α0 = α
(t−1)
0

• c2 = c2(t−1)

• Y = Y (t−1)

• G = {G(t−1)
k }|c1|k=1

• T = T (t−1),Mλ =M(t−1)
λ

• α = α(t−1), β = β(t−1), δ = δ(t−1)

Sample primary cluster indicators:

1. For j = 1, . . . ,m, update c1j as follows:

• If c1j is not a singleton (i.e., c1j = c1l for some l 6= j)

(a) let c1∗j be a newly created clone.

(b) propose a new clonal tree, T ∗ ∼ qT (T ∗|T ), by adding the new clone c1∗j

to T . qT is the proposal distribution that adds a new leaf to the clonal

phylogeny.
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(c) Sample genotype vector for the new clone,Gc1∗j
∼ F(Gc1∗j

|T ∗,G∗\c1∗j ,Mλ).

G∗\c1∗j
is the clonal genotype matrix excluding the genotype vector for clone

c1∗j . New clonal genotype matrix after sampling Gc1∗j
is denoted by G∗.

(d) compute acceptance ratio a(c1∗j , c
1
j) as follows:

a(c1∗j , c
1
j) = min[1, r]

r =
α0

m− 1

E(D[j]|Gc1∗j
, Gc2j

, Yj, α, β)

E(D[j]|Gc1j
, Gc2j

, Yj, α, β)

F (G∗|T ∗,Mλ)

F (G|T ,Mλ)

P (c1∗|α0)

P (c1|α0)

Tprior(T ∗)
Tprior(T )

qT (T |T ∗)
qT (T ∗|T )

Jq

(32)

Jq is the jacobian. D[j] is the jth column of observed genotype matrix.

(e) Set the new c1j to this c1∗j with probability a(c1∗j , c
1
j)

(f) If new c1j is set to c1∗j ,

– Set G = G∗, T = T ∗

• Otherwise, when c1j is a singleton,

(a) Sample c1∗j from c1−j , choosing c1∗j = c with probability nc
m−1 .

(b) Propose a new clonal tree, T ∗ ∼ qT (T ∗|T ), by removing the clone c1j from

T .

(c) Propose new clonal genotype matrix G∗, by removing Gc1j
from G.

(d) Propose a new secondary cluster indicator vector c2∗ in which for cells

l | c2l = c1j , set c2l = c1∗j . Secondary cluster indicators for other cells

remain the same.

(e) compute acceptance ratio a(c1∗j , c
1
j) as follows:

a(c1∗j , c
1
j) = min[1, r]

r =
m− 1

α0

E(D[j]|Gc1∗j
, Gc2j

, Yj, α, β)

E(D[j]|Gc1j
, Gc2j

, Yj, α, β)

F (G∗|T ∗,M)

F (G|T ,M)

P (c1∗|α0)

P (c1|α0)

Tprior(T ∗)
Tprior(T )

qT (T |T ∗)
qT (T ∗|T )

Jq

(33)

(f) Set the new c1j to this c1∗j with probability a(c1∗j , c
1
j).
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(g) If new c1j is set to c1∗j ,

– Set G = G∗, T = T ∗, c2 = c2∗

• If the new c1j is not set to c1∗j , it is the same as the old c1j . G, c2 and T remain

the same.

2. For j = 1, . . . ,m, update c1j as follows:

• If c1j is a singleton, do nothing.

• Otherwise, choose a new value for c1j from {c11, . . . , c1m} using the following

probabilities:

P (c1j = c|c1−j, D[j],G, Yj, α, β) ∝ nc
m− 1

E(D[j]|Gc, Gc2j
, Yj, α, β)

Sample secondary cluster indicators:

For j = 1, . . . ,m, update c2j as follows:

• If Yj = 0, do nothing.

• Otherwise, choose a new value for c2j from {1, . . . , |c1|} using the following proba-

bilities:

P (c2j = c|c1j , D[j],G, Yj, α, β) ∝ E(D[j]|Gc1j
, Gc, Yj, α, β)

Sample clonal phylogeny and evolution model parameters:

Sample new clonal phylogeny T ∗ and new set of values for parameters of model of evolu-

tion,M∗
λ from the joint conditional posterior distribution,PT ,Mλ

(T ∗,M∗
λ|T ,Mλ,G, aM , bM)

T ∗,M∗
λ ∼ PT ,Mλ

(T ∗,M∗
λ|T ,Mλ,G, aM , bM)

Sample clonal genotypes:

For k = 1, ..., |c1|
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• Sample clonal genotype Gk for each clone as follows:

For i = 1, ..., n, sample Gki from the following distribution

Gki ∝ F(Gki|T,G−ki,M)×
∏

j|c1j=k
E(Dij|Gki, Gc2j i

, Yj, α, β)

Sample error rates:

1. Sample α ∼ Pα(α|D, c1, c2,Y ,G, β, aα, bα) ∼ E(D|c1, c2,Y ,G, β, α)P (α|aα, bα)

using rejection sampling.

2. Sample β ∼ Pβ(β|D, c1, c2,Y ,G, α, aβ, bβ) ∼ E(D|c1, c2,Y ,G, β, α)P (β|aβ, bβ)

using rejection sampling.

3. Sample δ ∼ Pδ(δ|Y , aδ, bδ)

δ ∼ Pδ(δ|Y , aδ, bδ) ∼ Beta(aδ +
m∑

j=1

Yj, bδ +m−
m∑

j=1

Yj)

Sample doublet indicators:

For j = 1, . . . ,m, sample Yj based on the following distribution:

P (Yj = 0|D[j], c1j , c
2
j ,G, α, β, δ) ∝ E(D[j]|Gc1j

, α, β)P (Yj = 0|δ)

P (Yj = 1|D[j], c1j , c
2
j ,G, α, β, δ) ∝ E(D[j]|Gc1j

, Gc2j
, Yj = 1, α, β)P (Yj = 1|δ) (34)

In Eq. (34), E(D[j]|Gc1j
, α, β) or E(D[j]|Gc1j

, Gc2j
, Yj = 1, α, β) is calculated based on

the likelihood function for cell j and P (Yj|δ) is given by the prior distribution on Yj ,

Bernoulli(Yj|δ).

Sample concentration parameter:

Sample αt0 ∼ p(α0|m, |c1|, a, b) based on the method described in [5] assuming the prior

distribution for α0 is Gamma(a, b).
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2 Supplemental Results

2.1 Benchmarking on Simulated Datasets

Ground truth clonal structure and clonal phylogeny is not known for real tumor datasets.

Consequently, simulation experiments become the approach of choice. To evaluate the

performance of SiCloneFit, we performed comprehensive simulations. The simulation

studies were aimed at analyzing the following:

1. How accurately SiCloneFit clusters the cells into different clones.

2. How accurately SiCloneFit infers the genotypes of the clones.

3. How accurately SiCloneFit infers the clonal phylogeny.

Here, we describe in detail the benchmarking of SiCloneFit along with other competitor

methods on a wide variety of simulation experiments. The remainder of this section is or-

ganized as follows. Section 2.1.1 describes the simulation strategy for generating realistic

ground truth data set for benchmarking purposes. In Section 2.1.2, the methods for sum-

marizing the posterior samples of SiCloneFit are explained. In Section 2.1.3, we introduce

the competitor methods against which we compared SiFit’s performance. We describe the

metrics used for comparing the different phylogeny inference methods in Section 2.1.4.

Finally, we show and discuss the results of different experiments in Section 2.1.5.

2.1.1 Simulation of Synthetic Datasets

2.1.1.1 Simulation of Clonal Clusters

To simulate a number of clones and draw cells from the clones, we first fix the number of

clones,K. For each clone k, we first sample observed prevalences Φobs = {Φobs
1 ,Φobs

2 , . . . ,Φobs
K }

from a Dirichlet distribution

Φobs
k ∼ Dir(λ,Φtrue) k = 1, 2, . . . , K (35)

where Φtrue = {Φtrue
1 ,Φtrue

2 , . . . ,Φtrue
K } are the true prevalences for clones 1 toK sampled

from a beta distribution. Let us assume,m is the number of cells that we want to simulate in
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our experiment. The m cells are sampled from a multinomial distribution with parameters

Φobs as given by:

n1, n2, . . . , nK ∼Mult(Φobs) (36)

where, nk is the number of cells sampled from clone k and
∑K

k=1 nk = m. The cells

sampled from clone k have the true genotype which is same as the clonal genotype of

clone k. This process of sampling cells is equivalent to sampling the cells from a Dirichlet-

multinomial distribution, i.e., n1, n2, . . . , nK ∼ Dirichlet−multinomial(λ,Φtrue). The

simulation of clonal clusters follows the steps introduced in [25].

2.1.1.2 Simulation of Clonal Phylogeny

A clonal phylogeny is a binary leaf labeled phylogenetic tree where the leaves represent

clones. [4] described different models of tumor evolution, linear and branching being the

most notable one for point mutations. We construct linear and branching topologies for

clonal phylogeny using the Beta-splitting model [24] parameterized by two parameters αT

and βT . First, a generating sequence (Si)i≥1, a realization of a sequence of independent and

identically distributed random variables is generated. To construct the generating sequence,

a sequence of i.i.d random variables, (b1, b2, . . .) are sampled from the distribution B(αT +

1, βT + 1), where B(αT , βT ) is a distribution on [0, 1] with density B(αT , βT )−1xαT−1(1−
x)βT−1. B(αT , βT ) is defined by:

B(αT , βT ) =

∫ 1

0

xαT−1(1− x)βT−1dx (37)

Another sequence of i.i.d random variables (u1, u2, . . .) are sampled from the uniform dis-

tribution on [0, 1]. The generating sequence is defined as (Si = (ui, bi))i∈N. Once, the

generating sequence is fixed, a nonrandom organizing process helps to create ranked planar

binary tree with the desired number of leaves (clones). The organizing process incremen-

tally creates a tree with K leaves (for a clonal phylogeny with K clones) starting from a

single root node, labelled by the interval [0, 1] as follows:

• Step 1: The root is split into a left leaf labelled by [0, b1] and a right leaf labelled by

[b1, 1].

34



• Step 2: If u2 ∈ [0, b1], the left child node of the root is further split into two nodes, the

left one is labeled by [0, b1b2] and the right one is labeled by [b1b2, 1]. If u2 ∈ [b1, 1],

the right child node of the root is split into left and right leaves with respective labels

[b1, b1 + (1− b1)b2] and [b1 + (1− b1)b2, 1].

• Step i: The leaf whose internal label [a, b] contains ui is chosen. It is split into a left

leaf with label [a, a+ (b− a)bi] and a right leaf with label [a+ (b− a)bi, b].

• The process is stopped at the end of Step K − 1.

To generate a linear tree topology, values of αT and βT are chosen very close to −1. We

choose αT = −0.9999999999999999 and βT = −0.9999999999999999 for generating

linear, comb like tree.

For generating a branching tree topology, we set αT = 10000000 and βT = 10000000.

After choosing a topology, the branch lengths are sampled from the prior distribution on

branch length.

2.1.1.3 Simulation of Clonal Genotypes

To generate the genotype of each clone at the leaves of the clonal phylogeny, we first

specify the number of mutation sites, n that we want to simulate. The root node of the

phylogeny is populated with homozygous reference genotype (g = 0) at each site. In each

branch of the tree, a Poisson distributed number of sites, p, are mutated. If t is the branch

length, the parameter for the Poisson distribution is chosen as t× n, so that on an average,

a child node in the tree differs from its parent by a proportion of loci which is given by the

branch length. When mutating a new site, the genotype changes from homozygous refer-

ence (g = 0) to heterozygous (g = 1). Recurrent mutations are introduced with probability

r. If the locus in the node, for which a recurrent mutation happens, has a homozygous

reference genotype (g = 0), then a parallel mutation happens in that branch, i.e, the geno-

type changes from homozygous reference (g = 0) to heterozygous (g = 1). If the locus

in the node already contains a mutated genotype then a back mutation results in reverting

the genotype to homozygous reference (g = 0). To simulate loss of heterozygosity (LOH)

events, the loci with heterozygous (g = 1) genotypes are set to either homozygous refer-
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ence (g = 0) or homozygous non-reference (g = 2) genotypes with probability ω. If LOH

happens at a locus, either of the homozygous genotypes are chosen with equal probability.

Deletion is simulated with probability d at a branch. Deletion can affect multiple loci at a

time. For a heterozygous site, deletion can happen for any of the copies resulting in either

of the homozygous genotypes (g = 0 or g = 2). Deletion does not affect the homozygous

reference genotypes but can change the homozygous non-reference genotypes to heterozy-

gous genotype. In this way, sites are evolved at each branch of the tree. At the corner

case, when there is no new locus to mutate at a branch, recurrent mutations are introduced.

After considering all the branches of the tree, we have the clonal genotypes at the leaves

of the clonal phylogeny. The simulation of recurrent mutations, deletions and LOH are

performed in the same way as introduced in SiFit [29].

2.1.1.4 Simulation of Noisy Single-cell Genotypes

The true genotype of a cell is same as the clonal genotype of the clone from which the

cell was sampled. To obtain the noisy genotype for each cell, we introduce doublets, false

positive and false negative errors and missing values.

2.1.1.4.1 Simulating Doublets

Doublets are events when two cells get trapped in the same well resulting in merging the

genotypes of the two cells. The expected genotype of doublets can be constructed using

the⊕ operator defined in Section 4. In simulating doublets, we use similar strategy as used

previously in [29]. δ denotes the fraction of cells that are doublets. With probability δ, a

cell is chosen to be a doublet. The co-trapped cell with which the candidate cell merges

to form a doublet can originate from any of the existing clones. We uniformly randomly

choose the parent clone for the co-trapped cell and its genotype is combined with that of

the candidate cell to form the new genotype of the doublet.

2.1.1.4.2 Simulating False Negative and False Positive Errors

False negative (FN) and false positive (FP) errors are introduced in the single-cell geno-

types. For the datasets without doublets, FN and FP are introduced to true genotypes of
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single cells. For the datasets with doublets, FN and FP are introduced to singlets as well as

to doublets formed after simulation of doublet genotypes. FP and FN are introduced in the

same way as described in [29].

2.1.1.4.3 Simulating Missing Data

To introduce missing values in the datasets, uniformly randomly genotype information of

sites are removed with probability equal to the fraction of missing values that we want to

introduce.

2.1.2 Summarizing Posterior Samples from SiCloneFit

To summarize the clustering samples from the Gibbs sampler of SiCloneFit, we utilized

the maximum posterior expected adjusted rand (MPEAR) method introduced in [7]. In our

case, the number of clusters can vary from one sample to another and the labels associated

with the clusters can also change. As a result, we used a method based on posterior simi-

larity matrix. The MPEAR method first computes a posterior similarity matrix, an m×m
matrix (for m cells), in which each entry contains the posterior probability of two cells

belonging to the same clonal clusters. Given the posterior similarity matrix, the posterior

expected adjusted rand (PEAR) index can be utilized as a metric for assessing the perfor-

mance of a proposed clustering configuration. We reported the clustering configuration

that achieves the highest PEAR index as the summary cluster configuration. For the singlet

model of SiCloneFit, the cluster samples, c were used for computing MPEAR clustering

estimate. For the doublet model of SiCloneFit, we used the primary cluster indicator vec-

tor, c1 for computing MPEAR clustering estimate. The R package mcclust was used for

computing MPEAR clustering summary.

To summarize the clonal phylogeny samples from the Gibbs sampler of SiCloneFit, we

constructed a maximum clade credibility topology (MCCT) from the posterior samples. In

this method, each sampled phylogeny is evaluated and each clade is given a score based on

the posterior probability of appearing in the set of sampled phylogenies, and the product of

the clade posterior probabilities is chosen as the score of a phylogeny. The phylogeny with

the highest score is reported as the maximum clade credibility topology. In this process,
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the branch lengths are also summarized over the posterior samples. We used the SumTrees

program of the DendroPy [27] package to compute the MCCT.

From the posterior samples, we computed the posterior probability of the genotype of

each cell at each site. The posterior probability of genotype g for cell j at position i is

given by

P (Iij = g|S) =
1

NS

NS∑

s=1

I{Gscji=g}, (38)

where S denotes the set of NS posterior samples. The genotype with the highest posterior

probability is assigned as the inferred genotype, Iij of that cell at that position.

The doublets are inferred when using the doublet-aware model of SiCloneFit based on

the posterior probability computed from posterior samples as shown in Eq. (39)

P (Yj = 1|S) =
1

NS

NS∑

s=1

I{Yj=1} (39)

Since, we consider a very low prior probability for a cell being a doublet, if the doublet

posterior probability for a cell exceeds 0.05, we infer it as a doublet.

2.1.3 Competitor Methods

We compared SiCloneFit’s performance to four other methods.

1. SCG (Single Cell Genotyper) [23]

2. OncoNEM [22]

3. SCITE [12]

4. SiFit [29]

OncoNEM, SCITE and SiFit were developed for the inference of tumor phylogeny from

SCS data, whereas SCG was developed for the inference of clones from SCS data. From

now on, we will use the term ‘phylogeny-based methods’ to refer to OncoNEM, SCITE

and SiFit together.
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2.1.3.1 SCG

Single Cell Genotyper (SCG) [23] is a statistical method that infers clonal genotypes and

clonal structures from single cell somatic SNV profiles. However, it does not infer the

clonal phylogeny and their inference procedure does not account for the phylogenetic struc-

ture underlying the clonal populations. We used SCG to infer the clones and clonal geno-

types from the single-cell SNV profiles. The clonal phylogeny was obtained by running a

maximum parsimony algorithm [26] on the clonal genotypes as suggested in [23].

2.1.3.2 OncoNEM

OncoNEM is a likelihood-based method that employs a heuristic search algorithm to find

the maximum likelihood clonal tree. Nodes of the clonal tree represent the clonal clusters

and the branches denote the evolutionary relationship between the clones. It is also possible

to obtain the clonal genotypes by inferring the occurrence of the mutation on the branches

of the clonal tree. OncoNEM’s inference is also based on the “infinite sites assumption”

and it does not account for the presence of doublets. We compared against OncoNEM

only for the datasets without doublets. OncoNEM ran properly on small sized datasets

(m = 100) but we were unable to get any result on larger datasets (m = 500). Comparison

against OncoNEM are only shown for small sized datasets (m = 100).

2.1.3.3 SCITE

SCITE is an MCMC algorithm that allows one to infer the maximum likelihood mutation

tree from imperfect somatic mutation profiles of single cells. The nodes of the mutation

tree represent the mutations and the branches denote the order of the mutations in the

evolutionary history. In the mutation tree, the sequenced cells can be attached to the nodes

that correspond to their mutation states. Just like OncoNEM, SCITE also relies on the

“infinite sites assumption” so that the mutation tree represents a perfect phylogeny and

does not account for the presence of doublets. SCITE’s results were compared only for the

datasets without doublets. The genotypes for each cell can be inferred from the mutation

tree and cell attachment inferred by SCITE. However, the cells were not clustered into

clones. To obtain the clusters, first we computed an m × m distance matrix for the cells
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based on their distances in the mutation tree. The distance between two cells was calculated

by summing the number of mutation nodes on the shortest path that connects the two

cells (essentially the hamming distance between the inferred genotypes of two cells). The

resulting distance matrix was subject to K-medoids clustering (using ‘clustering’ library

of R, http://www.r-project.org) for a varying number of clusters (2 to 20). The

number of clusters and the clustering assignment that maximized the average silhouette

score was inferred as the optimal clustering. To obtain the clonal tree, the cells that belong

to a single cluster were attached to a node that was formed by collapsing the mutation nodes

representing the parents of the corresponding cells in the mutation tree. The collapsed

node’s position in the tree was chosen so that its distance from the root (normal) node is

minimized. The mutation nodes that did not have any cell attachment and had only one

mutation node as the children were removed.

2.1.3.4 SiFit

SiFit is a likelihood-based algorithm that infers a tumor lineage tree under a finite-site

model of evolution. It infers a tumor phylogeny, leaves of which represent the single cells

and in doing so it also accounts for possible mutation recurrence and losses along the

branches of the phylogeny. After reconstructing a maximum likelihood phylogeny, it also

infers the mutations on the branches of the phylogeny using a maximum likelihood ap-

proach. Just like the other phylogeny-based methods (OncoNEM and SCITE), it does not

account for the presence of doublets. We compared SiFit’s results only for the datasets

without doublets. SiFit’s mutation placement algorithm infers the genotype of each cell for

constructing the inferred genotype matrix. SiFit infers a full binary tree on a leafset of size

equal to the number of cells. To infer the clonal clusters from this tree, the branch lengths

were set to the number of mutations inferred on the branch. Then, an m×m distance ma-

trix was computed for the cells, where each entry represents the distance between two cells

in the tree. The distance between two cells was computed by summing the branch lengths

on the shortest path that connects the two cells. K-medoids clustering was performed on

the distance matrix using ‘clustering’ library of R (http://www.r-project.org),

the number of clusters was varied from 2 to 20. The number of clusters and the cluster-
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ing assignment that maximized the average silhouette score was inferred as the optimal

clustering. To obtain the clonal tree, the branches in the subtree that contained the cells

of a cluster were collapsed by setting the branch length to 0 and the branches connecting

subtrees representing different clusters were set to 1.

2.1.4 Performance Metrics

When comparing the various methods, we wanted to quantify three different aspects of

their performance

1. How accurately the method clusters the cells into different clones.

2. How accurately the method infers the genotypes of each clone.

3. How accurately the method reconstructs the clonal phylogeny.

To measure each of these aspects, we introduced three different performance metrics as

described below.

2.1.4.1 Accuracy of Clustering

2.1.4.1.1 Adjusted Rand Index

For the datasets without doublets, we used the adjusted rand index [11] to assess clustering

accuracy. The rand index computes a similarity measure between two clusterings by con-

sidering all pairs of samples and counting pairs that are assigned in the same or different

clusters in the predicted and true clusterings. The raw rand index score is then “adjusted

for chance” into the adjusted rand index score. The adjusted rand index is thus ensured to

have a value close to 0.0 for random labeling independently of the number of clusters and

samples and exactly 1.0 when the clusterings are identical. For SiCloneFit, the MPEAR

clustering estimate based on the posterior samples was used as the predicted clustering.
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2.1.4.1.2 B-Cubed F-score

When considering doublets, the problem becomes more difficult as cells may belong to

multiple clusters. This changes the problem from a strict clustering problem, to a restricted

feature allocation problem [2]. We used the B-Cubed F-score, extended to handle feature

allocations, for comparing the performance of the algorithms in the presence of doublets

[1]. Both SCG and SiCloneFit can detect doublets. The cells detected as doublets were

removed and the clustering of the rest was considered for measuring the B-cubed metric.

Again, for SiCloneFit, the MPEAR clustering estimate was used as the predicted clustering.

2.1.4.2 Accuracy in Inferring Clonal Genotypes

In the absence of doublets, we measured the hamming distance between the predicted geno-

type of the clone where a cell is assigned and the true genotype of the cell. We computed

the sum of hamming distances for all the cells and normalized it to summarize a method’s

genotyping performance. The genotyping error (ge) is defined by,

ge =

∑n
i=1

∑m
j=1 I(GTij 6= GIij)

n×m (40)

where GT is the true genotype matrix, GI is the inferred genotype matrix and I is the

indicator function. The genotyping error represents the number of incorrectly predicted

genotypes per each cell per each genomic site. We distinguished the methods which predict

only the binary genotype, that is the presence or absence of the B allele, from those, which

attempt to predict the three state genotype A, AB, B. The predictions for any method which

predicts the three state genotype can be converted to a binary representation by mapping

the AB, B states to the B allele present state.

When considering datasets with doublets, we removed the cells that were inferred as

doublets by the method and considered the rest of the cells for measuring the genotyping

error as given by,

ge =

∑n
i=1

∑
j∈Ss I(GTij 6= GIij)

n×m (41)

where Ss is the set of singlets inferred by the method. For SiCloneFit, we used the inferred

genotypes based on posterior probability to compute the genotyping error.
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2.1.4.3 Accuracy in Inferring Clonal Phylogeny

To measure the accuracy of the inferred clonal phylogeny, we used pairwise cell shortest-

path distance introduced in [22] as the tree reconstruction error. The pairwise cell shortest-

path distance is computed between the true and inferred clonal phylogenies. In our case,

both the true tree TT and the inferred tree TI are built on the same set of m cells but

potentially can differ in the number of internal nodes. The internal nodes that are direct

parents of the leaves (cells) represent the clonal clusters, each leaf is connected to its parent

by a branch of length 0. For every pair of cells i and j, we computed the shortest-path

dij(.) between the two cells in each tree. If the two cells belong to the same clone, their

shortest-path distance is 0, otherwise the shortest-path distance equals the number of edges

(regardless of direction) that separate the clones of the two cells. Finally, we summed up

the absolute differences between the shortest-path distances of all unordered pairs of cells

in the two trees to obtain the overall pairwise cell shortest-path distance:

d(TT , TI) =
m−1∑

i=1

m∑

j=i+1

|dij(TT )− dij(TI)| (42)

For datasets without doublets, all cells were considered for measuring the above tree re-

construction error. For datasets that had doublets, we only considered the cells that were

inferred as singlets by the method. For SiCloneFit, we used the MCCT phylogeny as the

inferred clonal tree and computed its pairwise cell shortest-path distance.

2.1.5 Results and Discussion

2.1.5.1 Testing the Finite-site Model

SiCloneFit assumes a finite-site model of evolution that accounts for the effects of muta-

tion loss and recurrence along the branches of the clonal phylogeny. To analyze how well

this model captures the effects of such losses and recurrences, we simulated single-cell

datasets with varying rates of mutation loss and recurrence. In our simulation, we used

three different parameters for introducing loss of heterozygosity (LOH), deletion and re-

current mutations respectively. Corresponding to these three parameters, we performed

three different sets of experiments
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• The first set of experiment analyzes SiCloneFit’s performance in different regimes

of deletion probability (d). Deletion can result in mutation losses and in our simula-

tions, deletion events can affect multiple loci at a time essentially violating the site

independence assumption used for inference. These datasets only featured mutation

losses, no parallel mutations were introduced.

• The second set of experiment analyzes SiCloneFit’s performance in different regimes

of the probability of LOH (w). LOH can also result in mutation losses affecting each

locus independently as used in [23]. These datasets only featured mutation losses,

no parallel mutations were introduced.

• The third set of experiment analyzes SiCloneFit’s performance in different regimes

of the probability of recurrent mutation (r). This parameter introduces parallel mu-

tations in the datasets. These datasets did not contain any mutation loss due to dele-

tion or LOH. An extreme setting of this parameter (r = 0) generated datasets under

infinite-sites model as no mutation loss or recurrence were introduced in the datasets.

For these experiments, SiCloneFit’s performance was compared against that of SiFit that

also employs a finite-site model to account for mutation losses and recurrence. We wanted

to test whether SiCloneFit’s ability to cluster the cells into clones gives it an edge over SiFit

in recovering the clonal genotypes for varying amount of mutation losses and recurrences.

2.1.5.1.1 Performance on Datasets with Varying Deletion Probability

We first simulated a clonal phylogeny with number of clones (leaves), K = 10. The

number of cells, m was set to m = 100 and the number of sites was set to n = 100. At the

root of the clonal tree, each site has homozygous reference genotype. The sequences were

evolved along the branches of the tree starting from the root. In each branch of the tree,

new mutations and mutation losses were simulated. No recurrent point mutations were

introduced. For introducing mutation losses, the probability of deletion (d) was varied

from 0.05 to 0.2 in steps of 0.05 i.e, d ∈ {0.05, 0.1, 0.15, 0.2}. Such deletion events can

potentially alter the genotypes of multiple sites at a time. The range of d is chosen such

that the expected number of deletion events during the evolutionary history of the tumor
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remain reasonable. The probability of LOH was fixed at w = 0.1 to introduce mutation

losses that independently affected some sites. This process gave us the clonal genotypes at

the leaves of this clonal phylogeny. True genotype matrix corresponding to m single cells

was constructed by sampling the clonal genotype of each cell. Errors were introduced into

the true genotype matrix to simulate single-cell errors. The false negative rate for cell c,

βc, was sampled from a normal distribution with mean βmean = 0.2 and standard deviation

βsd = βmean
10

. False negatives were introduced in the genotype matrix with probability βc for

cell c. We introduced false positives to the genotype matrix with error rate, α = 0.05, by

converting homozygous reference genotypes to heterozygous genotypes with probability

α.

SiCloneFit’s results were compared against that of SiFit. The clustering accuracy of

each method is shown in Supplemental Fig. S3a. For each experimental setting, SiClone-

Fit achieved better clustering accuracy than SiFit. SiCloneFit maintained a high clustering

accuracy (> 0.95 for d ∈ {0.05, 0.1, 0.15} and > 0.9 for d = 0.2) for each value of the

deletion probability. For d = 0.2, SiCloneFit’s clustering accuracy degraded slightly as the

introduction of more deletion events also incorporates more violations of the site indepen-

dence assumption. SiCloneFit performed much better than SiFit by achieving lower tree

reconstruction error (Supplemental Fig. S3b) and genotype error (Supplemental Fig. S3c)

for all values of d. SiCloneFit achieved 2−5 times reduction in genotyping error compared

to SiFit. It shows that SiCloneFit’s ability to cluster the cells into clones combined with

the finite-site model makes it more powerful than SiFit in recovering the clonal genotypes

of the single cells.

2.1.5.1.2 Performance on Datasets with Varying Probability of LOH

In the second set of experiments, we first simulated a clonal phylogeny on K = 10 clones.

The number of cells, m was set to m = 100 and the number of sites was set to n =

100. In each branch of the tree, new mutations and mutation losses were simulated. For

introducing mutation losses, this time we varied the probability of LOH (w) from 0.05 to

0.2 in steps of 0.05 i.e, w ∈ {0.05, 0.1, 0.15, 0.2}. LOH events independently affect the

genomic sites. The range of w was chosen such that only a small fraction of mutated sites
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suffer from mutation loss. The deletion probability (d) was fixed at d = 0.1 so that a small

number of sites simultaneously get affected by deletion to allow for a deviation of site

independence assumption. This process gave us the clonal genotypes at the leaves of the

clonal phylogeny. True genotype matrix corresponding to m single cells was constructed

by sampling the clonal genotype of each cell. Errors were introduced into the true genotype

matrix to simulate single-cell errors in the same way as done for the first set of experiments.

SiCloneFit’s results were compared against that of SiFit. The clustering accuracy of

each method is shown in Supplemental Fig. S4a. For each value of LOH probability, w,

SiCloneFit achieved better or similar clustering accuracy compared to SiFit. SiCloneFit

also achieved lower tree construction error (Supplemental Fig. S4b) and lower genotype

error (Supplemental Fig. S4c) compared to SiFit for each experimental setting. SiFit’s

median tree reconstruction error was more than 4 times higher than that of SiCloneFit for

w = 0.1 and w = 0.2. SiCloneFit’s median genotype error was 3 − 17 times lower than

that of SiFit for different values of w.

2.1.5.1.3 Performance on Datasets with Varying Probability of Recurrent Muta-

tion

For the third set of experiments, we varied the probability of recurrent mutation, r, while

generating the datasets. The number of clones, K was set to K = 10, the number of

cells, m was set to m = 100 and the number of sites was set to n = 100. In each

branch of the tree, new mutations and recurrent point mutations were simulated. Dele-

tion probability, d and probability of LOH, w were set to 0, so that no mutation loss oc-

curs. The probability of recurrent mutation was varied from 0.0 to 0.2 in steps of 0.05 i.e,

r ∈ {0.0, 0.05, 0.1, 0.15, 0.2}. The setting corresponding to r = 0.0 generated datasets

under the infinite-sites model as no mutation loss or parallel mutation occurred during the

evolutionary history of the tumor. After simulating the clonal genotypes, the erroneous

genotype matrix for m single cells was constructed following the same procedure as de-

scribed in previous experiments.

SiCloneFit’s results were compared against that of SiFit. For the datasets that corre-

spond to infinite-sites model (r = 0), both SiCloneFit and SiFit achieved high clustering
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accuracy (Supplemental Fig. S5a). However, for such datasets, SiCloneFit achieved much

lower tree reconstruction error (Supplemental Fig. S5b) and genotyping error (Supplemen-

tal Fig. S5c) compared to that of SiFit. SiCloneFit’s clustering accuracy was comparable

to that of SiFit for all values of r except for r = 0.05, when SiFit’s clustering accuracy was

better. For all values of r, SiCloneFit achieved lower tree reconstruction error compared to

SiFit. Similarly, SiCloneFit’s genotyping error was lower than that of SiFit for all values

of r.

2.1.5.2 Performance on Datasets with Varying Number of Cells Without Doublets

To compare SiCloneFit’s performance against other methods, we first simulated single-

cell datasets with varying number of cells. These datasets did not have any doublet. For

these experiments, we first simulated a clonal phylogeny with number of clones (leaves),

K = 10. The number of cells, m, sampled from the K clones, was varied as m = 100

and m = 500. The number of sites, n, was varied as n = 50 and n = 100 respectively.

These datasets well represent the experimental targeted sequencing datasets. At the root

of the clonal tree, each site has homozygous reference genotype. The sequences were

evolved along the branches of the tree starting from the root. In each branch of the tree,

we simulated four types of events that can alter the genotype of a site: new mutation,

deletion, loss of heterozygosity (LOH) and recurrent point mutation. This process gave

us the clonal genotypes at the leaves of this clonal phylogeny. The true genotype for the

cells sampled from clone k is identical to the clonal genotype of clone k. m genotype

sequences corresponding to m single cells constituted the true genotype matrix. Errors

were introduced into the true genotype matrix to simulate single-cell errors. The false

negative rate for cell c, βc, was sampled from a normal distribution with mean βmean = 0.2

and standard deviation βsd = βmean
10

. False negatives were introduced in the genotype

matrix with probability βc for cell c. We introduced false positives to the genotype matrix

with error rate, α = 0.05, by converting homozygous reference genotypes to heterozygous

genotypes with probability α.

SiCloneFit’s results were compared against SCG, OncoNEM, SiFit and SCITE. Same

imperfect genotype matrix was used as input to SiCloneFit, SCG, SiFit and SCITE. For
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OncoNEM, the genotype matrix was binarized by converting the heterozygous and ho-

mozygous non-reference genotypes to 1, i.e., presence of mutation.

2.1.5.2.1 Clustering Accuracy

The clustering accuracy of each method is shown in Supplemental Fig. S6. For all datasets,

SiCloneFit’s results were compared against that of SCG, SiFit and SCITE. OncoNEM’s re-

sults could only be compared for smaller sized datasets (m = 100), as OncoNEM failed to

run for larger sized datasets (m = 500). Performance for each algorithm improved as the

value of n increased. In each experimental setting, SiCloneFit outperformed all other algo-

rithms. Specifically for m = 500 and n = 100, it achieved perfect clustering for almost all

the datasets. SCG performed better than the phylogeny based methods (OncoNEM, SiFit

and SCITE) for most experimental settings. SiFit’s performance was the best among the

phylogeny-based methods. For m = 100 and n = 100, it’s median clustering accuracy was

even higher than that of SCG. OncoNEM had the lowest clustering accuracy for smaller

sized datasets, SCITE had the lowest for larger number of cells.

2.1.5.2.2 Genotyping Accuracy

For these datasets, we further wanted to evaluate the genotyping accuracy of each of

these methods. The genotyping performance was measured in terms of hamming dis-

tance per cell per site, lower the hamming distance, better the genotyping. The geno-

typing performance is shown in Supplemental Fig. S7. For all experimental settings,

SiCloneFit achieved the lowest genotyping error, SCITE had the highest genotyping error.

Performance of each algorithm improved as the number of mutation sites (n) increased.

Again SCG performed better than the phylogeny-based methods but worse than SiClone-

Fit. SiFit’s performance was the best among the phylogeny-based methods.

2.1.5.2.3 Clonal Phylogeny Inference Accuracy

Finally, we compared each of the methods for their accuracy in reconstructing the geneal-

ogy of the clones. SiCloneFit directly reports the clonal phylogeny, but SCG does not infer

any phylogeny. For SCG, we inferred the phylogeny using maximum parsimony method
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on the inferred clonal genotypes (method suggested in the original study [23]). OncoNEM

also reports a clonal phylogeny. SiFit infers a cell lineage tree, which was converted to an

equivalent clonal phylogeny after inference of clonal clusters via K-medoids clustering as

described in Section 2.1.3. SCITE infers a mutation tree that was converted to an equivalent

clonal phylogeny after inference of clonal clusters via K-medoids clustering as described

in Section 2.1.3. The comparison is shown in Supplemental Fig. S8. SiCloneFit achieved

major improvement in reducing the tree reconstruction error for each experimental setting,

it outperformed all other methods. With an increase in the number of sites, performance

of each of the algorithms improved. For smaller sized datasets, OncoNEM performed

the worst. SiCloneFit was followed by SCG owing to its better clustering accuracy. For

smaller sized datasets, SiFit and SCITE performed comparably (SCITE performing slightly

better) but worse than SCG. For larger sized datasets, SCITE performed better than SiFit

for n = 50, for n = 100, SiFit achieved lower tree reconstruction error than that of SCITE.

2.1.5.3 Performance on Datasets With Varying Number of Clonal Populations

Next, we evaluated the performance of the methods in the presence of higher numbers of

clones. As the number of clones increases, the problem becomes more difficult. First, we

simulated clonal phylogenies with varying number of clones, K = 10 and K = 15. For

each of these settings, m = 100 cells were sampled from K clones. The number of sites

was set to n = 100. After obtaining the true genotypes of each cell by evolving clonal

genotypes along the phylogeny, we introduced FP and FN errors using the same error rates

as in the previous experiment. For each setting of K, m and n, we generated 10 datasets.

SiCloneFit’s results were compared against that of SCG, OncoNEM, SiFit and SCITE

and are shown in Supplemental Fig. S9. For different values of clones, SiCloneFit outper-

formed all algorithms based on all three metrics. SCG performed better than the phylogeny-

based methods when smaller number of clones (K = 10) were present in the datasets.

However, for larger number of clones, SiFit performed better than SCG by achieving

higher clustering accuracy and lower genotype error. Among the phylogeny-based meth-

ods, SiFit’s performance was the best. OncoNEM performed the worst based on clustering

accuracy and tree reconstruction error, whereas SCITE had the highest genotyping error in
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each experimental setting. For each of the methods, performance degraded as the number

of clones increased, which is expected as mere increase of the number of clones without

an increase in number of cells makes the problem more difficult. However, compared to

SCG, SiCloneFit’s performance was more robust against the increase in number of clones.

SiCloneFit’s mean clustering accuracy reduced by 3.9% when number of clones increased

from 10 (mean ARI = 0.978) to 15 (mean ARI = 0.939), whereas there was a 10% reduction

in SCG’s mean clustering accuracy when number of clones increased from 10 (mean ARI

= 0.933) to 15 (mean ARI = 0.84).

2.1.5.4 Performance on Datasets with Increasing Error Rates

The single-cell sequencing datasets show a range of variation in the error rates. As a

consequence, we tested SiCloneFit’s performance on datasets for which the error rates

were higher.

2.1.5.4.1 Robustness to Increasing False Negative Rate

Allelic dropout is the major source of error in single-cell sequencing data resulting in false

negatives [19]. To test the robustness of SiCloneFit to increase in false negative rate, β,

we simulated datasets with increased false negative rate. The number of clones, K was set

to 10, the number of cells, m was set to 100 and the number of sites, n, was set to 100.

Mean false negative rate, βmean, was varied from 0.2 to 0.4 in steps of 0.1 i.e, βmean ∈
{0.2, 0.3, 0.4}. The false negative rate of cell c, βc was sampled from a normal distribution

as described in the previous experiments. The false positive rate was set to α = 0.05. With

these settings, for each value of βmean ∈ {0.2, 0.3, 0.4}, 10 datasets were simulated.

Performance of SiCloneFit was compared against that of SCG, OncoNEM, SiFit and

SCITE as shown in Supplemental Fig. S10. SiCloneFit achieved the best clustering accu-

racy for all values of false negative rate. SCG and SiFit achieved similar mean clustering

accuracy (lower than that of SiCloneFit) for each experimental setting. SiFit had the best

clustering accuracy among the phylogeny-based methods. For βmean ∈ {0.2, 0.3}, On-

coNEM performed the worst in terms of clustering accuracy, whereas for βmean = 0.4,

SCITE had the lowest clustering accuarcy. With an increase in false negative rate, the clus-
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tering accuracy of each method degraded. However, SiCloneFit’s clustering accuracy was

robust to increase in FN rate.

In reconstructing the clonal phylogeny, SiCloneFit performed the best in all settings.

OncoNEM had the highest tree reconstruction error for all settings. SiFit performed the

best among the phylogeny-based methods, but it performed worse than SCG. SCG was the

second best method after SiCloneFit. SiCloneFit’s tree reconstruction performance was

robust to increase in false negative rate, its tree reconstruction error only increased slightly

when FN rate increased to β = 0.4.

SiCloneFit’s genotyping performance was the best in all experimental settings, whereas

SCITE had the highest genotyping error. SiFit performed better than OncoNEM and

SCITE but worse than SCG. Genotyping error of each method increased with an ncrease

in the false negative rate. However, SiCloneFit’s performance was robust, there was only

a slight increase in genotyping error of SiCloneFit when FN rate increased from β = 0.2

to β = 0.3 and then β = 0.4. SiCloneFit’s superior performance based on all metrics over

the other methods for all values of false negative rate shows that SiCloneFit is more robust

against an increase in false negative rate.

2.1.5.4.2 Robustness to Increasing False Positive Rate

We performed another set of experiments to test how robust are the methods against in-

creasing FP rate. The number of clones, K was set to 10, the number of cells, m was

set to 100 and the number of sites, n, was set to 100. False negative rate βmean, was set

to 0.2 and the false negative rate of cell c, βc was sampled from a normal distribution as

described in the previous experiments. We varied false positive rate from 0.05 to 0.1 in

steps of 0.05, i.e, α ∈ {0.05, 0.1}. With these settings, for each value of α ∈ {0.05, 0.1},
10 datasets were simulated. Performance of SiCloneFit was compared against that of SCG,

OncoNEM, SCITE and SiFit as shown in Supplemental Fig. S11.

For different values of false positive rate, SiCloneFit performed the best by achieving

the highest clustering accuracy, OncoNEM had the lowest clustering accuracy. SCG and

SiFit achieved similar mean clustering accuracy for α = 0.05, but for higher false positive

rate, α = 0.1, SiFit’s performance was better than that of SCG. SCITE performed better
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than OncoNEM but worse than the other methods.

SiCloneFit also performed the best by achieving the lowest tree reconstruction error for

all values of FP rate. Based on this metric too, OncoNEM performed the worst. SCG’s

performance was better than the phylogeny-based methods but worse than SiCloneFit.

Based on genotyping error, SiCloneFit outperformed all other methods for all experi-

mental settings. Among the phylogeny-based methods, SiFit’s performance was the best.

SCITE had the highest mean genotyping error. SCG’s genotyping performance was af-

fected by the increase in FP rate. For two datasets generated with α = 0.1, SCG reported

a large number of incorrect genotypes (∼ 40 × median value), which shows that SCG’s

genotypes failed to converge.

SiCloneFit’s clustering accuracy did not get affected by the increase in FP rate. Same

trend was observed for SiCloneFit’s tree reconstruction error. SiCloneFit’s genotyping

performance did not suffer much by the increase in FP rate. This shows its robustness

against an increase in FP rate.

Based on all our previous experiments, SCG was the best competitor method. In our

subsequent experiments that required comparison, we only compared SiCloneFit’s perfor-

mance to that of SCG.

2.1.5.5 Performance on Datasets with Missing Data

Due to uneven coverage and amplification bias, current single-cell sequencing datasets are

challenged by missing data points where genotype states are unobserved. To investigate

how missing data affect the performance of each method, we performed additional sim-

ulation experiments. For K = 10, m = 500 and n = {50, 100}, we generated datasets

using the same error rates as before. For each combination of K, n and m, we generated

10 datasets, for each of which, two other datasets with missing data = {15%, 30%} were

generated. SiCloneFit’s results were compared against SCG.

2.1.5.5.1 Clustering Accuracy

The clustering accuracy of each method under different levels of missing data is shown in

Supplemental Fig. S12. For each setting, each method performed better when more sites
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(n = 100) were present. This is expected given the fact that sequencing more sites result

in more data and incorporates more information. As the amount of missing data increased,

performance of each method degraded. SiCloneFit performed either better than SCG (no

missing data, 15% missing data) or similar to SCG (30% missing data). Even for datasets

with 30% missing data, where overall performance of SiCloneFit was similar to that of

SCG, the mean accuracy of SiCloneFit was higher for all values of number of sites n. For

datasets with n = 100 sites, each method performed well even after removal of significant

amount of data. This shows that the clustering performance of both SiCloneFit and SCG

are robust against increasing missing data when sufficient number of genomic sites are

sequenced.

2.1.5.5.2 Genotyping Accuracy

The genotyping performance of each method under different levels of missing data is

shown in Supplemental Fig. S13. Genotyping error increased with an increase in the

amount of missing data. SiCloneFit outperformed SCG in all cases except for the setting

n = 100 and 30% missing data. For both the methods, the genotyping error was higher

for datasets with number of sites n = 100. This is expected because of the increase in the

number of sites.

2.1.5.5.3 Clonal Phylogeny Inference Accuracy

The performance of each method in inferring clonal phylogeny under different levels of

missing data is shown in Supplemental Fig. S14. Under each setting, SiCloneFit outper-

formed SCG. With an increase in the number of sites, the phylogeny inference improved

for SiCloneFit. But for SCG, phylogeny inference did not improve much with the increase

in number of sites. It degraded for datasets with 15% missing data. SiCloneFit’s phylogeny

inference was not affected much by the increase in the amount of missing data. This shows

that SiCloneFit’s phylogeny inference is robust to the presence of missing values.

2.1.5.6 Performance on Datasets Generated Under Neutral Evolution

Neutral evolution (NE) represents an extreme case of branching evolution and postulates
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that intratumor heterogeneity (ITH) is caused by accumulation of random mutations that

lack any functional significance or selection advantage in the progression of a tumor [4].

Tumors evolved under this model should consist of many subpopulations without any evi-

dence of a single clone being selected and expanded. Even though in most human cancers

there is evidence of at least weak selection, which leads to the prevalence of clonal sub-

populations that harbor driver mutations [8], some tumors might undergo neutral evolution

as shown in [15, 28]. To analyze SiCloneFit’s performance under neutral evolution that

can lead to an absence of clonal structure, we conducted simulation experiments under the

neutral evolution model proposed in Williams et al. [28].

According to the NE model proposed in [28], under neutral evolution, the number of

subclonal mutations should follow 1
f

power law distribution (f being the allelic frequency

of a mutation). The cumulative distribution, M(f) of subclonal mutations should have

a linear relationship with 1
f

and the R2 goodness-of-fit measure should be R2 ≥ 0.98

for neutral evolution. In our simulation, to ensure that the cumulative distribution of the

subclonal mutations follow the 1
f

power law, we sampled clonal prevalences from a normal

distribution with narrow standard deviation (to obtain very similar clonal prevalence for

each clone) and the branch lengths of the tumor phylogeny were chosen to be of the same

order. The cumulative distribution of subclonal mutations for two representative datasets

are shown in Supplemental Fig. S15.

We generated datasets consisting of 100 and 200 cells. Following the study of Ling

et al. [15], which reported on potential evidence of neutral evolution in a hepatocellular

carcinoma by identifying 20 clones, we fixed the number of clones, K to 20. n = 100

mutation sites were simulated for each dataset. For each combination of K, n and m, we

generated 5 datasets. Same error rate values as discussed in the previous experiment were

used. We compared SiCloneFit’s results to that of SCG, SiFit and SCITE (Supplemental

Fig. S16). As we see, for these datasets, SiCloneFit performed either similarly or better

than the other methods based on the different metrics. For the smaller datasets (100 cells),

SiFit had slightly better clustering and genotyping accuracy than SiCloneFit, but SiClon-

eFit’s tree reconstruction error was lower. For the larger datasets (200 cells), SiCloneFit

outperformed all other methods based on all metrics. These results show that SiCloneFit
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performs well even under neutral model of evolution.

2.1.5.7 Estimation of Error Rates by SiCloneFit

The posterior samples obtained from SiCloneFit’s Gibbs sampler can be used for inferring

the false positive and false negative rate of the SCS dataset.

To assess SiCloneFit’s estimation of false positive rate, we simulated 30 datasets from

different 30 clonal phylogenies. For these datasets, the number of clones, K was set to 10,

m = 100 cells were sampled from these clones and the number of sites, n was set to 100.

The false negative rate, β was set to 0.2. The false positive rate, α was varied from 0.01

to 0.15 in steps of 0.005. SiCloneFit’s inference algorithm was used to obtain posterior

samples from the resulting noisy matrices. False positive rate was inferred by averaging

the posterior samples. SiCloneFit performed very well for estimating false positive rate

as shown in Supplemental Fig. S17a. The estimated values of α were highly correlated

(0.998) to the original FP rates used for generating the datasets.

We performed another set of experiment to analyze SiCloneFit’s performance in esti-

mating the false negative rate. Just like the previous experiment, we simulated 30 datasets

from different 30 clonal phylogenies, the number of clones, K was set to 10, m = 100

cells were sampled from these clones and the number of sites, n was set to 100. The false

positive rate, αwas set to 0.05. The false negative rate, β was varied from 0.1 to 0.4 in steps

of 0.01. The resulting noisy matrices were given to SiCloneFit for inference. False neg-

ative rate was inferred by averaging the posterior samples. Again, SiCloneFit’s estimated

values of beta were highly correlated (0.992) to the original FN rates used (Supplemental

Fig. S17b).

These experiments show that SiCloneFit is able to precisely infer FP rate (α) and FN

rate (β) from the SCS datasets.

2.1.5.8 Estimation of Number of Clusters by SiCloneFit

To analyze whether SiCloneFit accurately infers the number of clonal clusters, we simu-

lated three sets of datasets with different levels of sampling distortion. For these datasets,

the number of clones, K was set to 10, m = 100 cells were sampled from these clones and
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the number of sites, n was set to 100. The FN rate, β was set to 0.2 and the FP rate was set

to 0.05. For the three sets, λ, the concentration coefficient for the Dirichlet-multinomial

distribution used for sampling the cells from the clones, was set to λ = 10, λ = 100 and

λ = 1000 respectively. Single-cell datasets may show sampling bias due to random sam-

pling of cells from the tissue. Larger the value of λ, the closer the Dirichlet-multinomial

distribution approximates the true prevalences of the clones. At higher values of λ, the

sampled cells better represent the true proportions of the clones, whereas, for smaller val-

ues of λ, the sampled cells deviate from the true prevalences of the clones. As a result,

inference of the number of clusters becomes difficult when the value of λ is small. In all

our experiments, we used a smaller value of λ = 10 to introduce sampling distortion that

is likely in real SCS datasets.

The number of clusters estimated by SiCloneFit for different values of λ is shown

in Supplemental Fig. S18. As the sampled single cells more closely followed the true

prevalences (increasing value of λ) of the clones, SiCloneFit’s estimate of the number

of clusters got better. Even for datasets with fair amount of sampling bias (λ = 10),

SiCloneFit was able to infer the actual number of clusters for some datasets. The clusters

that were missed by SiCloneFit mostly consisted of 1 cell with a genotype very similar to

another more populated clone. For larger λ, SiCloneFit was able to infer the actual number

of clusters for most of the datasets.

2.1.5.9 Scalability of SiCloneFit for Large Datasets

To analyze SiCloneFit’s applicability on datasets containing large number of cells, we sim-

ulated datasets withm = 2000 cells. For these datasets, the number of clones, K was set to

10, and the number of sites, n was set to 100. The FN rate, β was set to 0.2 and the FP rate

was set to 0.05. We compared SiCloneFit’s result on these datasets to that on the datasets

containing m = 500 cells. The results are shown in Supplemental Fig. S19. SiCloneFit

performed well for these large datasets. There was only a small drop in performance when

number of cells increased from 500 to 2000.

We also simulated datasets with higher number of genomic sites to evaluate SiClone-

Fit’s scalability with the number of sequenced mutation sites. We generated datasets with
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n = 400 sites, the number of clones, K was set to 10 and the number of cells was set to

m = 100. The FN rate, β was set to 0.2 and the FP rate was set to 0.05. SiCloneFit’s result

for these datasets are shown in Supplemental Fig. S20. SiCloneFit’s performance improved

for higher number of sites based on all metrics compared to datasets with n = 100 genomic

sites.

These experiments show that SiCloneFit scales well with both the number of cells and

number of genomic sites making it suitable for potentially larger future SCS datasets.

2.1.5.10 Performance on Datasets with Varying Number of Cells with Doublets

To assess the performance of SiCloneFit in the presence of doublets, we generated datasets

with doublets. The doublet rate, δ, was set to 0.1 to introduce 10% doublets. We first

simulated a clonal phylogeny with number of clones (leaves), K = 10. The number of

cells, m, sampled from the K clones, was varied as m = 100 and m = 500. The number

of sites, n, was varied as n = 50 and n = 100 respectively. The clonal genotypes were

simulated by introducing point mutations, LOH, deletion and recurrent mutations along the

branches of the phylogeny as discussed previously. The true genotype matrix consisted of

m genotype sequences corresponding to m single cells, where the true genotype of cell j

is identical to the clonal genotype of the clone where cell j belongs to. After that, doublets

were formed by merging the genotypes of two single cells with probability δ. The false

negative rate for cell c, βc, was sampled from a normal distribution with mean βmean = 0.2

and standard deviation βsd = βmean
10

. False negatives were introduced in the genotype

matrix with probability βc for cell c. We introduced false positives to the genotype matrix

with error rate, α = 0.05, by converting homozygous reference genotypes to heterozygous

genotypes with probability α.

SiCloneFit’s performance was compared against that of SCG. For these datasets, the

extended model of SiCloneFit that can handle doublets was used for inference. Similarly,

for SCG, its doublet aware model was used for inference. Comparisons were done with

respect to the different metrics as explained in Section 2.1.4.
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2.1.5.10.1 Clustering Accuracy

The clustering accuracy of each method is compared in Supplemental Fig. S21. For smaller

sized datasets (m = 100), SiCloneFit’s clustering accuracy was much higher than that of

SCG. Clustering accuracy of both methods improved with the increase in number of sites

or the increase in number of cells. For larger sized datasets, SCG’s clustering accuracy

significantly improved but for all experimental settings, SiCloneFit performed better than

SCG. For some datasets, SCG failed to converge resulting in very low clustering accuracy.

In such cases, SCG mostly reported just a single cluster.

2.1.5.10.2 Genotyping Accuracy

The genotyping performance was measured by hamming distance excluding the inferred

doublets, lower the hamming distance, better the genotyping. The genotyping performance

is shown in Supplemental Fig. S22. For genotyping, SiCloneFit either outperformed SCG

or performed similarly. The total genotyping error was lower for datasets with smaller

number of sites. Again, SCG’s failure to converge for some datasets was also visible in its

genotyping performance. For such datasets, SCG’s genotyping error was very high.

2.1.5.10.3 Clonal Phylogeny Inference Accuracy

Finally, we also compared the clonal phylogeny inference accuracy of each of these meth-

ods. SiCloneFit directly reports clonal phylogeny, whereas SCG does not infer any phy-

logeny. For SCG, we inferred phylogeny by running maximum parsimony method on

inferred clonal genotypes (method suggested in the original study [23]). The comparison

is shown in Supplemental Fig. S23. SiCloneFit performed better than SCG in all experi-

mental settings except for m = 500, n = 100. Specifically, SiCloneFit’s performance was

substantially better for datasets with 100 cells. With an increase in number of cells, SCG’s

performance also improved. For some datasets, SCG’s tree reconstruction error was very

high because it did not converge and assigned all the cells in a single cluster resulting in a

clonal phylogeny with a single node.
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2.1.5.11 Performance on Datasets Containing Doublets with Varying Number of

Clonal Populations

For the datasets with doublets, we next varied the number of clones. First, we simulated

clonal phylogenies with varying number of clones K = 10 and K = 15. For each of

these settings, m = 100 cells were sampled from K clones. The number of sites was set

to n = 100. After obtaining the true genotypes of each cell by evolving clonal genotypes

along the phylogeny, we introduced doublets with rate δ = 0.1. Then we introduced FP

and FN errors using the same error rates as described previously. For each setting of δ, K,

m and n, we generated 10 datasets.

SiCloneFit’s results were compared against SCG and shown in Supplemental Fig. S24.

For different values of clones, SiCloneFit outperformed SCG in terms of all three met-

rics. For each of the methods, performance degraded as the number of clones increased,

which is expected as mere increase of number of clones without increasing the number

of cells makes the problem more difficult. However, SiCloneFit’s performance was more

robust against the increase in number of clones. For clustering accuracy, SiCloneFit’s per-

formance did not degrade much with the increase in number of clones, but for SCG, the

clustering accuracy significantly reduced when the number of clones increased. The tree

reconstruction error was much higher for the clonal phylognies inferred from SCG’s clonal

genotypes when number of clones increased. Similarly, genotyping error of SCG increased

at a higher rate than that of SiCloneFit. This shows that SiCloneFit performed much better

for more difficult inference problems.

2.1.5.12 Performance on Datasets Containing Doublets and Missing Data

To assess the performance of SiCloneFit in the presence of both doublets as well as missing

values, we generated datasets for K = 10, m = 500, n = {50, 100} and δ = 0.1. FP and

FN error rates were the same as used previously. For each combination of K, n, m, and

δ we generated 10 datasets, for each of which, two other datasets with missing data =

{15%, 30%} were generated. SiCloneFit’s results were compared against that of SCG.
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2.1.5.12.1 Clustering Accuracy

The clustering accuracy of each method under different levels of missing data is shown in

Supplemental Fig. S25. For each experimental setting, SiCloneFit’s clustering accuracy

was either better or similar compared to SCG. SiCloneFit’s clustering accuracy did not

suffer much by the presence of missing values. For some of such datasets, SCG failed

to cluster them into separate groups and sometimes incorrectly inferred every cell as a

doublet. For these datasets, SCG’s clustering accuracy was very low because mostly all the

cells were grouped in a single cluster.

2.1.5.12.2 Genotyping Accuracy

The genotyping performance of each method under different levels of missing data is

shown in Supplemental Fig. S26. Genotyping error increased with the increase in amount

of missing data. SiCloneFit outperformed SCG in all cases. In each experimental set-

ting with missing data, for some datasets, SCG completely failed to converge and wrongly

inferred every cell as a doublet. For these datasets, SCG’s genotyping error was very high.

2.1.5.12.3 Clonal Phylogeny Inference Accuracy

The performance of each method in inferring clonal phylogeny under different levels of

missing data is shown in Supplemental Fig. S27. SiCloneFit mostly performed better than

SCG. However, SCG’s performance was better for datasets with m = 500, n = 100 and

with missing data = {0%, 15%}. Again for some datasets, SCG clustered every cell in

a single group, as a result the inferred clonal phylogeny had just one node and the tree

reconstruction error was very high. For most of the datasets, SiCloneFit correctly identified

the doublets and removed them.

2.2 Inference of Clonal Clusters, Genotypes and Phylogeny from Ex-

perimental SCS Data

We applied SiCloneFit to two experimental single-cell DNA sequencing datasets from two

metastatic colon cancer patients, obtained from the study of Leung et al. [13]. These

datasets were generated using a highly-multiplexed single-cell DNA sequencing process
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[14] and a 1000 cancer gene panel was used as the target region for sequencing. These are

two of the most recent SCS datasets and contain large numbers of cells and small numbers

of mutation sites making the inference difficult. The application of SiCloneFit on these

datasets shows its broad applicability to modern SCS datasets.

2.2.1 Analysis of Patient CRC1

This dataset consisted of 178 cells [13] obtained from both primary colon tumor and liver

metastasis. The original study reported 16 somatic SNVs after variant calling. The reported

genotypes were binary values, representing the presence or absence of a mutation at the

SNV sites.

After running SiCloneFit on this dataset, we collected the samples from the posterior

and computed a maximum clade credibility tree based on the posterior samples.

Five different clusters were identified from the SiCloneFit posterior samples. The

largest cluster (N) consisted of normal cells without any somatic mutation. The primary

tumor cells were clustered into two subclones (P1 and P2). Metastatic aneuploid tumor

cells were clustered into one subclone (M). There was another cluster (D) consisting of

diploid cells (mostly metastatic). The clonal genotype of each cluster was inferred based

on the posterior samples. The inferred genotypes are shown in Supplemental Fig. S28.

Based on the clonal genotypes, we inferred the ancestral sequences at the internal nodes

and this enabled us to find the maximum likelihood solution for placing the mutations on

the branches of the clonal phylogeny. The inferred clonal phylogeny suggested that the

mutation in GATA1 occurred twice (in the diploid and metastatic subclones) indicating

it as a potential convergent evolution. To evaluate the accuracy of this, we performed a

mixture-model Bayesian binomial test as used in the original study [13]. This test utilized

the reference and variant read counts of all the cells for this mutation to determine if it

was present in the diploid (D) subclone as indicated by the clonal phylogeny. 4 (out of

5) cells in the diploid subclone (D) displayed high posterior probability (0.9661, 0.8181,

0.914, 0.9587 respectively) of harboring this mutation indicating a strong evidence for its

recurrence.

For comparison, we ran SCG on this dataset. SCG reported 4 clonal clusters: a cluster
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(SN) consisting of unmutated normal cells, a cluster (SD) consisting of 3 metastatic diploid

cells, a cluster (SP) consisting of primary diploid and aneuploid cells and another cluster

(SM) consisting of metastatic cells. The clonal genotypes of the cells inferred by SCG

is shown in Supplemental Fig. S29. SCG could not distinguish the primary tumor cells

on the basis of the presence/absence of the TPM4 mutation and genotyped all of them to

contain TPM4. Thus it did not report two primary tumor subclones that were detected

by SiCloneFit and instead only one primary tumor subclone (all primary tumor cells were

assigned to this cluster) is inferred. The distinction of primary tumor cells based on the

presence and absence of TPM4 mutation was also inferred by SCITE in the original study

[13]. In the original study, SCITE tree reported that the TPM4 mutation was gained in

the primary tumor cells after the metastatic divergence (Fig. 6A in [13]). As a result, a

number of primary tumor cells placed before the metastatic divergence did not harbor the

TPM4 mutation, it was only present in the primary tumor cells that were placed after the

metastatic divergence. This further supports that SiCloneFit’s inference of two primary

tumor subclones is more plausible compared to SCG’s inference of single primary tumor

subclone. In addition, SCG being a clonal clustering method did not infer the phylogeny

of the subclones.

2.2.2 Analysis of Patient CRC2

This dataset consisted of 182 cells [13] obtained from both primary colon tumor and liver

metastasis. The original study reported 36 somatic SNVs after variant calling. The reported

genotypes were binary values, representing the presence or absence of a mutation at the

SNV sites.

After running SiCloneFit on this dataset, we collected the samples from the poste-

rior and computed a maximum clade credibility tree based on the posterior samples. Six

different clusters were identified in the MPEAR solution based on the posterior samples.

The largest cluster (N) consisted of normal cells that did not harbor any somatic mutation.

There were two clusters consisting of primary aneuploid tumor cells (P1 and P2) and two

clusters consisting of metastatic aneuploid tumor cells (M1 and M2). There was one more

cluster (I) comprised of diploid cells that had somatic mutations completely different from
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the primary or metastatic clusters, representing an independant clonal lineage consistent

with the findings reported by Leung et al. [13]. The clonal genotype of each cluster was

inferred based on the posterior samples. The inferred genotypes are shown in Supplemen-

tal Fig. S30. Based on the clonal genotypes, we inferred the ancestral sequences at the

internal nodes and this enabled us to find the maximum likelihood solution for placing the

mutations on the branches of the clonal phylogeny. In the original study [13], SCITE tree

identified two metastatic divergence events for this patient and also identified 4 mutations

that occurred between the two metastatic divergence points. These were termed as ‘bridge

mutations’ (FHIT, APC, CHN1 and ATP7B). These bridge mutations were identified to be

present in primary tumor cells as well as cells in the second metastatic subclone but absent

in the cells in the first metastatic subclone. SiCloneFit also identified two metastatic sub-

clones but reported on two ‘bridge mutations’ (FHIT and ATP7B) that differed between the

two metastatic subclones. These two mutations were reported to be present in the primary

tumor subclone P2 and the metastatic tumor subclone M2, but were absent in metastatic

tumor subclone M1. On the other hand, the other two mutations (APC and CHN1) were re-

ported to occur before any metastatic divergence and subsequently were present in all three

subclones (P2, M2 and M1). To verify this, we performed the mixture-model Bayesian

binomial test proposed in [13] based on the read counts for these 4 mutations. The results

are shown in Supplemental Fig. S31 and Supplemental Fig. S32. Supplemental Fig. S31

supports SiCloneFit’s inference of FHIT and ATP7B to be the two ‘bridge mutations’. Sup-

plemental Fig. S32 shows that the mutations CHN1 and APC had high posterior probability

in a number of cells in all three subclones (P2, M2 and M1) indicating they potentially oc-

curred before the first metastatic divergence and were present in all three subclones. This

indicates that SiCloneFit’s placement of these mutations in the tumor phylogeny is more

plausible than that of SCITE.

Other than the precursor mutations shared with the primary tumor clones, the metastatic

tumor clones had three more mutations in common (PTPRD, FUS and LINGO2). This is

an evidence for a potential convergent evolution. To evaluate the accuracy of this, we per-

formed the mixture-model Bayesian binomial test [13] with the reference and variant read

counts for these three recurrent mutations to determine if they were present in both the

63



metastatic subclones. The resulting posterior probabilities and heat map (Supplemental

Fig. S33) provided strong evidence that LINGO2 and FUS were present in both the sub-

clones. PTPRD had strong evidence of being present in the second metastatic subclone

(M2) but weak evidence of occurring in the first metastatic subclone (M1). The posterior

probability pattern of PTPRD also suggested that this mutation might have been affected

by allelic dropout.

For comparison, we ran SCG on this dataset. SCG reported 5 clonal clusters: a cluster

(SN) consisting of unmutated normal cells, a cluster (SP) consisting of primary aneuploid

cells, two metastatic clusters (SM1 and SM2), and another cluster (SI) consisting of pri-

mary diploid cells. The clonal genotypes of the cells inferred by SCG is shown in Supple-

mental Fig. S34. Clustering and genotyping of SCG mostly agreed with that of SiCloneFit.

However, SCG failed to detect two primary tumor subclones and instead clustered them

together into one subclone (SP). As a result, the genotyping of the corresponding primary

tumor cells were also incorrect and this can also affect the reconstruction of the mutational

order.

2.3 Identification of Doublets from Experimental SCS Data

Neither SiCloneFit nor SCG detected any doublet from the above two colorectal cancer

SCS datasets evidencing the absence of doublets in those datasets. In order to validate

SiCloneFit’s doublet detection from experimental SCS data, we applied SiCloneFit on a

high grade serous ovarian cancer dataset introduced in McPherson et al. [17]. This dataset

consisted of 370 cells and 43 somatic mutations were reported from these cells. SiClon-

eFit’s doublet-aware model reported 20 doublets from this dataset. Since, ground truth

doublets were not known for this dataset, we also ran SCG’s doublet-aware model on this

dataset. SCG reported 28 doublets for this dataset. Out of the 20 doublets identified by

SiCloneFit, 17 were also reported by SCG. We further tested the 11 cells that were reported

as doublets by SCG but not by SiCloneFit. 10 of them had similar posterior probabilities

(computed by SCG) of being a doublet or a singlet. In other words, SiCloneFit inferred

the most confident doublets inferred by SCG. The posterior probabilities of the inferred
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doublets are shown in Supplemental Fig. S35. This experiment shows SiCloneFit’s ability

in detecting potential doublets from empirical single-cell datasets.
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The log-likelihood for the observed genotype matrix given a phylogenetic tree T

error rates, ✓ and model parameters, M� becomes a summation over n sites as in

Eq. (3.10)

log L(T ,✓, M�) =
nX

i=1

log Lr
i (0) (3.10)

This likelihood computation uses Felsenstein’s pruning algorithm [26] for calcu-

lating the likelihood of a phylogenetic tree with the transition probabilities given by

Eq. (3.4). For the calculation of the partial likelihoods for leaves, we use the SCS

error model instead of values suggested in [26].

3.6 Search algorithm to infer phylogeny

Our model has three main components, the phylogenetic tree T , the error rates of

single-cell data ✓ and the parameters of the model of evolution (M�). The tree search

space has (2m�3)!
2m�2(m�2)!

discrete bifurcating tree topologies for m cells, and each topology

has a continuous component for branch lengths. The overall search space also has

a continuous component for error rates and model parameters along with the tree

space.

We developed a heuristic search algorithm to stochastically explore the joint space

of phylogenetic trees, error rates and evolution model parameters. In the joint

(T ,✓, M�) space, we need to consider three di↵erent types of moves to propose a

new configuration. In tree changing moves, a new phylogenetic tree, T 0 is proposed

from current state T . In error rate changing moves, a new error rate, ✓0 is pro-

posed from current error rate ✓. In parameter changing modes, a new value of the

parameter, M�0 is proposed from the current parameter value M�. If the proposed

configuration results in a higher likelihood, it is accepted, otherwise rejected.

With a small probability, the proposed configuration is accepted or rejected based
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Supplemental Figure S1: Probabilistic graphical model representing the SiCloneFit
model. The indices and variables of the model are described in Supplemental Table S1
and Supplemental Table S2 respectively. Shaded nodes represent observed values or fixed
values, while the un-shaded nodes represent hidden variables and their values are estimated.
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Supplemental Figure S2: Probabilistic graphical model representing the extended
SiCloneFit model for handling doublets. The new variables introduced in this model
are described in Supplemental Table S7. Shaded nodes represent observed values or fixed
values, while the un-shaded nodes represent hidden variables and their values are estimated.
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Supplemental Figure S3: Performance comparison on datasets generated under vary-
ing values of probability of deletion. SiCloneFit’s performance is compared against that
of SiFit for varying values of the probability of deletion, d. On the x-axis, we have results
corresponding to d ∈ {0.05, 0.1, 0.15, 0.2}. The number of clones was set to K = 10, the
number of cells was set to m = 100, and the number of sites was set to n = 100. Each
box plot summarizes results for 5 simulated datasets with varying clonal phylogeny and
varying size of clonal clusters. (a) Comparison of clustering accuracy measured in terms
of adjusted rand index that compares the inferred clustering against the ground truth. (b)
Comparison of tree reconstruction error in inferring the clonal phylogeny. (c) Comparison
of genotyping error measured in terms of hamming distance per cell per site between the
true genotype matrix and inferred genotype matrix.
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Supplemental Figure S4: Performance comparison on datasets generated under vary-
ing values of probability of LOH. SiCloneFit’s performance is compared against that of
SiFit for varying values of the probability of LOH, w. On the x-axis, we have results cor-
responding to w ∈ {0.05, 0.1, 0.15, 0.2}. The number of clones was set to K = 10, the
number of cells was set to m = 100, and the number of sites was set to n = 100. Each
box plot summarizes results for 5 simulated datasets with varying clonal phylogeny and
varying size of clonal clusters. (a) Comparison of clustering accuracy measured in terms
of adjusted rand index that compares the inferred clustering against the ground truth. (b)
Comparison of tree reconstruction error in inferring the clonal phylogeny. (c) Comparison
of genotyping error measured in terms of hamming distance per cell per site between the
true genotype matrix and inferred genotype matrix.
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Supplemental Figure S5: Performance comparison on datasets generated under vary-
ing values of the probability of recurrent mutation. SiCloneFit’s performance is com-
pared against that of SiFit for varying values of the probability of recurrent mutation, r. On
the x-axis, we have results corresponding to r ∈ {0.0, 0.05, 0.1, 0.15, 0.2}. The number of
clones was set to K = 10, the number of cells was set to m = 100, and the number of
sites was set to n = 100. Each box plot summarizes results for 5 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Comparison of clustering
accuracy measured in terms of adjusted rand index that compares the inferred clustering
against the ground truth. (b) Comparison of tree reconstruction error in inferring the clonal
phylogeny. (c) Comparison of genotyping error measured in terms of hamming distance
per cell per site between the true genotype matrix and the inferred genotype matrix.
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Supplemental Figure S6: Clustering accuracy on datasets with varying number of cells.
SiCloneFit’s clustering accuracy is compared against that of SCG, OncoNEM, SiFit and
SCITE. The y-axis denotes the clustering accuracy measured in terms of adjusted rand
index that compares the inferred clustering against the ground truth. On the x-axis, we
have results corresponding to n = 50 and n = 100. Each box plot summarizes results for
10 simulated datasets with varying clonal phylogeny and varying size of clonal clusters. (a)
Results for m = 100 (comparison against SCG, OncoNEM, SiFit and SCITE). (b) Results
for m = 500 (comparison against SCG, SiFit and SCITE).
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Supplemental Figure S7: Genotyping performance on datasets with varying number of
cells. SiCloneFit’s genotyping performance is compared against that of SCG, OncoNEM,
SiFit and SCITE. The y-axis denotes the genotyping error measured in terms of hamming
distance per cell per site between the true genotype matrix and inferred genotype matrix.
On the x-axis, we have results corresponding to n = 50 and n = 100. Each box plot
summarizes results for 10 simulated datasets with varying clonal phylogeny and varying
size of clonal clusters. (a) Results for m = 100 (comparison against SCG, OncoNEM,
SiFit and SCITE). (b) Results for m = 500 (comparison against SCG, SiFit and SCITE).
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Supplemental Figure S8: Performance in inferring clonal phylogeny on datasets with
varying number of cells. SiCloneFit’s performance in inferring clonal phylogeny is com-
pared against that of SCG, OncoNEM, SiFit and SCITE. The y-axis denotes the tree re-
construction error measured in terms of pairwise cell shortest-path distance between the
true clonal phylogeny and inferred clonal phylogeny. On the x-axis, we have results cor-
responding to n = 50 and n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. (a) Results
for m = 100 (comparison against SCG, OncoNEM, SiFit and SCITE). (b) Results for
m = 500 (comparison against SCG, SiFit and SCITE).
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Supplemental Figure S9: Performance comparison on datasets with varying number
of clones. SiCloneFit’s performance is compared against that of SCG, OncoNEM, SiFit
and SCITE for varying number of clones. On the x-axis, we have results corresponding
to K = 10 and K = 15. The number of cells was set to m = 100, and the number of
sites was set to n = 100. Each box plot summarizes results for 10 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Comparison of clustering
accuracy measured in terms of adjusted rand index that compares the inferred clustering
from the ground truth. (b) Comparison of tree reconstruction error in inferring the clonal
phylogeny. (c) Comparison of genotyping error measured in terms of hamming distance
per cell per site between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S10: Performance comparison on datasets with varying false neg-
ative rate. SiCloneFit’s performance is compared against that of SCG, OncoNEM, SiFit
and SCITE for varying false negative rates. On the x-axis, we have results corresponding
to β = 0.2, β = 0.3 and β = 0.4. The number of cells was set to m = 100, and the
number of sites was set to n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. (a) Comparison
of clustering accuracy measured in terms of adjusted rand index that compares the inferred
clustering from the ground truth. (b) Comparison of tree reconstruction error in inferring
the clonal phylogeny. (c) Comparison of genotyping error measured in terms of hamming
distance per cell per site between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S11: Performance comparison on datasets with varying false pos-
itive rate. SiCloneFit’s performance is compared against that of SCG, OncoNEM, SiFit
and SCITE for varying false positive rates. On the x-axis, we have results corresponding
to α = 0.05 and α = 0.1. The number of cells was set to m = 100, and the number of
sites was set to n = 100. Each box plot summarizes results for 10 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Comparison of clustering
accuracy measured in terms of adjusted rand index that compares the inferred clustering
from the ground truth. (b) Comparison of tree reconstruction error in inferring the clonal
phylogeny. (c) Comparison of genotyping error measured in terms of hamming distance
per cell per site between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S12: Clustering accuracy on datasets with missing data. SiClon-
eFit’s clustering accuracy is compared against that of SCG. The y-axis denotes the clus-
tering accuracy measured in terms of adjusted rand index that compares the inferred clus-
tering from the ground truth. On the x-axis, we have results corresponding to n = 50
and n = 100. Each box plot summarizes results for 10 simulated datasets with varying
clonal phylogeny and varying size of clonal clusters. (a) Results for the datasets without
any missing data. (b) Results for datasets with 15% missing data. (c) Results for datasets
with 30% missing data.
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Supplemental Figure S13: Genotyping performance on datasets with missing data.
SiCloneFit’s genotyping performance is compared against that of SCG. The y-axis denotes
the genotyping error measured in terms of hamming distance per cell per site between the
true genotype matrix and inferred genotype matrix. On the x-axis, we have results cor-
responding to n = 50 and n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. (a) Results for
the datasets without any missing data. (b) Results for datasets with 15% missing data. (c)
Results for datasets with 30% missing data.
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Supplemental Figure S14: Performance in inferring clonal phylogeny on datasets with
missing data. SiCloneFit’s performance in inferring clonal phylogeny is compared against
that of SCG. The y-axis denotes the tree reconstruction error measured in terms of pair-
wise cell shortest-path distance between the true clonal phylogeny and inferred clonal phy-
logeny. On the x-axis, we have results corresponding to n = 50 and n = 100. Each box
plot summarizes results for 10 simulated datasets with varying clonal phylogeny and vary-
ing size of clonal clusters. (a) Results for the datasets without any missing data. (b) Results
for datasets with 15% missing data. (c) Results for datasets with 30% missing data.
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Supplemental Figure S15: Cumulative distributions M(f) of subclonal mutations un-
der neutral evolution. The cumulative distributions are linear with 1

f
. R2 goodness-of-

fit measure above the threshold value (0.98) suggested in [28]. Representative simulated
dataset consisting of (a) 100 cells and (b) 200 cells.
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Supplemental Figure S16: Performance comparison on datasets generated under neu-
tral evolution. SiCloneFit’s performance is compared against that of SCG, SiFit and
SCITE on simulated datasets under neutral evolution. On the x-axis, we have results cor-
responding to m = 100 and m = 200. The number of clones was set to K = 20, and
the number of sites was set to n = 100. Each box plot summarizes results for 5 simulated
datasets. (a) Comparison of clustering accuracy measured in terms of Adjusted Rand In-
dex that compares the inferred clustering against the ground truth. (b) Comparison based
on the genotyping error measured in terms of hamming distance per cell per site between
the true genotype matrix and inferred genotype matrix. (c) Comparison based on the tree
reconstruction error measured in terms of pairwise cell shortest-path distance between the
true clonal phylogeny and inferred clonal phylogeny.
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Supplemental Figure S17: Estimation of error rates by SiCloneFit. Error rates inferred
by SiCloneFit are compared against the true error rates used for generating the data. The
green dots correspond to the results of SiCloneFit. The black line represents a fitted regres-
sion line. (a) SiCloneFit’s estimate of false positive rates is compared against the true false
positive rates used during the simulation. (b) False negative rates inferred by SiCloneFit
are compared to the true false negative rate used for generating the dataset.
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Supplemental Figure S18: Estimation of number of clusters by SiCloneFit. Number
of clusters inferred by SiCloneFit is compared against the true number of clusters in the
simulated datasets. On the x-axis, we have results corresponding to λ = 10, λ = 100 and
λ = 1000. λ denotes the concentration parameter of the Dirichlet distribution used for
sampling the observed prevalences of the clones. Each box plot summarizes results for 10
simulated datasets with varying clonal phylogeny and varying size of clonal clusters.
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Supplemental Figure S19: Scalability of SiCloneFit for large number of cells. Perfor-
mance of SiCloneFit for datasets containing large number of cells. On the x-axis, we have
results corresponding to m = 500 and m = 2000. Each box plot summarizes results for
10 simulated datasets with varying clonal phylogeny and varying size of clonal clusters.
(a) Clustering accuracy measured in terms of adjusted rand index that compares the in-
ferred clustering from the ground truth. (b) Tree reconstruction error in inferring the clonal
phylogeny. (c) Genotyping error measured in terms of hamming distance per cell per site
between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S20: Scalability of SiCloneFit for large number of genomic sites.
Performance of SiCloneFit for datasets with large number of mutation sites. On the x-
axis, we have results corresponding to n = 100 and n = 400. Each box plot summarizes
results for 10 simulated datasets with varying clonal phylogeny and varying size of clonal
clusters. (a) Clustering accuracy measured in terms of adjusted rand index that compares
the inferred clustering from the ground truth. (b) Tree reconstruction error in inferring the
clonal phylogeny. (c) Genotyping error measured in terms of hamming distance per cell
per site between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S21: Clustering accuracy on datasets containing doublets with
varying number of cells. SiCloneFit’s clustering accuracy is compared against that of
SCG for datasets containing doublets. The y-axis denotes the clustering accuracy measured
in terms of B-Cubed F-score that compares the inferred clustering from the ground truth.
On the x-axis, we have results corresponding to n = 50 and n = 100. Each box plot
summarizes results for 10 simulated datasets with varying clonal phylogeny and varying
size of clonal clusters. The top panel shows the results for m = 100 and the bottom panel
shows the results for m = 500.
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Supplemental Figure S22: Genotyping performance on datasets containing doublets
with varying number of cells. SiCloneFit’s genotyping performance is compared against
that of SCG for datasets containing doublets. The y-axis denotes the genotyping error
measured in terms of hamming distance between the true genotype matrix and inferred
genotype matrix excluding the inferred doublets. On the x-axis, we have results corre-
sponding to n = 50 and n = 100. Each box plot summarizes results for 10 simulated
datasets with varying clonal phylogeny and varying size of clonal clusters. The top panel
shows the results for m = 100 and the bottom panel shows the results for m = 500.
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Supplemental Figure S23: Performance in inferring clonal phylogeny on datasets con-
taining doublets with varying number of cells. SiCloneFit’s performance in inferring
clonal phylogeny is compared against that of SCG for datasets that contain doublets. The
y-axis denotes the tree reconstruction error measured in terms of pairwise cell shortest-
path distance between the true clonal phylogeny and inferred clonal phylogeny excluding
the inferred doublets. On the x-axis, we have results corresponding to n = 50 and n = 100.
Each box plot summarizes results for 10 simulated datasets with varying clonal phylogeny
and varying size of clonal clusters. The top panel shows the results for m = 100 and the
bottom panel shows the results for m = 500.
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Supplemental Figure S24: Performance comparison on datasets containing doublets
with varying number of clones. SiCloneFit’s performance is compared against that of
SCG on datasets containing doublets for varying number of clones. On the x-axis, we have
results corresponding to K = 10 and K = 15. The number of cells was set to m = 100,
and the number of sites was set to n = 100. Each box plot summarizes results for 10
simulated datasets with varying clonal phylogeny and varying size of clonal clusters. (a)
Comparison of clustering accuracy measured in terms of B-Cubed F-score that compares
the inferred clustering from the ground truth. (b) Comparison based on the performance in
inferring the clonal phylogeny. (c) Comparison based on the genotyping error measured in
terms of hamming distance between the true genotype matrix and inferred genotype matrix.
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Supplemental Figure S25: Clustering accuracy on datasets containing doublets and
missing entries. SiCloneFit’s clustering accuracy is compared against that of SCG for
datasets that contain doublets as well as missing values. The y-axis denotes the clustering
accuracy measured in terms of B-cubed F-score that compares the inferred clustering from
the ground truth excluding inferred doublets. On the x-axis, we have results corresponding
to n = 50 and n = 100. Each box plot summarizes results for 10 simulated datasets with
varying clonal phylogeny and varying size of clonal clusters. (a) Results for the datasets
without any missing data. (b) Results for the datasets with 15% missing data and (c) Results
for the datasets with 30% missing data.
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Supplemental Figure S26: Genotyping performance on datasets containing doublets
and missing entries. SiCloneFit’s genotyping performance is compared against that of
SCG for datasets that contain doublets as well as missing values. The y-axis denotes the
genotyping error measured in terms of hamming distance between the true genotype matrix
and inferred genotype matrix. On the x-axis, we have results corresponding to n = 50 and
n = 100. Each box plot summarizes results for 10 simulated datasets with varying clonal
phylogeny and varying size of clonal clusters. (a) Results for the datasets without any
missing data. (b) Results for the datasets with 15% missing data and (c) Results for the
datasets with 30% missing data.
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Supplemental Figure S27: Performance in inferring clonal phylogeny on datasets con-
taining doublets and missing entries. SiCloneFit’s performance in inferring clonal phy-
logeny is compared against that of SCG for datasets that contain doublets as well as missing
values. The y-axis denotes the tree reconstruction error measured in terms of pairwise cell
shortest-path distance between the true clonal phylogeny and inferred clonal phylogeny.
On the x-axis, we have results corresponding to n = 50 and n = 100. Each box plot sum-
marizes results for 10 simulated datasets with varying clonal phylogeny and varying size
of clonal clusters. (a) Results for the datasets without any missing data. (b) Results for the
datasets with 15% missing data and (c) Results for the datasets with 30% missing data.
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Supplemental Figure S28: Inferred genotypes of cells from the posterior samples ob-
tained using SiCloneFit for metastatic colorectal cancer patient CRC1.
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Supplemental Figure S29: Clonal genotypes of cells inferred using SCG for metastatic
colorectal cancer patient CRC1.
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Supplemental Figure S30: Inferred genotypes of cells from the posterior samples ob-
tained using SiCloneFit for metastatic colorectal cancer patient CRC2.
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Supplemental Figure S31: Probability heatmap of the FHIT and ATP7B mutations
in CRC2. Heatmaps of the posterior probabilities of two bridge mutations (FHIT, and
ATP7B) in patient CRC2 are listed for the primary and metastatic tumor clusters. Both
SiCloneFit and SCITE identify these two mutations as ‘bridge mutations’ between the two
metastatic divergence events. Heatmaps for the two metastatic subclones (M1 and M2) and
the primary subclone (P2) are shown separately. Each variant is colored in the heatmap
based on the corresponding posterior probability value.
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Supplemental Figure S32: Probability heatmap of the CHN1, and APC mutations in
CRC2. Heatmaps of the posterior probabilities of two mutations (CHN1, and APC) in
patient CRC2 are listed for the primary and metastatic tumor clusters. These two mutations
were identified as ‘bridge mutations’ in the original study when using SCITE, however,
SiCloneFit placed them to occur before any metastatic divergence (classifying them as
‘non-bridge’). Heatmaps for the two metastatic subclones (M1 and M2) and the primary
subclone (P2) are shown separately. Each variant is colored in the heatmap based on the
corresponding posterior probability value.

97



PTPRD LINGO2_4 FUS

MA_86

MA_35

MA_85

MA_37

MA_28

MA_29

MA_91

MA_33

MA_45

MA_40

0 0.2 0.4 0.6 0.8 1
Value

Color Key

PTPRD LINGO2_4 FUS
MA_32

MA_27

MA_93

MA_88

MA_31

MA_44

MA_41

MA_47

MA_36

MA_90

MA_89

MA_48

MA_43

MA_94

MA_30

MA_92

MA_39

MA_42

MA_38

MA_34

MA_87

MA_95

MA_46

0 0.2 0.4 0.6 0.8 1
Value

Color Key

Metastatic Tumor  
Cell Cluster 2  

(M2) 

Metastatic Tumor  
Cell Cluster 1 (M1) 

Posterior Probability of Variant 

Supplemental Figure S33: Probability heatmap of the recurrent mutations in CRC2.
Heatmaps of the posterior probabilities of the three recurrent mutations (PTPRD, FUS and
LINGO2) in patient CRC2 are listed for the metastatic tumor cells. Heatmaps for the two
metastatic subclones (M1 and M2) are shown separately. Each variant is colored in the
heatmap based on the corresponding posterior probability value.
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Supplemental Figure S34: Clonal genotypes of cells inferred using SCG for metastatic
colorectal cancer patient CRC2.
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Supplemental Figure S35: Posterior probabilities of the doublets inferred by SCG and
SiCloneFit from the high grade serous ovarian cancer dataset. The dataset consisted
of 370 cells and 43 somatic mutations. The posterior probabilities are computed by SCG.
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4 Supplemental Tables

Supplemental Table S1: Indices used in SiCloneFit model (Supplemental Fig. S1).

Index Range Description
i {1, . . . , n} Index of SNV site
j {1, . . . ,m} Index of Single-cell sample
k {1, . . . ,∞} Index of Clone (cluster)

Supplemental Table S2: Variables used in SiCloneFit model (Supplemental Fig. S1).

Variable Range Description
α0 (0,∞) Model parameter for the

Chinese Restaurant Process (CRP) model
cj {1, . . . ,∞} cluster indicator for cell j
T all trees on |c| leaves Clonal Phylogenetic Tree

Mλ(= {λr, λl}) [0, 1] Parameters of the model of evolution
Gki {0, . . . , |gt|} True genotype of clone k for genomic locus i

Observed genotype of ith SNV
Dij {0, . . . , |go|} from single cell j. Observed as the

input data inferred from a variant caller.
α [0, 1] False-positive error rate
β [0, 1] False-negative error rate

Supplemental Table S3: Hyper-parameters used in SiCloneFit model (Supplemental
Fig. S1).

Hyper-parameter Description
a, b Hyper-parameters for Prior distribution of α0

aα, bα Hyper-parameters for Prior distribution of α
aβ, bβ Hyper-parameters for Prior distribution of β
aM , bM Hyper-parameters for Prior distribution ofMλ
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Supplemental Table S4: Error model distribution for ternary genotype.

Dij

0 1 2
0 1− α− αβ

2
α αβ

2

Gcji 1 β
2

1− β β
2

2 0 0 1

Supplemental Table S5: Error model distribution for binary genotype.

Dij

0 1
Gcji 0 1− α α

1 β 1− β

Supplemental Table S6: Expected genotype state after combining two genotypes using the
binary operator ⊕.

⊕ g = 0 g = 1 g = 2
g = 0 0 1 1
g = 1 1 1 1
g = 2 1 1 2

Supplemental Table S7: New variables used in extended SiCloneFit model for handling
doublets (Supplemental Fig. S2).

Variable Range Description
c1j {1, . . . ,∞} Primary cluster indicator for cell j
c2j {1, . . . , |c1|} Secondary cluster indicator for cell j.
Yj {0, 1} Bernoulli variable indicating if cell j

is a singlet (0) or doublet (1)
δ [0, 1] Doublet rate

aδ, bδ Hyper-parameters for Prior distribution of δ
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