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Supplementary Figure S1: The percent identity matrix for A-domains in three BGCs in S. 
coelicolor A3(2). A-domains CALC4, CALC5, CALC7 (numbers denotes index in the CALC 
BGC sequence) in the CALC gene cluster (shown as red entries) share identical segments of 96 
nucleotides or longer. 
  



 
Supplementary Figure S2. Histogram of distances between consecutive domains in NRP 
and PK BGCs from the MIBIG database. The distances are computed for A, C, TE, AT, KS 
and KR domains. 
  



#edges in the 
assembly graph 

1 2 3 4 5 6 7 8 9 ≥10 

#genes 7625 112 90 23 35 5 10 1 1 8 
median gene 
length 

849 855 843 1443 1158 1020 1422 1011 2889 1656 

 
 
Supplementary Table S1. Number of genes in S. coelicolor A3(2) categorized by the number of 
edges they traverse in the SPAdes assembly graph (total of 7910 genes). Even after repeat 
resolution in the assembly graph using exSPAnder, 54 genes in the S. coelicolor genome remain 
split over multiple scaffolds.   



locus ID Gene gene length 

SCO6275 type I polyketide synthase 13674 

SCO3231 CDA peptide synthetase II 11013 

SCO0492 peptide synthetase 10932 

SCO6274 type I polyketide synthase 10731 

SCO3232 CDA peptide synthetase III 7254 

SCO6827 polyketide synthase 7077 

SCO6428 hypothetical protein 6945 

SCO5892 polyketide synthase 6894 

SCO0127 beta keto-acyl synthase 6723 

SCO7682 non-ribosomal peptide synthase 6690 

SCO6220 hypothetical protein 6552 

SCO6273 type I polyketide synthase 6459 

SCO0126 beta keto-acyl synthase 6249 

SCO7683 non-ribosomal peptide synthase 5529 

SCO5748 sensory histidine kinase 5490 

SCO2226 bifunctional alpha-amylase/dextrinase 5397 

SCO3285 large glycine/alanine rich protein 5319 

SCO1182 hypothetical protein 5181 

SCO5761 ATP-dependent DNA helicase 5073 

SCO6687 DNA-binding protein 5037 

SCO3869 WD-40 repeat-containing protein 5031 

SCO2999 hypothetical protein 4962 

SCO6626 protein kinase 4674 

SCO1407 hypothetical protein 4662 

SCO2383 hypothetical protein 4638 

SCO4508 cell division-like protein 4578 

SCO2026 glutamate synthase 4545 

SCO2499 transport ATPase 4419 

SCO4009 bifunctional histidine kinase and regulator 4392 

SCO7015 glycosyl hydrolase 4302 

SCO6432 peptide synthase 4224 

SCO5710 large Pro/Ala/Gly-rich protein 4101 

SCO6348 hypothetical protein 4086 

SCO2450 Ser/Thr protein kinase (regulator) 4050 



SCO2975 hypothetical protein 4038 

SCO2599 hypothetical protein 4023 

SCO2259 multidomain-containing protein family 4005 

SCO7327 two-component system sensory histidine kinase 3996 

SCO5544 hypothetical protein 3990 

SCO4092 ATP-dependent helicase 3984 

SCO5397 large Ala/Glu-rich protein 3981 

SCO5734 ATP/GTP binding protein membrane protein 3966 

SCO1184 hypothetical protein 3963 

SCO6457 beta-galactosidase 3924 

SCO4655 DNA-directed RNA polymerase subunit beta' 3900 

SCO6635 bacteriophage resistance gene pglY 3885 

kgd alpha-ketoglutarate decarboxylase 3819 

SCO6004 ATP/GTP binding protein 3807 

SCO3033 integral membrane regulatory protein 3807 

SCO6219 Ser/Thr protein kinase 3786 

SCO7176 peptidase 3762 

SCO4263 transcriptional regulator 3756 

SCO0432 peptidase 3738 

SCO2763 ABC transporter ATP-binding protein 3732 

SCO7188 peptidase 3720 

SCO6572 glycosyl hydrolase 3717 

SCO0216 nitrate reductase subunit alpha NarG2 3702 

SCO6535 nitrate reductase subunit alpha NarG 3696 

SCO4947 nitrate reductase subunit alpha NarG3 3684 

SCO5184 ATP-dependent DNA helicase 3669 

SCO2446 peptidase 3663 

cobN cobaltochelatase subunit CobN 3654 

SCO1554 nicotinate-nucleotide-dimethylbenzimidazole 
phosphoribosyltransferase 

3639 

SCO6627 hypothetical protein 3633 

SCO5331 DNA methylase 3603 

SCO2590 glycosyltransferase 3594 

SCO5577 chromosome associated protein 3561 



SCO1739 DNA polymerase III subunit alpha 3558 

SCO3109 transcriptional-repair coupling factor 3555 

dnaE DNA polymerase III subunit alpha 3540 

SCO3947 ABC transporter 3519 

SCO6688 hypothetical protein 3516 

SCO6431 peptide synthase 3516 

SCO3168 protease 3516 

SCO1657 methionine synthase 3513 

SCO4969 regulatory protein 3504 

rpoB DNA-directed RNA polymerase subunit beta 3486 

SCO5183 ATP-dependent DNA helicase 3480 

SCO6198 hypothetical protein 3471 

SCO5280 ATP-binding protein 3447 

SCO6593 hypothetical protein 3444 

SCO0488 hydrolase 3417 

SCO0370 DNA-binding protein 3405 

SCO7037 hypothetical protein 3396 

SCO0546 pyruvate carboxylase 3375 

SCO0072 hypothetical protein 3354 

SCO4116 AfsR-like regulatory protein 3345 

SCO2672 hypothetical protein 3342 

SCO5540 hypothetical protein 3336 

SCO4250 hypothetical protein 3336 

SCO5511 membrane associated phophodiesterase 3327 

carB carbamoyl phosphate synthase large subunit 3309 

SCO2637 serine protease 3297 

SCO5271 hypothetical protein 3291 

SCO5506 regulatory protein 3276 

SCO3542 integral membrane protein with kinase activity 3270 

SCO6994 hypothetical protein 3261 

SCO0369 hypothetical protein 3258 

SCO5717 hypothetical protein 3252 

SCO2549 Protease 3204 

 



Supplementary Table S2. List of 100 longest genes in the Streptomyces coelicolor A3(2) 
genome. Genes forming BGC genes are shown in bold.   



locus ID gene  gene length #contigs 
SCO6274 type I polyketide synthase 13674 9 
SCO6273 type I polyketide synthase 10731 7 
SCO3232 CDA peptide synthetase III 7254 2 
SCO6270 oxidoreductase alpha-subunit 6457 2 
SCO2599 hypothetical protein 4021 2 
SCO6836 transcription regulator ArsR 3994 2 
SCO5540 hypothetical protein 3334 2 
SCO2000 ATP-binding RNA helicase 2997 2 
SCO6789 fatty oxidation protein 2202 2 
SCO6275 type I polyketide synthase 2159 3 
SCO6082 glycogen debranching protein 2107 2 
SCO5443 alpha-amylase 2026 3 

SCO7327 two-component system sensory 
histidine kinase 2008 2 

SCO4595 Oxidoreductase 1936 2 
SCO4777 protein Ser/Thr kinase 1800 2 

SCO6661 glucose-6-phosphate 1-dehydrogenase 1777 4 

SCO6659 glucose-6-phosphate isomerase 1651 3 
SCO4296 chaperonin GroEL 1626 2 
SCO4762 chaperonin GroEL 1626 2 
SCO6832 methylmalonyll-CoA mutase 1596 3 
SCO4258 hydrolytic protein 1458 2 
SCO4257 hydrolytic protein 1443 2 

SCO5087 actinorhodin polyketide beta-ketoacyl 
synthase subunit alpha 1404 2 

SCO2931 ABC transporter ATP-binding protein 1275 2 

SCO5393 ABC transporter ATP-binding protein 1270 2 

SCO2366 hypothetical protein 1141 3 

SCO6837 arsenic resistance membrane transport 
protein 1107 2 

SCO4594 2-oxoglutarate ferredoxin 
oxidoreductase subunit beta 1057 2 

SCO6269 2-oxoglutarate ferredoxin 
oxidoreductase subunit beta 1051 2 

SCO4885 lipoprotein 1047 2 
SCO1471 transposase 1020 3 
SCO2632 transposase 1020 4 
SCO4370 transposase 1020 3 
SCO4698 IS1652 transposase 1020 3 
SCO4183 transposase 1018 3 



SCO5514 ketol-acid reductoisomerase 999 3 
SCO0091 IS1652 transposase 957 2 
SCO0368 transposase 957 2 
SCO7335 alpha-amylase 957 3 
SCO7803 insertion element transposase 957 2 
SCO5641 transposase 955 2 
SCO7819 hypothetical protein 847 2 
SCO5634 pseudo 596 2 
SCO5292 ATP/GTP-binding protein 576 2 
SCO4061 hypothetical protein 556 2 
SCO6395 pseudo 379 3 
SCO7805 hypothetical protein 336 2 
SCO6403 hypothetical protein 309 2 
SCOr15 5S ribosomal RNA 121 2 
SCOr04 5S ribosomal RNA 119 2 
SCOr01 5S ribosomal RNA 118 2 
SCOr10 5S ribosomal RNA 117 2 
SCOt05 tRNA 72 2 
SCOt07 tRNA 72 2 

Supplementary Table S3. The list of 54 genes from Streptomyces coelicolor A3(2) that span 
multiple contigs even after repeat resolution in the SPAdes assembly graph. The length of genes 
in this table varies from 72 to 13762 (average length is 2997 nucleotides). Multiple biosynthetic 
genes (e.g., the genes encoding the calcium-dependent antibiotic) are split over several contigs 
(shown in bold). Note that in addition to NRPSs and PKSs, other long genes including 16S RNA 
genes are also highly fragmented in metagenomic assemblies. 
 

 

Appendix A: Coupling biosyntheticSPAdes and NRPquest for PNP reconstruction 

 

Each of the rural postman routes generated by biosyntheticSPAdes corresponds to a sequence of A-

domains and thus allows one to generate putative NRPs encoded by this sequence using nonribosomal 

code (Stachelhaus and Marahiel 1999). Tandem mass spectra can be matched against these putative NRPs 

resulting in Peptide-Spectrum Matches (PSMs) with varying P-values (Mohimani and Pevzner, 2016). A 

PSM with the lowest P-value reveals the NRP (and thus the rural postman tour) that is more likely to be 

correct than others. 

 



To demonstrate how this approach works, we matched both putative CALC BGCs (corresponding to two 

rural postman routes for the CALC BGC) against a high resolution mass spectral dataset from S. 

coelicolor deposited in the Global Natural Products Social (GNPS) molecular network (Wang et al. 2016) 

with MassiveID MSV000078839 (total of 11952 spectra). For each A-domain, we analyzed the top three 

candidate amino acids predicted by NRPSPredictor2, and considered linear, cyclic, and branch-cyclic 

structures. This resulted in 20720 candidate structures for each sequence, and we searched all those 

structures against all mass spectra of S. coelicolor using Dereplicator (Mohimani et al. 2017), allowing for 

a single blind modification. The correct sequence resulted in a score 16 (P-value 8.7 * 10-15), while the 

incorrect sequence resulted in a score 15 (P-value 2.9 * 10-14). This illustrates that coupling of 

biosyntheticSPAdes with peptidogenomics leads to elucidation of NRPs encoded by predicted NRP 

BGCs. 

 
Appendix B: biosyntheticSPAdes output format 

 

BiosyntheticSPAdes stores all output files in a user-specified folder. 

● <output_dir>/orderings.fasta contains putative sequences for all putative BGCs in the fasta 

format. Every header of a fasta record has the following format: 

>NODE_1_length_60699_cluster_3_candidate_2  

Here 1 is the identifier of the BGC sequence, 60699 is its length in nucleotides, 3 is the number of 

BGC subgraph that generated this sequence, and 2 is the number of rural postman routes 

generated from this subraph. We output at most 50 putative paths for each BGC subgraph 

according to their order in the Depth First Search traversal. 

● <output_dir>/bgc_in_gfa/ folder contains the GFA file for each BGC subgraph. These files 

contain the assembly graph structures and can be visualized with tools such as Bandage (Wick et 

al. 2015) 

● <output_dir>/bgc_statistics.txt contains information about each BGC subgraph and each rural 

postman route generated from this subgraph. For the BGC subgraph, it shows the number of 



domains, the number of strong and weak edges in the corresponding scaffolding graph, and the 

predicted BGC type (PK, NRP, PK/NRP, or not known). For each rural postman route, it shows 

an arrangement of domains and positions of domains on putative BGC sequence. 

 

Appendix C: Putative NRP BGCs in the CYANO dataset 
 

 
The CYANO dataset proved to be a rich source of natural products (Kleigrewe et al. 2015, Boudreau et 

al. 2015, Cummings et al. 2016). It is also a difficult test for the biosyntheticSPAdes algorithm for the 

following three reasons:  

● Although the heterotrophic bacterial contaminants in this dataset encode some BGCs, these BGCs 

are difficult to reconstruct due to the low depth of coverage. E.g., biosyntheticSPAdes identified 

three NRP synthetases (108 kb, 44 kb, and 43 kb in length) with low mean coverage 8X arising 

from some low-abundance bacteria.  

● Since some BGCs are located in close proximity to each other in the assembly graph, a single 

BGC subgraph and corresponding scaffolding graph may contain domains from several BGCs, 

thus preventing the rural postman approach from finding feasible routes (Supplementary Figure 

S3). Reconstruction of BGCs from such BGC subgraphs is challenging since they often span 

complex repeat structures. For example. biosyntheticSPAdes identified a BGC subgraph with 

more than 200 domains in the CYANO dataset. Such BGC subgraphs may encode dozens of 

BGCs.  

● Many BGCs have highly similar domains resulting in domain collapsing. To perform domain 

restoration, one has to estimate how many domains were collapsed on a single edge in the 

assembly graph, which becomes challenging due to variations in the coverage depth. 

 



Supplementary Figure S3. An example of the scaffolding graph without a rural postman route. This 
scaffolding graph is likely formed by two BGCs.  
 

Despite the fact, that biosyntheticSPAdes faced all three challenges analyzing the CYANO dataset, it 

reconstructed five putative NRP synthetases with complexities 20, 9, 5, 5, and 2, respectively. Our 

analysis revealed that the CYANO sample contains novel BGCs that fell under the radar of previous 

studies (based on extensive manual curation) but were reconstructed by biosyntheticSPAdes.   

 

The BGCs with complexities 20 and 9 likely originated from the low-coverage contaminant bacteria and 

their BGC subgraphs include multiple isolated edges. SPAdes/metaSPAdes combined them into a single 

scaffold but the nucleotide sequence of this scaffold contains stretches of Ns, making it difficult to infer 

the nucleotide sequences of the domains.  Another possibility is that these two putative NRP synthetases 

represent parts of a single NRP that was not assembled into a single contig by SPAdes/metaSPAdes. 

Although two BGCs with multiplicity five have complex BGC subgraphs with loops and long repeats, 

(Supplementary Figure S4), there exist single rural postman routes in their scaffolding graphs. Since 

AntiSMASH analysis did not reveal any similarities with known BGCs, they likely represent novel NRP 

synthetases. The NRP synthetase with complexity 2 has a simple graph structure (all domains lie on a 

single edge of the assembly graph) and is similar to the known aeruginoside BGC (52% gene similarity 

and consistent gene order). 

 

  

 
Supplementary Figure S4. Two complex BGC subgraphs from the CYANO dataset visualized with the 
Bandage tool (Wick et al. 2015). Grey edges represent edges of the assembly graph and each union of connected 
black edges represents a vertex of the assembly graph.  



 
Appendix D: Biosynthetic capacity of the HMP datasets 

 
 
 

 

     
dataset 

ID                  
 

total     
length of 

long 
contigs 
(Mb) 

N50 
(kb) 

#A- 
domains 

#AT-
domains 

# A/AT-
domains    
per 1 Mb 

# BGC 
subgraphs 

with 
complexity  

1-3 

# BGC 
subgraphs 

with 
complexity  

4-6 

# BGC 
subgraphs 

with 
complexity 

≥7 

Keratinized 
gingiva 

019125 50.5 44,0 57 24 1.60 12 0 0 

014473 41.2 6,2 60 36 2.33 15 0 0 

015060 47.3 3,8 61 50 2.34 18 1 0 

Buccal 
mucosa 

018443 129.5 3,6 166 83 1.92 47 1 0 

023930 29.3 12,1 41 19 2.05 10 0 0 

Stool 

052697 211.0 12,3 287 85 1.76 74 0 0 

011239 136.2 8,4 215 48 1.93 45 0 0 

016335 189,5  7,0 268 62 1.69 51 0 0 

Gingivival 
plaque 

013950 95.8 4,0 142 72 2.23 40 0 0 

063215 76.7 3,3 169 52 2.88 26 4 0 

019029 112.8 2,6 147 76 1.98 28 2 0 

Subpravingal 
plaque 

013723 149.0 3,4 242 117 2.41 59 7 0 

015574 149.3 3,3 258 104 2.42 67 7 1 

049318 221.2 3,9 300 124 1.92 80 3 0 

Tongue 
dorsum 

050244 174.3 5,8 204 83 1.65 47 4 0 

024081 144.0 8,5 176 66 1.68 47 3 0 

015762 168.3 6,3 208 85 1.74 57 3 0 

Throat 

019127 91.6 4,6 136 46 1.97 34 0 0 

019027 76,4 4,2 90 40 1.70 23 1 0 

014689 63,2 4,1 76 38 1.80 17 1 0 

Supplementary Table S4: Statistics of A-domains and AT-domains in various samples from the HMP dataset.  
Long contigs are defined as contigs longer than 1 kb. Dataset identifier is the numerical part of the SRX accession 
id.  
 
Appendix E: Putative NRP synthetases in the subpravingal plaque samples from the HMP dataset 

 
Subpravingal plaque samples from the HMP dataset contain more nontrivial BGCs as compared to the 

samples from other human body sites. biosyntheticSPAdes identified 18 non-trivial BGC subgraphs in 

three subpravingal plaque datasets, including (i) 5 BGCs with high-coverage edges, (ii) 10 BGCs without 



repetitive regions but with coverage gaps, and (iii) 3 BGCs with coverage gaps and complex BGC 

subgraphs. Supplementary Figure S5 provides examples of two BGC subgraphs from categories (ii) and 

(iii). 

 
Supplementary Figure S5. Two low coverage BGC subgraphs from subpravingal plaque samples from the HMP 
dataset. Both subgraphs were visualized using Bandage tool (Wick et al. 2015). Grey edges represent edges of the 
assembly graph and each union of connected black edges represents a vertex of the assembly graph. (Left) A BGC 
subgraph for a low coverage region with coverage gaps. A and AT-domains are shown by different colors. (Right) A 
fragment of a BGC subgraph with low coverage and complex repeat structure. Each non-repetitive edge has 
coverage between 3X and 5X. This fragment of the assembly graph contains at least three AT-domains but none of 
them was assembled into a single contig. As the result, only parts of these domains were identified by HMMer. 
Corresponding scaffolding graph for this BGC subgraph doesn’t contain any rural postman routes.  
 
The assembly graph in category (ii) are simple but their nucleotide sequences are incomplete with many 

gaps (represented as multiple stretches of Ns). These gaps lead to difficulties in the cases when the 

domain sequence falls into the gaps. Also, it is not clear how to determine whether a reconstructed 

putative BGC is complete in the case of low coverage. For example, if the first and the last domains are 

located near the end of the putative sequence of the BGC, it is not clear whether the BGC is complete as 

some of its domains can be located in another BGC subgraph.  

 

In contrast, biosyntheticSPAdes recovered all BGC with high coverage, including the one with a complex 

repeat structure analyzed in the main text (Supplementary Table S5) 

 

BGC 
subgraph 

predicted   
type 

#  
domains 

#  rural 
postman 
routes 

domain  
arrangement 



1 NRPS 14 2 TE-TE-A-C-A-C-A-C-A-C-A-C-A-C 
TE-TE-A-C-A-C-A-C-A-C-A-C-A-C 

2 NRPS/PKS 12 1 C-A-KS-AT-C-A-KS-C-A-KS-TE-KS 

3 NRPS 18 1 A-C-A-C-A-C-A-C-A-C-A-C-A-C-A-C-TE-TE 

4 NRPS/PKS 13 1 KS-AT-KR-TE-C-A-C-C-KS-AT-KR-C-A 

5 NRPS/PKS 10 1 A-C-A-KS-AT-C-A-C-TE-TE 

Supplementary Table S5. Statistics of five putative BGCs from the subpravingal plaque datasets with high 
coverage depth. 
 

Appendix F: Reference-based putative BGC ranking algorithm 

 

If biosyntheticSPAdes outputs several putative BGCs (pBGCs) for a single BGC gene cluster, it is not 

clear which of them is correct. In such cases, biosyntheticSPAdes uses a BGC ranking algorithm to 

compare each putative BGC against all reference BGCs (rBGCs) from a database of all BGCs from the 

reference genome sequences, and report the pair of pBGC and rBGC that are most similar to each other.  

 

First, the order and positions of all domains in a pBGCs and all reference rBGCs are predicted with 

antiSMASH. For each pBGC-rBGC pair, biosynthetiSPAdes constructs a bipartite graph, where nodes are 

domains and edges connect a domain in pBGC with a domain rBGC if both these domains have the same 

type, e.g., A-domains. The edge weight is defined as the amino acid sequence similarity for the 

corresponding domain pair. biosynthetiSPAdes further computes the maximum-weight matching in the 

constructed bipartite graph using the Hungarian algorithm (Kuhn et al., 1955) (Supplementary Figure S6). 

The matching nodes in the maximum-weight matching are referred to as the domain twins.  

 
Supplementary Figure S6. Reference-based ranking of two fictional putative BGCs (pBGC1 and pBGC2) 
according to their similarity to an rBGC in the antiSMASH-DB database. To find which of two pBGC has a 
better match with the rBGC, the Hungarian algorithm determines domain twins between each pBGCs and the rBGC. 
Black and red arrows connect twin domains, red arrows further connect twin domains which will lower the score 
between rBGC and pBCG1 as the domain order in pBGC1 does not match the reference. 
  

C AA A C A C A TE

C AA A C A C A TE

pBGC1

pBGC2

rBGC

C AA A C A C A TE



The closest rBCG from the database is taken based on the Domain Sequence Similarity (DSS) score 

described below.  

 

The similarity score between two BGC clusters should take into account the sequence similarity, the 

domain composition, and the ordering of the domains.  We also use a concept of highly similar domains – 

domain twins to find sequence similarity only between relevant domains of BGCs. We find a set of 

domain twins of a pBGC and rBGC as follows: 

1) Construct a bipartite graph 𝐺 = (𝑈, 𝑉, 𝐸), where 𝑈 is the set of nodes that correspond to the 

domains of the first BGC, 𝑉 is the set of nodes that correspond to the domains of the second 

BGC, and 𝐸 is the set of edges that connecting pairs of domains from U and V of the same type 

(e.g. A-domains, C-domains, etc.)  

2) Compute the similarity score between all pairs of domains of the same type as the amino acid 

sequence identity of their alignment. The weight of the edge between two domains in the bipartite 

graph is defined as the similarity score between these domains.   

3) Find the maximum weight matching in the bipartite bipartite graph using the Hungarian algorithm 

(Kuhn, H. W., 1955). Pairs of domains connected by an edge from the maximum weight matching 

are called the domain twins. 

 

To find a best matching pBGC-rBGC pair, we define the Domain Sequence Similarity (DSS) score. The 

DSS score is a measure of similarity between the amino acid sequences of twin domains between two 

BGCs. DSS also penalizes for domains that have no twin or different ordering of twin domains. 

 

Let 𝑀 be the subset of edges in the maximum weight matching for anrBGC-pBGC Pair, and DT be a set 

of domain types (e.g. A-domains, C-domains, etc.). Given a BGC, we refer to the number of domains of 

the specific type in this BGC Ntype(BGC). Given the order of the twin domains in an rBGC (𝑟+, 𝑟,, … , 𝑟|/|) 

and a pBGC (𝑝+, 𝑝,, … , 𝑝|/|), we analyze all domain twins (𝑟1, 𝑝2) and (𝑟3, 𝑝4) and classify a pair as an 

inversion if 𝑘 > 𝑖 and 𝑗 > 𝑙. We define the inversion index 𝐼(𝑟𝐵𝐺𝐶, 𝑝𝐵𝐺𝐶)	as the total number of 

inversions between an rBGC and a pBGC divided by the>/,?, the maximum possible number of inversions 

between two permuatations of length |M|.	Given an rBGC-pBGC Pair (rBGC, pBGC) we define its 

Domain Sequence Similarity score DSS(rBGC, pBGC) as follows: 

𝐷𝑆𝑆(𝑟𝐵𝐺𝐶, 𝑝𝐵𝐺𝐶) = C
∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)J∈/LMNO

max>𝑁TUVJ(𝑟𝐵𝐺𝐶), 𝑁TUVJ(𝑝𝐵𝐺𝐶)?
TUVJ∈WX

(1 − 𝐼(𝑟𝐵𝐺𝐶, 𝑝𝐵𝐶𝐺	)) 



 

where 𝑀TUVJ is the subset of edges of the given type in the maximum weight matching and 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) is 

the weight of an edge e in the bipartite graph. Note that the DSS score penalizes domains that do not 

participate in twin pairs.  

 

Given a set of putative BGCs and a set of reference BGCs, biosyntheticSPAdes selects an rBGC-pBGC 

Pair with the maximum DSS score and outputs the pBGC from this pair as the most likely solution.  

  



Appendix G: Ranking putative BGCs from Streptomyces coelicolor A3(2) and Streptomyces 
avermitilis MA-4680 

 
 
biosyntheticSPAdes assembly of the calcium dependent antibiotic (CALC) NRPS in S. Coelicolor 

produced two putative BGCs that we refer to as CALC_1 and CALC_2. These two putative BGCs were 

scored against all BGCs in antiSMASH-DB (excluding CALC itself) to identify which putative BGC is 

the most similar to known BGCs. To illustrate our approach, we analyzed an rBGC with the highest DSS 

scores against both CALC_1 and CALC_2: calcium dependent antibiotic BGC from Streptomyces 

lividans TK24. The rBGC chosen using the DSS score belong to the same genus suggesting that the 

concept of the DSS score helps to identify the correct domain order.  

Since the MiBIG database contains the CALC BGC from S. Coelicolor A3(2) database, it was possible to 

also compare the two putative BGCs to their annotated version in MiBIG. Table S6 and Figure S6 

illustrate that CALC_2 has higher domain order consistency and achieves higher DSS score with both the 

rBGC from antiSMASH-DB and MiBIG making it the best candidate for the biosyntheticSPAdes 

assembly. 

 

 S. Lividans TK24 CALC S. coelicolor CALC 
 DSS DSS 

CALC_1 0.250 0.276 
CALC_2 0.253 0.307 

Supplementary Table S6. Comparing the DSSs between the two putative BGCs and the two reference BGC 
from antiSMASH-DB and the reference BGC from MiBIG. 

 

The domain twins generated by the Hungarian algorithm reveal significant differences between the 

domain structures produced by the rural postman algorithm for the two putative CALC BGCs which 

affect the order of entire genes within the gene cluster (Supplementary Figure S7).  



 

Supplementary Figure S7. The domain orders of CALC_1, CALC_2 and reference CALC from MiBIG.  
The cdaPSI and cdaPSIII genes from the reference were matched with the green and black labeled genes in CALC_1 
and CALC_2. However, the cdaPSI gene in CALC_1 is shorter than the corresponding gene in the reference and in 
CALC_2, while the cdaPSIII gene (in black) is longer in CALC_1 compared to the reference and CALC_2. These 
differences are due to an incorrect assembly in CALC_1. This indicates that CALC_2 is the better candidate among 
the two. 

 
We also assembled the genome of Streptomyces avermitilis MA-4680 (Ikegami et al., 2015), which 

contains a complex repeat-rich gene cluster that produced 6 candidate BGCs from the assembly graph. 

The ranking algorithm compared the pBGC structures with the filipin BGC, a polyketide synthase BGC, 

which is present in both antiSMASH-DB and MIBiG (accession: BGC0000059). Supplementary Table S7 

illustrates that two out of six candidate BGCs (FILIPIN_2 and FILIPIN_6) produced an identical domain 

arrangement and the highest-ranking candidate was chosen based on small differences in amino acid 

sequence. 

 

Putative BGC  Correctly ordered domain twins  

FILIPIN_2 
102/125 

FILIPIN_6 102/125 

FILIPIN_3 100/125 

FILIPIN_1 100/125 

FILIPIN_5 100/125 

FILIPIN_4 99/125 

Supplementary Table S7. Number of domain twins which had the same order between the putative BGC structure 
and the reference FILIPIN from antismash-db. The highest-ranking putative structures  FILIPIN_2 and FILIPIN_6 
have identical domain order. The tie is broken by the DSS score, which indicated that FILIPIN 2 putative BGC had 
higher sequence similarity to the reference.  
 



Supplementary Figure S8 illustrtaes that the domain architecture for candidates 2 and 6 is more similar to 

the reference BGC domain architecture compared to lower-ranking pBGCs such as candidate FILIPIN_5. 

 

  
Supplementary Figure S8. The domain orders of two of the FILIPIN putative BGCs and reference 
FILIPIN from AntismashDB. The domains are color coded to represent blocks with conserved order in the three 
BGCs even when considering twin domains. The black arrows highlight an example of relocation of two domains 
for which the reference agrees on the placement for only one of the putative BGCs, notably the highest scoring 
putative FILIPIN.  
 

As for other reference-based methods, the ranking is affected by database completeness and correctness. 

Also, the top-ranking pBGC is not necessarily 100% correct, as complex BGCs with high repeat content 

can result in misassemblies, even with biosyntheticSPAdes. Therefore, results from the ranking algorithm 

will give insight on which structure better matches the reference BGC but do not guarantee that the 

highest-ranking structure is also the actual sequence in the assembled genome. In the case of the filipin 

BGC, even the top-ranking pBGC has small differences with the reference, indicating that further analysis 

(e.g., by PCR) would be necessary to confirm the actual structure. We provide this example as a case in 

point to not blindly trust the results of biosyntheticSPAdes and instead verify them whenever possible.  
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