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Supplementary Figure S1: The percent identity matrix for A-domains in three BGCs in S.
coelicolor A3(2). A-domains CALC4, CALCs, CALC7 (numbers denotes index in the CALC
BGC sequence) in the CALC gene cluster (shown as red entries) share identical segments of 96
nucleotides or longer.
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Supplementary Figure S2. Histogram of distances between consecutive domains in NRP
and PK BGCs from the MIBIG database. The distances are computed for A, C, TE, AT, KS
and KR domains.



#edges in the 1 2 3 4 5 6 7 8 912>10
assembly graph

#genes 7625 112 90 23 35 5 10 1 1 8
median gene 849 855 843 1443 1158 1020 1422 1011 2889 1656

length

Supplementary Table S1. Number of genes in S. coelicolor A3(2) categorized by the number of
edges they traverse in the SPAdes assembly graph (total of 7910 genes). Even after repeat
resolution in the assembly graph using exSPAnder, 54 genes in the S. coelicolor genome remain
split over multiple scaffolds.




locus ID Gene gene length

SC06275 type I polyketide synthase 13674
SC03231 CDA peptide synthetase 11 11013
SC0O0492 peptide synthetase 10932
SC06274 type I polyketide synthase 10731
SC03232 CDA peptide synthetase I11 7254
SC0O6827 polyketide synthase 7077
SCO6428 hypothetical protein 6945
SC0O5892 polyketide synthase 6894
SCO0127 beta keto-acyl synthase 6723
SCO7682 non-ribosomal peptide synthase 6690
SC06220 hypothetical protein 6552
SC06273 type I polyketide synthase 6459
SCO0126 beta keto-acyl synthase 6249
SCO7683 non-ribosomal peptide synthase 5529
SCO5748 sensory histidine kinase 5490
SCO2226 bifunctional alpha-amylase/dextrinase 5397
SCO3285 large glycine/alanine rich protein 5319
SCO1182 hypothetical protein 5181
SCO5761 ATP-dependent DNA helicase 5073
SCO6687 DNA-binding protein 5037
SCO3869 WD-40 repeat-containing protein 5031
SC02999 hypothetical protein 4962
SCO6626 protein kinase 4674
SCO1407 hypothetical protein 4662
SC0O2383 hypothetical protein 4638
SCO4508 cell division-like protein 4578
SCO2026 glutamate synthase 4545
SC0O2499 transport ATPase 4419
SCO4009 bifunctional histidine kinase and regulator 4392
SCO7015 glycosyl hydrolase 4302
SCO6432 peptide synthase 4224
SCO5710 large Pro/Ala/Gly-rich protein 4101
SCO6348 hypothetical protein 4086
SCO2450 Ser/Thr protein kinase (regulator) 4050




SC02975 hypothetical protein 4038
SC0O2599 hypothetical protein 4023
SCO2259 multidomain-containing protein family 4005
SCO7327 two-component system sensory histidine kinase 3996
SCO5544 hypothetical protein 3990
SC0O4092 ATP-dependent helicase 3984
SCO5397 large Ala/Glu-rich protein 3981
SCO5734 ATP/GTP binding protein membrane protein 3966
SCO1184 hypothetical protein 3963
SCO6457 beta-galactosidase 3924
SCO4655 DNA-directed RNA polymerase subunit beta' 3900
SCO6635 bacteriophage resistance gene pglY 3885
kgd alpha-ketoglutarate decarboxylase 3819
SCO6004 ATP/GTP binding protein 3807
SC0O3033 integral membrane regulatory protein 3807
SC06219 Ser/Thr protein kinase 3786
SCO7176 peptidase 3762
SC0O4263 transcriptional regulator 3756
SCO0432 peptidase 3738
SCO2763 ABC transporter ATP-binding protein 3732
SCO7188 peptidase 3720
SCO6572 glycosyl hydrolase 3717
SCO0216 nitrate reductase subunit alpha NarG2 3702
SCO6535 nitrate reductase subunit alpha NarG 3696
SCO4947 nitrate reductase subunit alpha NarG3 3684
SCO5184 ATP-dependent DNA helicase 3669
SC0O2446 peptidase 3663
cobN cobaltochelatase subunit CobN 3654
SCO1554 nicotinate-nucleotide-dimethylbenzimidazole 3639
phosphoribosyltransferase
SCO6627 hypothetical protein 3633
SCO5331 DNA methylase 3603
SC0O2590 glycosyltransferase 3594
SCO5577 chromosome associated protein 3561




SCO1739 DNA polymerase I1I subunit alpha 3558
SCO3109 transcriptional-repair coupling factor 3555
dnaE DNA polymerase I1I subunit alpha 3540
SC0O3947 ABC transporter 3519
SCO6688 hypothetical protein 3516
SC06431 peptide synthase 3516
SCO3168 protease 3516
SCO1657 methionine synthase 3513
SC0O4969 regulatory protein 3504
rpoB DNA-directed RNA polymerase subunit beta 3486
SCO5183 ATP-dependent DNA helicase 3480
SCO6198 hypothetical protein 3471
SCO5280 ATP-binding protein 3447
SCO6593 hypothetical protein 3444
SCO0488 hydrolase 3417
SCO0370 DNA-binding protein 3405
SCO7037 hypothetical protein 3396
SCO0546 pyruvate carboxylase 3375
SCO0072 hypothetical protein 3354
SCO4116 AfsR-like regulatory protein 3345
SCO2672 hypothetical protein 3342
SCO5540 hypothetical protein 3336
SC0O4250 hypothetical protein 3336
SCO5511 membrane associated phophodiesterase 3327
carB carbamoyl phosphate synthase large subunit 3309
SC02637 serine protease 3297
SCO5271 hypothetical protein 3291
SCO5506 regulatory protein 3276
SCO3542 integral membrane protein with kinase activity 3270
SC0699%4 hypothetical protein 3261
SCO0369 hypothetical protein 3258
SCO5717 hypothetical protein 3252
SCO2549 Protease 3204




Supplementary Table S2. List of 100 longest genes in the Streptomyces coelicolor A3(2)
genome. Genes forming BGC genes are shown in bold.



locus ID gene gene length | #contigs
SC06274 | type I polyketide synthase 13674 9
SC06273 | type I polyketide synthase 10731 7
SC03232 | CDA peptide synthetase 111 7254 2
SC0O6270 | oxidoreductase alpha-subunit 6457 2
SCO2599 | hypothetical protein 4021 2
SCO6836 | transcription regulator ArsR 3994 2
SCO5540 | hypothetical protein 3334 2
SCO2000 | ATP-binding RNA helicase 2997 2
SCO6789 | fatty oxidation protein 2202 2
SC06275 | type I polyketide synthase 2159 3
SCO6082 | glycogen debranching protein 2107 2
SCO5443 | alpha-amylase 2026 3
SCO7327 tv.vo.-c.omp(')nent system sensory 2008 2
histidine kinase
SC0O4595 | Oxidoreductase 1936
SCO4777 | protein Ser/Thr kinase 1800
SCO6661 | glucose-6-phosphate 1-dehydrogenase 1777 4
SCO6659 | glucose-6-phosphate isomerase 1651 3
SC04296 | chaperonin GroEL 1626 2
SC0O4762 | chaperonin GroEL 1626 2
SCO6832 | methylmalonyll-CoA mutase 1596 3
SCO4258 | hydrolytic protein 1458 2
SC04257 | hydrolytic protein 1443 2
SCO5087 actinorhodin pquketlde beta-ketoacyl 1404 5
synthase subunit alpha
SC02931 | ABC transporter ATP-binding protein 1275 2
SCO05393 | ABC transporter ATP-binding protein 1270 2
SCO2366 | hypothetical protein 1141 3
SCO6837 arsenic resistance membrane transport 1107 2
protein
2-oxoglutarate ferredoxin
SC04594 oxidoreductase subunit beta 1057 2
2-oxoglutarate ferredoxin
5C06269 oxidoreductase subunit beta 1051 2
SCO4885 | lipoprotein 1047 2
SCO1471 | transposase 1020 3
SCO2632 | transposase 1020 4
SCO4370 | transposase 1020 3
SCO4698 | IS1652 transposase 1020 3
SCO4183 | transposase 1018 3




SCO5514 | ketol-acid reductoisomerase 999 3
SCO0091 | IS1652 transposase 957 2
SCO0368 | transposase 957 2
SCO7335 | alpha-amylase 957 3
SCO7803 | insertion element transposase 957 2
SCO5641 | transposase 955 2
SCO7819 | hypothetical protein 847 2
SCO5634 | pseudo 596 2
SC0O5292 | ATP/GTP-binding protein 576 2
SCO4061 | hypothetical protein 556 2
SCO6395 | pseudo 379 3
SCO7805 | hypothetical protein 336 2
SCO6403 | hypothetical protein 309 2
SCOr15 58S ribosomal RNA 121 2
SCOr04 58S ribosomal RNA 119 2
SCOr01 58S ribosomal RNA 118 2
SCOr10 58S ribosomal RNA 117 2
SCOt05 tRNA 72 2
SCOt07 tRNA 72 2

Supplementary Table S3. The list of 54 genes from Streptomyces coelicolor A3(2) that span
multiple contigs even after repeat resolution in the SPAdes assembly graph. The length of genes
in this table varies from 72 to 13762 (average length is 2997 nucleotides). Multiple biosynthetic
genes (e.g., the genes encoding the calcium-dependent antibiotic) are split over several contigs
(shown in bold). Note that in addition to NRPSs and PKSs, other long genes including 16S RNA
genes are also highly fragmented in metagenomic assemblies.

Appendix A: Coupling biosyntheticSPAdes and NRPquest for PNP reconstruction

Each of the rural postman routes generated by biosyntheticSPAdes corresponds to a sequence of A-
domains and thus allows one to generate putative NRPs encoded by this sequence using nonribosomal
code (Stachelhaus and Marahiel 1999). Tandem mass spectra can be matched against these putative NRPs
resulting in Peptide-Spectrum Matches (PSMs) with varying P-values (Mohimani and Pevzner, 2016). A
PSM with the lowest P-value reveals the NRP (and thus the rural postman tour) that is more likely to be

correct than others.



To demonstrate how this approach works, we matched both putative CALC BGCs (corresponding to two
rural postman routes for the CALC BGC) against a high resolution mass spectral dataset from S.
coelicolor deposited in the Global Natural Products Social (GNPS) molecular network (Wang et al. 2016)
with MassivelD MSV000078839 (total of 11952 spectra). For each A-domain, we analyzed the top three
candidate amino acids predicted by NRPSPredictor2, and considered linear, cyclic, and branch-cyclic
structures. This resulted in 20720 candidate structures for each sequence, and we searched all those
structures against all mass spectra of S. coelicolor using Dereplicator (Mohimani et al. 2017), allowing for
a single blind modification. The correct sequence resulted in a score 16 (P-value 8.7 * 10°'%), while the
incorrect sequence resulted in a score 15 (P-value 2.9 * 107'*). This illustrates that coupling of
biosyntheticSPAdes with peptidogenomics leads to elucidation of NRPs encoded by predicted NRP

BGCs.

Appendix B: biosyntheticSPAdes output format

BiosyntheticSPAdes stores all output files in a user-specified folder.

e <output dir>/orderings.fasta contains putative sequences for all putative BGCs in the fasta
format. Every header of a fasta record has the following format:
>NODE 1 length 60699 cluster 3 candidate 2
Here 1 is the identifier of the BGC sequence, 60699 is its length in nucleotides, 3 is the number of
BGC subgraph that generated this sequence, and 2 is the number of rural postman routes
generated from this subraph. We output at most 50 putative paths for each BGC subgraph
according to their order in the Depth First Search traversal.

e <output dir>/bgc in gfa/ folder contains the GFA file for each BGC subgraph. These files
contain the assembly graph structures and can be visualized with tools such as Bandage (Wick et
al. 2015)

e <output dir>/bgc_statistics.txt contains information about each BGC subgraph and each rural

postman route generated from this subgraph. For the BGC subgraph, it shows the number of



domains, the number of strong and weak edges in the corresponding scaffolding graph, and the
predicted BGC type (PK, NRP, PK/NRP, or not known). For each rural postman route, it shows

an arrangement of domains and positions of domains on putative BGC sequence.

Appendix C: Putative NRP BGCs in the CYANO dataset

The CYANO dataset proved to be a rich source of natural products (Kleigrewe et al. 2015, Boudreau et
al. 2015, Cummings et al. 2016). It is also a difficult test for the biosyntheticSPAdes algorithm for the
following three reasons:

e Although the heterotrophic bacterial contaminants in this dataset encode some BGCs, these BGCs
are difficult to reconstruct due to the low depth of coverage. E.g., biosyntheticSPAdes identified
three NRP synthetases (108 kb, 44 kb, and 43 kb in length) with low mean coverage 8X arising
from some low-abundance bacteria.

e Since some BGCs are located in close proximity to each other in the assembly graph, a single
BGC subgraph and corresponding scaffolding graph may contain domains from several BGCs,
thus preventing the rural postman approach from finding feasible routes (Supplementary Figure
S3). Reconstruction of BGCs from such BGC subgraphs is challenging since they often span
complex repeat structures. For example. biosyntheticSPAdes identified a BGC subgraph with
more than 200 domains in the CY ANO dataset. Such BGC subgraphs may encode dozens of
BGCs.

e Many BGCs have highly similar domains resulting in domain collapsing. To perform domain
restoration, one has to estimate how many domains were collapsed on a single edge in the

assembly graph, which becomes challenging due to variations in the coverage depth.
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Supplementary Figure S3. An example of the scaffolding graph without a rural postman route. This
scaffolding graph is likely formed by two BGCs.

Despite the fact, that biosyntheticSPAdes faced all three challenges analyzing the CYANO dataset, it
reconstructed five putative NRP synthetases with complexities 20, 9, 5, 5, and 2, respectively. Our
analysis revealed that the CY ANO sample contains novel BGCs that fell under the radar of previous

studies (based on extensive manual curation) but were reconstructed by biosyntheticSPAdes.

The BGCs with complexities 20 and 9 likely originated from the low-coverage contaminant bacteria and
their BGC subgraphs include multiple isolated edges. SPAdes/metaSPAdes combined them into a single
scaffold but the nucleotide sequence of this scaffold contains stretches of Ns, making it difficult to infer
the nucleotide sequences of the domains. Another possibility is that these two putative NRP synthetases
represent parts of a single NRP that was not assembled into a single contig by SPAdes/metaSPAdes.
Although two BGCs with multiplicity five have complex BGC subgraphs with loops and long repeats,
(Supplementary Figure S4), there exist single rural postman routes in their scaffolding graphs. Since
AntiSMASH analysis did not reveal any similarities with known BGCs, they likely represent novel NRP
synthetases. The NRP synthetase with complexity 2 has a simple graph structure (all domains lie on a
single edge of the assembly graph) and is similar to the known aeruginoside BGC (52% gene similarity

and consistent gene order).

Supplementary Figure S4. Two complex BGC subgraphs from the CYANO dataset visualized with the
Bandage tool (Wick et al. 2015). Grey edges represent edges of the assembly graph and each union of connected
black edges represents a vertex of the assembly graph.



Appendix D: Biosynthetic capacity of the HMP datasets

total # BGC # BGC #BGC
length of N50 HA- HAT- # A/AT- subg.raphs subg.raphs subg.raphs
dataset long (kb) | domains | domans domains with with with
ID contigs per 1 Mb = complexity = complexity = complexity
(Mb) 1-3 4-6 >7

019125 50.5 44,0 57 24 1.60 12 0 0
Keratinized 0 0
gingiva 014473 412 62 60 36 2.33 15

015060 473 38 61 50 2.34 18 1 0
Buccal 018443 129.5 3.6 166 83 1.92 47 1 0
mucosa 023930 293 12,1 41 19 2.05 10 0 0

052697 211.0 12,3 287 85 1.76 74 0 0
Stool 011239 1362 84 215 48 1.93 45 0 0

016335 1895 7.0 268 62 1.69 51 0 0

013950 958 4,0 142 72 2.23 40 0 0
Gingivival 4 0
plaque 063215 767 33 169 52 2.88 26

019029 112.8 2,6 147 76 1.98 28 2 0

013723 149.0 3,4 242 117 2.41 59 7 0
Subpravingal 7 1
plaque 015574 1493 33 258 104 2.42 67

049318 2212 3,9 300 124 1.92 80 3 0

050244 1743 5,8 204 83 1.65 47 4 0
Tongue 3 0
dorsam 024081 1440 85 176 66 1.68 47

015762 168.3 63 208 85 1.74 57 3 0

019127 91.6 46 136 46 1.97 34 0 0
Throat 019027 76,4 42 90 40 1.70 23 1 0

014689 632 4,1 76 38 1.80 17 1 0

Supplementary Table S4: Statistics of A-domains and AT-domains in various samples from the HMP dataset.
Long contigs are defined as contigs longer than 1 kb. Dataset identifier is the numerical part of the SRX accession
id.

Appendix E: Putative NRP synthetases in the subpravingal plaque samples from the HMP dataset
Subpravingal plaque samples from the HMP dataset contain more nontrivial BGCs as compared to the

samples from other human body sites. biosyntheticSPAdes identified 18 non-trivial BGC subgraphs in

three subpravingal plaque datasets, including (i) 5 BGCs with high-coverage edges, (ii) 10 BGCs without



repetitive regions but with coverage gaps, and (iii) 3 BGCs with coverage gaps and complex BGC

subgraphs. Supplementary Figure S5 provides examples of two BGC subgraphs from categories (ii) and

(iii).

Supplementary Figure S5. Two low coverage BGC subgraphs from subpravingal plaque samples from the HMP
dataset. Both subgraphs were visualized using Bandage tool (Wick et al. 2015). Grey edges represent edges of the
assembly graph and each union of connected black edges represents a vertex of the assembly graph. (Left) A BGC
subgraph for a low coverage region with coverage gaps. A and AT-domains are shown by different colors. (Right) A
fragment of a BGC subgraph with low coverage and complex repeat structure. Each non-repetitive edge has
coverage between 3X and 5X. This fragment of the assembly graph contains at least three AT-domains but none of
them was assembled into a single contig. As the result, only parts of these domains were identified by HMMer.
Corresponding scaffolding graph for this BGC subgraph doesn’t contain any rural postman routes.

The assembly graph in category (ii) are simple but their nucleotide sequences are incomplete with many
gaps (represented as multiple stretches of Ns). These gaps lead to difficulties in the cases when the
domain sequence falls into the gaps. Also, it is not clear how to determine whether a reconstructed
putative BGC is complete in the case of low coverage. For example, if the first and the last domains are
located near the end of the putative sequence of the BGC, it is not clear whether the BGC is complete as

some of its domains can be located in another BGC subgraph.

In contrast, biosyntheticSPAdes recovered all BGC with high coverage, including the one with a complex

repeat structure analyzed in the main text (Supplementary Table S5)

BGC predicted # # rural domain
subgraph type domains | postman arrangement
routes




1 NRPS 14 2 TE-TE-A-C-A-C-A-C-A-C-A-C-A-C
TE-TE-A-C-A-C-A-C-A-C-A-C-A-C

2 NRPS/PKS 12 1 C-A-KS-AT-C-A-KS-C-A-KS-TE-KS

3 NRPS 18 1 A-C-A-C-A-C-A-C-A-C-A-C-A-C-A-C-TE-TE

4 NRPS/PKS 13 1 KS-AT-KR-TE-C-A-C-C-KS-AT-KR-C-A

5 NRPS/PKS 10 1 A-C-A-KS-AT-C-A-C-TE-TE

Supplementary Table S5. Statistics of five putative BGCs from the subpravingal plaque datasets with high
coverage depth.

Appendix F: Reference-based putative BGC ranking algorithm

If biosyntheticSPAdes outputs several putative BGCs (pBGCs) for a single BGC gene cluster, it is not
clear which of them is correct. In such cases, biosyntheticSPAdes uses a BGC ranking algorithm to
compare each putative BGC against all reference BGCs (rBGCs) from a database of all BGCs from the

reference genome sequences, and report the pair of pPBGC and rBGC that are most similar to each other.

First, the order and positions of all domains in a pPBGCs and all reference rBGCs are predicted with
antiSMASH. For each pPBGC-rBGC pair, biosynthetiSPAdes constructs a bipartite graph, where nodes are
domains and edges connect a domain in pBGC with a domain rBGC if both these domains have the same
type, e.g., A-domains. The edge weight is defined as the amino acid sequence similarity for the
corresponding domain pair. biosynthetiSPAdes further computes the maximum-weight matching in the
constructed bipartite graph using the Hungarian algorithm (Kuhn et al., 1955) (Supplementary Figure S6).

The matching nodes in the maximum-weight matching are referred to as the domain twins.
pBGC1 @1 O @ @& 0 @& 0@ 1
A A A

== |
BGC @1 O & OO0 0@

LT

A A
pBGC2 O @& 001
Supplementary Figure S6. Reference-based ranking of two fictional putative BGCs (pBGC1 and pBGC2)
according to their similarity to an rBGC in the antiSMASH-DB database. To find which of two pBGC has a
better match with the rBGC, the Hungarian algorithm determines domain twins between each pBGCs and the rBGC.
Black and red arrows connect twin domains, red arrows further connect twin domains which will lower the score
between rBGC and pBCGl as the domain order in pPBGC1 does not match the reference.
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The closest rBCG from the database is taken based on the Domain Sequence Similarity (DSS) score

described below.

The similarity score between two BGC clusters should take into account the sequence similarity, the
domain composition, and the ordering of the domains. We also use a concept of highly similar domains —
domain twins to find sequence similarity only between relevant domains of BGCs. We find a set of
domain twins of a pPBGC and rBGC as follows:

1) Construct a bipartite graph G = (U, V, E), where U is the set of nodes that correspond to the
domains of the first BGC, V is the set of nodes that correspond to the domains of the second
BGC, and E is the set of edges that connecting pairs of domains from U and V of the same type
(e.g. A-domains, C-domains, etc.)

2) Compute the similarity score between all pairs of domains of the same type as the amino acid
sequence identity of their alignment. The weight of the edge between two domains in the bipartite
graph is defined as the similarity score between these domains.

3) Find the maximum weight matching in the bipartite bipartite graph using the Hungarian algorithm
(Kuhn, H. W., 1955). Pairs of domains connected by an edge from the maximum weight matching

are called the domain twins.

To find a best matching pBGC-rBGC pair, we define the Domain Sequence Similarity (DSS) score. The
DSS score is a measure of similarity between the amino acid sequences of twin domains between two

BGCs. DSS also penalizes for domains that have no twin or different ordering of twin domains.

Let M be the subset of edges in the maximum weight matching for anrBGC-pBGC Pair, and DT be a set
of domain types (e.g. A-domains, C-domains, etc.). Given a BGC, we refer to the number of domains of
the specific #ype in this BGC N"?*(BGC). Given the order of the twin domains in an tBGC (14,13, ..., Tjm|)
and a pBGC (py,p2, ---, P|um|)> We analyze all domain twins (73, p;j) and (%, p;) and classify a pair as an
inversion if k > i and j > l. We define the inversion index 1(rBGC,pBGC) as the total number of
inversions between an *BGC and a pBGC divided by the(IZW ), the maximum possible number of inversions
between two permuatations of length [M]. Given an rBGC-pBGC Pair (rBGC, pBGC) we define its
Domain Sequence Similarity score DSS(rBGC, pBGC) as follows:

YeeM;, . Weight(e) (
max(N®Pe(rBGC), NP (pBGC))

DSS(rBGC,pBGC) = 2

typeeDT

1 —I(rBGC,pBCG ))



where My, is the subset of edges of the given #)pe in the maximum weight matching and weight(e) is
the weight of an edge e in the bipartite graph. Note that the DSS score penalizes domains that do not

participate in twin pairs.

Given a set of putative BGCs and a set of reference BGCs, biosyntheticSPAdes selects an rBGC-pBGC

Pair with the maximum DSS score and outputs the pBGC from this pair as the most likely solution.



Appendix G: Ranking putative BGCs from Streptomyces coelicolor A3(2) and Streptomyces
avermitilis MA-4680

biosyntheticSPAdes assembly of the calcium dependent antibiotic (CALC) NRPS in S. Coelicolor
produced two putative BGCs that we refer to as CALC 1 and CALC 2. These two putative BGCs were
scored against all BGCs in antiSMASH-DB (excluding CALC itself) to identify which putative BGC is
the most similar to known BGCs. To illustrate our approach, we analyzed an rBGC with the highest DSS
scores against both CALC 1 and CALC 2: calcium dependent antibiotic BGC from Streptomyces
lividans TK24. The rBGC chosen using the DSS score belong to the same genus suggesting that the

concept of the DSS score helps to identify the correct domain order.

Since the MiBIG database contains the CALC BGC from S. Coelicolor A3(2) database, it was possible to
also compare the two putative BGCs to their annotated version in MiBIG. Table S6 and Figure S6
illustrate that CALC_2 has higher domain order consistency and achieves higher DSS score with both the

rBGC from antiSMASH-DB and MiBIG making it the best candidate for the biosyntheticSPAdes

assembly.
S. Lividans TK24 CALC S. coelicolor CALC
DSS DSS
CALC 1 0.250 0.276
CALC 2 0.253 0.307

Supplementary Table S6. Comparing the DSSs between the two putative BGCs and the two reference BGC
from antiSMASH-DB and the reference BGC from MiBIG.

The domain twins generated by the Hungarian algorithm reveal significant differences between the
domain structures produced by the rural postman algorithm for the two putative CALC BGCs which

affect the order of entire genes within the gene cluster (Supplementary Figure S7).
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Supplementary Figure S7. The domain orders of CALC_1, CALC_2 and reference CALC from MiBIG.

The cdaPSI and cdaPSIII genes from the reference were matched with the green and black labeled genes in CALC 1
and CALC 2. However, the cdaPSI gene in CALC 1 is shorter than the corresponding gene in the reference and in
CALC 2, while the cdaPSIII gene (in black) is longer in CALC 1 compared to the reference and CALC 2. These
differences are due to an incorrect assembly in CALC 1. This indicates that CALC 2 is the better candidate among
the two.

We also assembled the genome of Streptomyces avermitilis MA-4680 (Ikegami et al., 2015), which
contains a complex repeat-rich gene cluster that produced 6 candidate BGCs from the assembly graph.
The ranking algorithm compared the pBGC structures with the filipin BGC, a polyketide synthase BGC,
which is present in both antiSMASH-DB and MIBiG (accession: BGC0000059). Supplementary Table S7
illustrates that two out of six candidate BGCs (FILIPIN 2 and FILIPIN 6) produced an identical domain
arrangement and the highest-ranking candidate was chosen based on small differences in amino acid

sequence.

Putative BGC Correctly ordered domain twins
102/125

FILIPIN 2

FILIPIN 6 102/125

FILIPIN 3 100/125

FILIPIN 1 100/125

FILIPIN 5 100/125

FILIPIN 4 99/125

Supplementary Table S7. Number of domain twins which had the same order between the putative BGC structure
and the reference FILIPIN from antismash-db. The highest-ranking putative structures FILIPIN 2 and FILIPIN 6
have identical domain order. The tie is broken by the DSS score, which indicated that FILIPIN 2 putative BGC had
higher sequence similarity to the reference.



Supplementary Figure S8 illustrtaes that the domain architecture for candidates 2 and 6 is more similar to

the reference BGC domain architecture compared to lower-ranking pBGCs such as candidate FILIPIN 5.
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Supplementary Figure S8. The domain orders of two of the FILIPIN putative BGCs and reference
FILIPIN from AntismashDB. The domains are color coded to represent blocks with conserved order in the three
BGCs even when considering twin domains. The black arrows highlight an example of relocation of two domains
for which the reference agrees on the placement for only one of the putative BGCs, notably the highest scoring
putative FILIPIN.
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As for other reference-based methods, the ranking is affected by database completeness and correctness.
Also, the top-ranking pBGC is not necessarily 100% correct, as complex BGCs with high repeat content
can result in misassemblies, even with biosyntheticSPAdes. Therefore, results from the ranking algorithm
will give insight on which structure better matches the reference BGC but do not guarantee that the
highest-ranking structure is also the actual sequence in the assembled genome. In the case of the filipin
BGC, even the top-ranking pBGC has small differences with the reference, indicating that further analysis
(e.g., by PCR) would be necessary to confirm the actual structure. We provide this example as a case in

point to not blindly trust the results of biosyntheticSPAdes and instead verify them whenever possible.
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