
Model of positive selection and fixation of new alleles  

 

 

Since in Drosophila the transcription process takes 

place even during the post-meiosis period of spermatogenesis, 

the population genetic model that follows aims to compare the 

effects of positive selection acting in the haploid (gamete) 

phase with the corresponding one taking place during the 

diploid phase, in relation to the important process of 

positive selection and fixation of new alleles. 

 

 The model considers an autosomal locus with alleles A 

and a that are expressed in spermatogonia (diploid phase) as 

well as in gametes (haploid phase). We start by detailing a 

deterministic model, in which the Drosophila population size 

is very large, matings occur randomly after Hardy-Weinberg 

ratios and the effects of genetic drift are considered as 

negligible. The analysis is then followed by the results 

obtained from an equivalent model, in which the same 

parameters of the previous model are kept but significant 

levels of random genetic drift are allowed. 

 

 DETERMINISTIC MODEL 

 

(a) Assuming: that s1 (0   s1  1) and hs1 (0  h  1) 
are the respective coefficients of selection of genotypes AA 

and Aa, while 1 is the relative fitness value of genotype aa; 

that q = q1 and 1-q = 1-q1 are the frequencies of alleles a 

and A; and that q1’ is the frequency value of the a allele in 

the next generation, then it comes out that  

 

q1’ = q[1-(1-q)hs1]/{1-(1-q)s1[1-q(1-2h)]} 

 

and 

 

q1 = q1’ – q = q(1-q)s1[1-h-q(1-2h)]/ {1-(1-q)s1[1-q(1-2h)]}. 
 

In the formulas above, h is a dominance measure. When h 

= 1, it means that the fitness values of AA, Aa and aa 

genotypes are respectively WAA = 1-s1, WAa = 1-s1 and Waa = 1 

and therefore there exists a positive selection mechanism 

favoring the recessive genotype aa. When h = 0, it means that 

the fitness values of AA, Aa and aa genotypes are 

respectively WAA = 1-s1, WAa = 1 and Waa = 1 and therefore 

there exists a positive selection mechanism favoring the 

dominant genotypes Aa and aa. 

 



(b) Now we let s2 (0  s2  1) be the coefficient of 
selection of A gametes and 1 the relative fitness of gametes 

carrying the a allele; q = q2 and 1-q = 1-q2 are the 

population frequencies of a and A gametes. We let also q2’ be 

the frequency value of the a allele resulting from gametes 

that compete among themselves to form the next generation 

genotypes. Then it comes out that  

 

q2' = q/[1-(1-q)s2] , q2 = q2' – q = q(1-q)s2/[1-(1-q)s2]. 
 

 (c) Let q2/q1 be the incremental rate, a pertinent 

variable for comparing the evolutionary gain of frequency 

(fixation rate) of the allele a under the alternative 

hypotheses of positive selection acting during the haploid 

and diploid phases respectively; its value is 

 

q2/q1 = s2{1-(1-q)s1[1-q(1-2h)]}/{s1[1-(1-q)s2][1-h-q(1-2h)]}. 

 

Instead, if we put s2 = s and s1 = sx, with the obvious 

restriction s1 = sx <= 1, we obtain the more suitable 

expression 

 

q2/q1 = {1-(1-q)sx[1-q(1-2h)]}/{x[1-(1-q)s][1-h-q(1-2h)]}. 
  

(d) Let now k (0  k  1) and 1-k be respectively the 
contribution proportions of haploid and diploid phases to the 

transcription process during spermatogenesis. The frequency 

Q’ of the allele a as a result of the whole process is 

obtained by averaging (by 1-k and k respectively) the 

contributions of diploid and haploid phases in gene frequency 

q1’ and q2’ to the next generation. Since Q = Q’ – q, q1 = 

q1' - q and q2 = q2' - q, the immediate result is  
 

Q' = kq2' + (1-k)q1' = k(q2 - q1) + q1 + q , 

Q = Q’ – q = k(q2 - q1) + q1 , 
and 

Q/q1 = k(q2 - q1)/q1 + 1 = 1 - k(1 - q2/q1). 
 

 Since Q/q1 is a linear function of q2/q1, the 

behavior of Q/q1 can be straightforwardly (though 

indirectly) derived from the behavior of q2/q1. Since the 
domain of k (relative proportion of haploid phase 

contribution) is 0 < k < 1, it comes out that, with no 

exceptions, Q/q1 > 1 if q2/q1 > 1 and Q/q1 < 1 if q2/q1 
< 1. 



 

It is essential to keep in mind, in the text below, that 

the larger the values of the coefficients of selection s1 = 

sx and s1h = sxh (of AA and Aa genotypes) or s2 (of gametes 

A), the larger will the relative fitness values of aa 

genotypes and a gametes be. 

 

The expression derived for the increment rate, 

 

q2/q1 = {1-(1-q)sx[1-q(1-2h)]}/{x[1-(1-q)s][1-h-q(1-2h)]}, 
 

can be rewritten in the more convenient form  

 

q2/q1 = 1 + {1-x[(1-q)(1+hs-h)+qh]}/{x[1-(1-q)s][1-h-q(1-2h)]}. 

 

When 0< x  1, for any combination of values of 0 < s < 

1, 0  h  1, and 0 < q < 1, it comes out that both the 
numerator and the denominator of the rightmost part of the 

last equation are positive quantities. Therefore we conclude 

that if 0 < x  1, q2/q1 is always larger than one, 

irrespectively the value h  (the dominance factor) can take. 

 

 
 

Figure 1 – Comparison between the values of q2 and q1 
in cases h = 0 and 1, x = 0.8 and s = 0.8). 

 



The graph of Figure 1 shows unequivocally that for small 

values of q, the gain in gene frequency q2/q1 (fixation 

rate) of the a allele in the haploid phase is much larger 

when h = 1 (aa completely recessive) than when h = 0 

(dominant case). Extensive computer-assisted numerical 

analysis showed that this is also true when h < 1/2  for all 

possible combinations of values that q, x and s take inside 

their corresponding domains (0, 1) and that for small or very 

small (less than 0.01 or 0.001) frequency values of q the 

gain in gene frequency q2/q1 when h = 1 is about (1-q)/q 
times larger than when h = 0. For example, when q = 0.001, 

the gain in gene frequency of the allele a is about 999 times 

larger in the case h = 1 than in the case h = 0.  

   

When x > 1, q2/q1 will be larger or smaller than unity 
depending on the value (positive or negative) the expression 

1-x[(1-q)(1+hs-h)+qh from the equation’s rightmost part 

takes, because x[1-(1-q)s][1-h-q(1-2h)] will always be 

positive, since x > 1, 0  h  1, 0 < q < 1 and 0 < s < 1/x 

It is important to stress that, unlike the previous case x  
1, when x > 1 it comes out that sx must always be smaller 

than 1, so that the domain of s is now 0 < s < 1/x instead of 

0 < s < 1). Extensive numerical analysis of the formulas 

above   shows   that   when   h > 1/2, if  q > [1-x(1-h+hs)]/ 

[x(1-2h+hs)], q2/q1 will be smaller than unity and if q < 

[1-x(1-h+hs)]/[x(1-2h+hs)], q2/q1 will be larger than unity. 
Otherwise, that  is  when   h  < 1/2,  if  q > [1-x(1-h+hs)]/ 

[x(1-2h+hs)], q2/q1  will  be  larger than unity and  if q <  

[1-x(1-h+hs)]/[x(1-2h+hs)], q2/q1 will be smaller than 

unity. When h = 1/2, the formula of the increment rate 

reduces to q2/q1 = 2[1-sx(1-q)]/[x-sx(1-q)] and the 

numerical analysis of this expression shows that when x > 1, 

for any combination of values of (0 < q < 1) and (0 < s < 

1/x) the increment rate q2/q1 will always be smaller than 1. 

In fact, replacing x by 1+,  > 0, the expression above 

takes form q2/q1 = 2 - 2/{(1+)[1-s(1-q)]}. When s is at 

its maximum possible value 1/x = 1/(1+), the increment rate 

has value q2/q1 = 2 - 2/(+q) so that if q is of order of 

magnitude of , q2/q1 will be somewhat smaller than unity; 

if  is much larger than q, q2/q1 will be somewhat larger 
than zero. When s is near its minimum value 0, due to the 

constraint s = 1/(1+),  must be very large so that q2/q1 
takes a value just a little larger than zero.  

 



 
 

Figure 2 – Comparison between the values of q2 and q1 
in cases h = 0 and 1, x = 1.1 and s = 0.8). 

 

The graph of Figure 2 shows that for small values of q, 

when h = 1 (aa completely recessive) the gain in gene 

frequency q2/q1 (fixation rate) of the a allele is much 

larger than in the case h = 0 under the system of positive 

selection during the haploid phase than during the diploid 

one. This is also valid when other values of h < 1 are 

compared to case h = 1. But in any case for every combination 

of s and x for some value of q the gain during the diploid 

phase will be larger than in the haploid phase when x > 1: 

this takes place, as seen in the above graph, for the 

prescribed conditions x = 1.1 and s = 0.8, when q = (x-1)/x = 

1/11 = 0.09091 if h = 0 and q = (1-sx)/(x-sx) = 6/11 = 

0.54545 if h = 1. 

 

Now, if we also take into account the haploid phase 

relative contribution proportion k to the transcription 

process during spermatogenesis, we finally obtain the (fully) 

generalized expression 

  

Q/q1 = f(q,s,x,h,k) = 1 - k(1 - q2/q1).  
 



Since the domain of k (relative haploid phase 

contribution) is 0 < k < 1, it comes out straightforwardly 

that Q/q1 > 1 if q2/q1 > 1, that is, independently from 
the relative proportions k and 1-k of haploid and diploid 

phase contributions to the transcription process during 

spermatogenesis, the gain in allele a frequency under 

positive selection during the haploid phase is always larger 

than the corresponding one during the diploid phase. This 

situation q2/q1 > 1 takes place: (1) without any 

restrictions always when x  1, that is when the fitness 

value of a gametes is equal or larger than the fitness value 

of individuals aa, independently from the value h takes; and 

(2) with the following restrictions when x > 1 (fitness value 

of  individuals  aa  larger  than  that  of  a  gametes): q <  

[1-x(1-h+hs)]/[x(1-2h+hs)] if h > 1/2, and q > [1-x(1-h+hs)]/ 

[x(1-2h+hs)] if h < 1/2. If these stringent conditions 

however do not prevail, the gain in allele a frequency under 

positive selection in diploid phase is always larger than the 

corresponding one in haploid phase. 

 

Table 1 shows the numbers (n1) and frequency values 

(n1/n) of cases q1/q2 larger than unity that were obtained 
from n cases s1 > s2 generated by computer-assisted random 

combinations of q,  s1 = sx, s2 = s, and h. 

 

Table 1 - Numbers (n1) and frequencies (n1/n) of cases 

q1/q2 larger than unity obtained from n cases s1 > s2 . 
 

 

    n1     n      n1/n 

------------------------- 

     64    100    0.6400 

    125    200    0.6250 

    322    500    0.6440 

    585    1000   0.5850 

   3001    5000   0.6002 

   6142   10000   0.6142 

  12297   20000   0.6149 

  30662   50000   0.6132 

  61489  100000   0.6149 

 122824  200000   0.6141 

 306724  500000   0.6134 

 614072 1000000   0.6141 

------------------------- 

 

 



We conclude therefore that, even in the non-advantageous 

situation where x > 1, for all possible combinations of q, s, 

x, and h values, in about 38.5 % of cases the rate of 

frequency gain (fixation rate) of the a allele is larger 

under the system of positive selection during the haploid 

phase than during the diploid one (q2/q1 > 1). Taking into 

account that this is exactly what always takes place when x  
1, we have just evidenced the importance of the mechanism of 

positive selection acting during the haploid phase of 

spermatogenesis in the process of fixation of new genes.  

    

 ALLOWANCE FOR RANDOM GENETIC DRIFT   

 

 In order to take into account the effects of random 

genetic drift, millions of diploid populations with distinct 

sizes were computer-simulated. For each diploid population of 

size N, 2N alleles (a or A) were formed, by means of 

comparisons with computer-generated random numbers, uniformly 

distributed and normalized between 0 and 1, and each genotype 

was formed by a pair of sequentially-generated alleles. The 

survival of each possible genotype thus created (aa, Aa, or 

AA) was decided by the comparison of their corresponding 

relative fitness values (Waa = 1, WAa = 1-sxh e WAA = 1-sx) 

with other computer-generated random numbers. When the 

genotype did not succeed, a new simulation was performed in 

order to replace it and thus keep the population size (N) 

fixed (soft selection procedure). The process was thus 

repeated until 50 populations with N genotypes were formed 

for each combination of q, s, x and h, with each parameter 

varying from 0 to 1 with nine fixed intervals of 1/8 each in 

the case x <= 1. In the alternative case x > 1, because of 

the restriction sx <= 1, the procedure was the same for 

parameters q and h, but used instead both selection 

parameters s1 = sx and s2 = s, with x taken indirectly from 

s1/s2. In total, at least 50  94  2N = 656,100 N computer 
simulations were performed for each N varying from 5 to 1,600 

(3,280,500 to 1,049,760,000 simulations) in the case x <= 1 

and at least 50  92 x 10  2N = 81,000 N simulations for 
each N also varying from 5 to 1,600 (405,000 to 12,960,000) 

in the case x > 1. From each one out of the 50 genotypic 

compositions so obtained for each population of size N with a 

particular combination of the four parameters {q, s, h, x}, 

the frequency q1' = [2N(aa) + N(Aa)]/2N was directly 

estimated and used to calculate the value of q1 = q1'-q, 

which was then compared to q2 =  q(1-q)s/[1-(1-q)s] to 

compute the number of times in which q1 > q2. The value of 



q2, contrary to what happened to the value of q1, was 

estimated directly from the formula derived in the 

deterministic model, since the selection in the haploid model 

obviously results from a practically infinite number of 

gametes that compete among themselves to form the genotypes 

of the next Drosophila generation. 

 

Table 2 shows, for both cases x <= 1 and x > 1, the 

results (rounded percentage figures) we obtained for the 

frequencies of cases in which q1 was larger than q2 when 50 
populations of each size N were simulated. 

  

            x <= 1                       x > 1 

-------------------------------------------------------- 

   N      obs. prop.       %           obs. prop.      % 

-------------------------------------------------------- 

   5     95850/328050     29          23494/40500     58 

  25     57492/328050     18          24822/40500     61 

  50     46316/328050     14          23408/40500     58 

  75     40358/328050     12          24482/40500     60 

 100     36596/328050     11          24576/40500     61 

 200     30320/328050      9          25278/40500     63 

 300     27052/328050      8          25654/40500     63 

 400     23205/328050      7          24909/40500     62 

 600     22862/328050      7          25626/40500     63 

 800     22285/328050      7          25542/40500     63 

1200     20908/328050      6          26288/40500     65 

1600     20392/328050      6          24830/40500     61 

-------------------------------------------------------- 

 

As Figure 3 clearly shows, the percentage figures 

obtained in the case x <= 1 correspond with negligible 

statistical error to the function y = e3.84/N0.30 [F(1,10) = 

1404.30, P = 0.00001, r^2 = 0.993], which indicates that the 

percentage value y of cases in which the gain (due entirely 

to random genetic drift) in the diploid phase is larger than 

in the haploid phase (q1 > q2) can be obtained directly 
from this formula. It is not difficult to conclude, however, 

that even with very large population numbers, on average in 

around 5% of cases x <= 1 the selective gain (fixation rate 

of the a allele) will be larger in the diploid than in the 

haploid phase. In any case, and for any population number, 

the number of cases in which the haploid gain predominates is 

overwhelming in spite of drift.  

 

The percentage figures obtained for the case x > 1, on 

the other hand, indicate that they do not differ 



significantly (and independently from the population size N) 

from the overall value (Table 1) obtained in the 

deterministic model (around 61.5%): actually, the average 

value to all figures shown in Table 2 for the case x > 1 is 

exactly 61.5%. We conclude therefore that random genetic 

drift does not interfere significantly with the dynamics of 

the deterministic model we described for this specific case.  

 
 

Figure 3 – The black dots represent the percentage of 

cases in which the selective gain in the fixation process is 

larger in the diploid than in the haploid phase, due to 

random genetic drift depending on selection and population 

size N. The upper set and the line y2 correspond to the case 

x > 1 and the lower set and the function y1 correspond to the 

alternative case x <= 1. 

 

 

 Some parallel results obtained in relation to cases x = 

0.8 and x = 1.1 (for s = 0.8 and h = 0 or 1) are shown in the 

set of graphs of Figures 4 and 5, in order to keep the same 

parameters used in Figures 1 and 2. For this example, 100 

(instead of 50) populations of size n (25, 200 or 1000) were 

generated for 19 reference values of q varying from 0.05 to 

0.95. The values of q1 were calculated as above and are 

represented in the graphs of figures 3 and 4 as black dots. 



 
 

Figure 4 – Results (case x < 1) obtained from 

drift/selection simulations for cases h = 0 (right column) 

and h = 1 (left column) for population sizes of 25 (upper 

row), 200 (second row) and 1000 (lower row), keeping the 

parameters as prescribed in Figure 1 (case x = 0.8 and s = 

0.8). The q1 values obtained from simulated populations are 

shown as black dots (around the curves representing q1 in 
Figure 1). 



   

 Figure 5 – Results (case x > 1) obtained from 

drift/selection simulations for cases h = 0 (right column) 

and h = 1 (left column) for population sizes of 25 (upper 

row), 200 (second row) and 1000 (lower row), keeping the 

parameters as prescribed in Figure 2 (case x = 1.1 and s = 

0.8). The q1 values obtained from simulated populations are 

shown as black dots (around the curves representing q1 in 
Figure 2). 

 

 


