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Supplemental Fig. S1. Interspecific gene order comparison of PR and HD mating-type
chromosomes of Microbotryum lagerheimii and M. saponariae. The outer track represents contigs,
staggered every 200 kilobases. The HD, PR and pheromone genes are indicated by blue, dark purple
and small light-purple circles, respectively. Blue and orange lines link single-copy orthologs, the
latter corresponding to inversions. The link width is proportional to the corresponding gene length.
Yellow regions on the contig track indicate centromeres, i.e. regions with low gene density, high TE
density and enriched in tandem repeats (pink marks). The black marks along the contigs track indicate
genes that have no synonymous substitutions between mating types within individuals (ds=0). Green
marks indicate the transposable elements (TEs) and grey marks non-TE genes. Pink tracks indicate
the position of de novo detected tandem repeats. (A) Comparison of the M. saponariae (left, red) and
M. lagerheimii (right, orange) b1 HD chromosomes. (B) Comparison of the M. saponariae (left, light
red) and M. lagerheimii (right, light orange) b, HD chromosomes. (C) Comparison of the M.
saponariae by (left, red) and M. lagerheimii b (right, light orange) HD chromosomes. (D)
Comparison of the M. saponariae b, (left, light red) and M. lagerheimii by (right, orange) HD
chromosomes. (E) Comparison of the M. saponariae (left, red) and M. lagerheimii (right, orange) ai
PR mating-type chromosomes. (F) Comparison of the M. saponariae (left, light red) and M.
lagerheimii (right, light orange) PR a, mating-type chromosomes. (G) Comparison of the M.
saponariae a1 (left, red) and M. lagerheimii a> (right, light orange) PR mating-type chromosomes.
(H) Comparison of the M. saponariae a> (left, light red) and M. lagerheimii a; (right, orange) PR

mating-type chromosomes.
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Supplemental Fig. S2. Comparison of gene order between the mating-type chromosomes of
Microbotryum lagerheimii and M. intermedium. The outer track represents contigs, staggered every
200 kilobases. The HD, PR and pheromone genes are indicated by blue, dark purple and small light-
purple circles, respectively. Blue and orange lines link single-copy orthologs, the latter corresponding
to inversions. The link width is proportional to the corresponding gene length. Yellow regions on the
contig track indicate centromeres. The black marks along the contigs track indicate genes with no
synonymous substitutions between mating-type alleles within individuals (ds=0). Because only one
haploid genome was available for M. intermedium, no ds values were computed. Green marks
indicate transposable elements (TEs) and grey marks non-TE genes. (A) Comparison of the M.
intermedium by (left, pink) and M. lagerheimii bi (right, orange) HD chromosomes. (B) Comparison
of the M. intermedium by (left, pink) and M. lagerheimii b, (right, light orange) HD chromosomes.
(C) Comparison of the M. intermedium a> (left, pink) and M. lagerheimii a; (right, orange) PR
chromosomes. (D) Comparison of M. intermedium a; (left, pink) and M. lagerheimii a; (right, light

orange) PR chromosomes.
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Supplemental Fig. S3. Comparison of gene order between the mating-type chromosomes of
Microbotryum saponariae and M. intermedium. The outer track represents contigs, staggered every
200 kilobases. The HD, PR and pheromone genes are indicated by blue, dark purple and small light-
purple circles, respectively. Blue and orange lines link single-copy orthologs, the latter corresponding
to inversions. The link width is proportional to the corresponding gene length. Yellow regions on the
contig track indicate centromeres. The black marks along the contigs track indicate genes with no
synonymous substitutions between mating-type alleles within individuals (ds=0). Because only one
haploid genome was available for M. intermedium, no ds values were computed. Green marks
indicate transposable elements (TEs) and grey marks non-TE genes. (A) Comparison of the M.
intermedium by (left, pink) and M. saponariae b (right, red) HD chromosomes. (B) Comparison of
the M. intermedium (left, pink) and M. saponariae (right, light red) bo HD chromosomes. (C)
Comparison of the M. intermedium a> (left, pink) and M. saponariae a1 (right, red) PR chromosomes.
(D) Comparison of the M. intermedium (left, pink) and M. saponariae (right, light red) a PR

chromosomes.
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Supplemental Fig. S4. Per-gene synonymous divergence between mating types and its
respective standard error (dS £+ SE) between autosomal alleles of (A) Microbotryum lagerheimii
and (B) M. saponariae, along the ancestral gene order of a M. intermedium autosome.
Synonymous divergence is plotted against the genomic coordinates of an autosome of M.
intermedium for all single-copy genes shared by this autosome, as a proxy for ancestral gene order.
Almost all the autosomal genes show a null synonymous divergence between mating types within

individuals, as expected in highly selfing organisms such as anther-smut fungi.
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Supplemental Fig. SS. Density of transposable elements (TEs) in Microbotryum species. The TE
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density (number of TEs detected divided by the compartment length) is plotted per genomic
compartment, i.e. for the largest autosomal contig, the recombining region, RR, the non-recombining
region, NRR, of either the PR or HD mating-type chromosomes, for each available haploid genome
of the three studied species with mating types segregating independently: Microbotryum intermedium

(a2 genome), M. lagerheimii and M. saponariae (a1 and a; genomes).
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Supplemental Fig. S6. Individual genealogies for the 19 of the genes used for dating the linkage
between mating-type loci and centromeres. The individual genealogies of these genes located
between the centromeres and the HD-proximal or PR-proximal strata containing the mating-type loci
illustrate the lack of trans-specific polymorphism in this genomic region between Microbotryum
lagerheimii and M. saponariae, supporting that complete recombination cessation between the
mating-type loci and the centromeres occurred independently in the two species. (A) Gene
genealogies of nine genes located between the HD-proximal stratum and the centromere. (B) Gene

genealogies of ten genes located between PR-proximal and the centromere.
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Supplemental Table S1. Statistics on the genome assemblies of the Microbotryum saponariae genomes analysed in this study

Assembly statistics

Accession 4 Length of th'e Length of tl3e N50 L50 N9O L90 Mean Median Asse'mbly
Sample Numbers Contigs smallest contig largest contig (bp)  (#contigs) (bp) (# contigs) Length length size
(bp) (bp) (bp) (bp) (bp)
Microbotryum
S“pg"l’;;;‘;"rlgom GCA 900015975 161 3,858 2,799,476 945,666 10 195491 32 183,285.323 20,702 29,508,937
officinalis (1268) a;
Microbotryum
S“pg"l’;;;‘;"rlgom GCA 900015475 72 9,639 2,733,711  1,443984 9 441,166 22 397,966.3472 35,381.5 28,653,577
officinalis (1269) a,
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Supplemental Table S2. Statistics of the mating-type chromosomes of the Microbotryum

saponariae genomes analysed in this study, and in the different genomic partitions of the

mating-type chromosomes: recombining regions (RR), non-recombining regions (NRR),

pseudo-autosomal regions (PAR), homeodomain gene (HD) mating-type chromosome and

pheromone receptor gene (PR) mating-type chromosome.

Genomics regions Statistics
Number of mating-type chromosomes (haploid) 2
Number of contigs for the al HD mating-type chromosome 3
Number of contigs for the a2 HD mating-type chromosome 2
Number of contigs for the al PR mating-type chromosome 3
Number of contigs for the a2 PR mating-type chromosome 3
Size of the al HD mating-type chromosome (bp) 1,836,444
Size of the a2 HD mating-type chromosome (bp) 1,903,821
Size of the al PR mating-type chromosome (bp) 1,179,386
Size of the a2 PR mating-type chromosome (bp) 1,346,385

Size (percentage) of the RR on the al HD mating-type chromosome (bp)
Size (percentage) of the NRR on the al HD mating-type chromosome (bp)
Size (percentage) of the RR on the a2 HD mating-type chromosome (bp)
Size (percentage) of the NRR on the a2 HD mating-type chromosome (bp)
Size(percentage) of the RR on the al PR mating-type chromosome (bp)
Size (percentage) of the NRR on the al PR mating-type chromosome (bp)

Size (percentage) of the RR on the a2 PR mating-type chromosome (bp)

Size (percentage) of the NRR on the a2 PR mating-type chromosome (bp)

85.19% (1,564,501 bp)
7.59% (139,334 bp)
81.37% (1,549,232 bp)
7.34% (139,779 bp)
46.55% (548,957 bp)
41.69% (491,719 bp)
39.33% (529,587 bp)

45.47% (612,166 bp)

Size (percentage) of the centromere on the al HD mating-type chromosome (bp)

Size (percentage) of the centromere on the a2 HD mating-type chromosome (bp)
Size(percentage) of the centromere on the al PR mating-type chromosome (bp)

Size (percentage) of the centromere on the a2 PR mating-type chromosome (bp)

7.22% (132,606 bp)

11.28% (214,807 bp)
11.76% (138,706 bp)
15.2% (204,628 bp)
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Supplemental File S1. Centromeric repeats de novo detected (provided as a separate file).
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Supplemental methods

Segregation analyses

For mating-type segregation analysis we used M. lagerheimii collected on Lychnis flos-jovis in Valle
Pesio, Italy (GPS 44.188400, 7.670650). Microbotryum fungi undergo meiosis immediately
following spore germination, and the septate basidium allows for the micromanipulation and isolation
of post-meiotic yeast-like cells as linear tetrads (Hood et al. 2015). Haploid cells were isolated from
opposite poles of meiosis I across replicate meioses from the same diploid parent and characterized
for mating type segregation by PCR amplification of allele-specific markers. For the PR locus,
primers 660 and 588 were used that discriminate between a; and a; alleles based on allele-specific
amplification (Devier et al. 2009; Hood et al. 2015). For the HD locus, the primer pair HD4-F5 (5’
CCATCGAGCTCCTTTTACCC) and HD-R1 (5 TCTAGGCAGCTCTTGCTC) was designed to
produce PCR products of allele-specific size due to insertion/deletion mutations. Under centromere
linkage, variation at heterozygous loci should segregate at the first meiotic division and thus always
differing between meiotic products from separated at meiosis I; a crossing-over recombination
between the locus and the centromere would result in different alleles between two meiotic products
separated at meiosis I only fifty percent of the time. The observed proportion of instances where
haploid product separated at meiosis I carried alternate alleles for both the PR and HD locus was
calculated for 78 meioses, the corresponding 95% confidence interval was calculated using

Vassarstats®.
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DNA extraction and sequencing

We isolated haploid cells of opposite mating types from single tetrads using micromanipulation as
described previously (Hood et al. 2015) for M. saponariae parasitizing S. officinalis (cell 1268, PRAT
47, al bl, and cell 1269, PRAT 48, a2 b2) collected near Chiusa di Pesio, (GPS coordinates
44.31713297, 7.622967437 on July 8th, 2012). DNA was extracted with the QITAGEN Genomic-tip
100/G (ref. 10243; Courtaboeuf, France) and Genomic DNA Buffer Set (ref. 19060) following
manufacturer instructions and using a Carver hydraulic press (reference 3968, Wabash, IN, USA) for
breaking cell walls. Haploid genomes were sequenced using the P6/C4 Pacific Biosciences SMRT

technology (UCSD IGM Genomics Facility La Jolla, CA, USA).

Assembly and annotation

Assemblies of the genomes were generated with the wgs-8.2 version of the PBcR assembler (Koren
et al. 2012) with the following parameters: genomeSize=30000000, assembleCoverage=50.
Assemblies were polished with quiver software
(https://github.com/PacificBiosciences/GenomicConsensus). A summary of raw data and assembly
statistics is reported in Table S1 and S2. Contigs were aligned with optical maps of the two mating-
type chromosomes obtained previously (Hood et al. 2015), with MapSolver software (OpGen),
allowing generating oriented a; and a; pseudomolecules for each mating type chromosome. Mating-
type chromosomes were identified by finding the contigs carrying the PR and HD mating-type genes

using BLAST (Altschul et al. 1990).
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Species tree and species incorporated in the study

To study the evolution of suppressed recombination in a phylogenetic context, we reconstructed the
relationships between the Microbotryum species for which high-quality genomes were available (Fig.
2), with linked or unlinked mating-type loci: in addition to the newly sequenced M. saponariae
genomes of opposite mating types, we used the high-quality a; and a» genomes of seven available
Microbotryum species (M. lychnidis-dioicae, M. silenes-dioicae, M. violaceum sensu stricto, M.
lagerheimii, M. silenes-acaulis, M. scabiosae, M. violaceum paradoxa), a high-quality a; genome of

M. intermedium, and a high-quality outgroup genome of the red yeast Rhodosporidium babjevae.

The previously published genome assemblies of the species used in this study are available at the
GenBank under the following accession numbers: GCA 900015445 for M. lychnidis-dioicae 1064
a2; GCA 900015465 for M. lychnidis-dioicae 1064 a;; GCA 900013405 for M. lagerheimii 1253 a;
GCA 900015505 for M. lagerheimii 1253 a;; GCA 900015455 for M. violaceum s. str. 1249 a;
GCA 900015425 for M. violaceum s. str. 1249 a;; GCA 900096595 for M. intermedium;
SAMNO09670553 for M. silenes-dioicae 1303 az; and GCA_ 900120095 for M. silenes-dioicae 1303
ar; GCA 900015485 M. violaceum paradoxa 1252 az; GCA_900015495 for M. v. paradoxa 1252 ai;
PRJEB12080 and ERZ250708 for M. scabiosae 1118 az; PRIEB12080 and ERZ250707 for M.
scabiosae 1118 a;; GCA 900014955 for M. v. caroliniana 1250 a; GCA_ 900014965 for M. v.
caroliniana 1250 a;; SAMNO09670554 for M. silenes-acaulis 1248 a;; SAMN09670555 for M.

silenes-acaulis 1248 a.

We used the translated gene models for the nine Microbotryum species and the outgroup
Rhodotorula babjevae to obtain orthologous groups with orthAgogue (Ekseth et al. 2014) based on
blastp+ 2.2.30 followed by Markov clustering (Van Dongen 2000). We aligned the protein sequences
of 780 fully conserved single-copy genes with MAFFT v7.388 (Katoh and Standley 2013) and
obtained the codon-based CDS alignments with TranslatorX (Abascal et al. 2010). We used RAXML
8.2.7 (Stamatakis 2006) to obtain maximum likelihood gene trees for all 780 fully conserved single-

copy genes and a species tree with the concatenated alignment of 447,405 codons under the
18



GTRGAMMA substitution model. We estimated the branch support values by bootstrapping the
species tree based on the concatenated alignment and by estimating the relative internode and tree
certainty scores based on the frequency of conflicting bipartitions for each branch in the species tree

among the fully conserved single-copy genes (Salichos et al. 2014).

We removed all transposable elements (see the de novo TE identification method) from the
gene dataset used in all analysis, assuming a gene to be a TE if the gene sequence shares more than

50% of TE sequence.

We identified alleles as orthologous groups with a single sequence in each haploid genome
for a given species. We used TranslatorX (Abascal et al. 2010) with the MUSCLE aligner v3.8.31
(Edgar 2004) to align nucleotide sequences of predicted genes. We estimated synonymous
divergence (ds) and its standard error with the yn00 program of the PAML package (Yang 2007) and
we plotted ds along the chromosomes using the ggplot2 R package (Wickham 2016). The gene
assignment to the PR- or HD-proximal stratum was made using previously gene assignments (Branco
et al. 2017, 2018), and by considering genes previously unassigned to a stratum and that are now
identified as being in-between genes in the PR-proximal stratum. The latter genes were not assigned
to the HD- or PR-proximal strata because the gene assignment was made based on ds plot using the
M. lagerheimii gene order, which was slightly different from the M. intermedium gene order used in

this study.
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Figures

We prepared the figures 3, S1, S2 and S3 using Circos (Krzywinski 2009). We linked alleles
in Circos plots comparing contigs belonging to alternative mating-types of a given species, and the

ortholog genes in Circos plots comparing contigs from distinct species.

Date estimates for recombination cessation

We used the allele codon-based alignments within each species based on the rationale that the
divergence between alleles associated to the a; versus a> mating types is dependent on the time since
recombination cessation. We used 9 orthologous groups (8,525 aligned codons) for dating the
recombination cessation between the HD-proximal stratum and the centromere, and 10 orthologous
(10,200 aligned codons) groups for dating recombination cessation between the PR-proximal stratum
and the centromere (these were the genes for which a; versus a» alleles were available in all species
studied and located between the ancient mating-type strata and the centromere and are indicated with
red arrows on Figure 4). Divergence times were estimated using BEAST v2.4.0 (Drummond and
Rambaut 2007), with the xml inputs being generated using BEAUTi (Drummond et al. 2012), and
setting the following parameters (others left as default values): unlinked substitution (HKY+G with
empirical frequencies for each codon position) and clock models, Yule process to model speciation,
and 5,000,000 MCMC generations sampled every 1,000. For all runs, we used a single calibration
prior at 0.42 million years, corresponding to the divergence between M. lychnidis-dioicae and M.
silenes-dioicae (Gladieux et al. 2011), with a normal distribution and a sigma of 0.04. Time trees
were annotated with BEAST’s TreeAnnotator tool setting burnin to discard 10% of the trees. The
divergence between M. lychnidis-dioicae and M. silenes-dioicae have been estimated earlier to 0.42

million years through the same approach, using another calibration point (Gladieux et al. 2011).
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Gene genealogies

Gene genealogies were inferred for codon-based alignments of genes using RAXML (Stamatakis
2006) version 8.2.7, assuming the GTRGAMMA model and rapid bootstrap (options: -f a and -#
100). We analysed all single-copy genes for which we had both alleles in all species and were located

between the HD-proximal or PR-proximal strata and the corresponding centromeres.

Transposable element identification, annotation and detection

Transposable elements were identified and annotated de novo in the Microbotryum high-quality
genome assemblies, using both LTR-harvest (defaults parameters; Ellinghaus et al. 2008); and
RepeatModeler (defaults parameters; Smit and Hubley 2015). Transposable element sequences were
clustered per family to get a consensus sequence per annotation, using usearch (centroid method,
1id=0.7; Edgar 2010). These consensus sequences were compiled to form a Microbotryum
transposable elements database (Hartmann et al. 2018), and were annotated with blast using Repbase
(Bao et al. 2015) database (20.05) that we used as library in RepeatMasker (Smit et al. 2015) to

retrieve their genomic location in all genomes.
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De novo detection of centromeric repeats

Centromeric regions are poor in gene and rich in transposable and repetitive elements. As several
regions fulfilled these criteria in each contig, we identified de novo centromeric-specific repeats
(Melters et al. 2013) using Tandem-Repeat Finder (TRF v. 4.07b; Benson 1999) on assembled
[llumina reads of the very same strains as those sequenced using the Pacific Bioscience technology.
The mate-pair reads used to detect centromeric repeats in M. lagerheimii are available in the sequence
read archive, with the accession number SRR7047936; the mate-pair reads used to detect centromeric
repeats in M. saponariae were previously published (Fortuna et al. 2016). For both M. lagerheimii
and M. saponariae genomes, we performed the assemblies as follows: we randomly chose 500,000
[llumina reads that we assembled with PRICE (v1.2; Ruby et al. 2013) using a random set of
1,000,000 reads as seed file, and using the following command line arguments: -mpp inputFile R1
inputFile R2 650 90 -pict 20000 seedFile 500 2 25 -nc 10 -mpi 85 -MPI 95 — tpi 85 -TPI 95 -logf
logfile -0 outputFile. PRICE works by round of assembly: in the first round, it maps randomly picked
reads onto contigs (provided by the seedFile), assembles the reads that did not mapped, and then
extends the contig with the unmapped assembled sequences. For the second and following rounds,
PRICE considers the extended contigs as the reference to restart the process of picking, mapping
reads, assembling the unmapped reads and extending the reference contigs. We analysed the presence
of tandem repeats in each of the 10 assembly cycle output, using the following parameters in a TRF
wrapper perl script (Melters et al. 2013): match=1, mismatch=1, indel=2, probability of match=80,
probability of indel=5, min score=200, max period=2000. We performed these steps 15 times,
picking randomly 500,000 input reads and 1,000,000 reads for the seed file. The repeats detected in
the Illumina genomes were blasted against the corresponding high-quality genomes of M. lagerheimii
and M. saponariae. We defined the centromeric regions of the mating-type chromosomes by
identifying at the largest TE-rich, gene-poor regions containing the greatest density of tandem
repeats. The delimitations of the centromeric regions using this method were congruent with those

using BLAST of the M. lychnidis-dioicae centromeric repeats identified previously in M. lychnidis-
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dioicae (Badouin et al. 2015). To identify centromeric repeats in M. intermedium, we therefore
blasted the centromeric repeats identified in M. lychnidis-dioicae (Badouin et al. 2015), as no
[llumina reads were available for this species. FASTA files containing the de novo identified

centromeric repeats are provided in Supplemental File S1.
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