
Supplemental methods: Identification of circRNA reads

Existing methods to identify circRNAs from sequence data (Salzman et al. 2012; Memczak et

al. 2013; Guo et al. 2014; Nair et al. 2016; Szabo and Salzman 2016) rely on using unmapped

reads in a transcriptome BAM file, either by fragmenting the reads and realigning these shorter

fragments to the reference genome (Memczak et al. 2013; Nair et al. 2016), or by aligning the

unmapped reads to a custom database of exon-exon junctions (Salzman et al. 2012). In

contrast, the method developed here takes a new position by taking advantage of the

information provided by the STAR aligner for the mapped reads. When one part of a

sequence-read maps to a location and the remaining part to another location in a manner not

explained by canonical exon-intron-exon structure, the STAR mapper can assign a

“Secondary Alignment” tag (SA) to such a read.

When using paired-end sequence data, and assuming a circular RNA molecule is present (top

part Figure 1) the sequence read that aligns over the crossing of the non-canonical junction

(green arrows) would ‘point toward’ its read-mate somewhere in the circle. Aligning these

reads to the linear reference (middle part Figure 1), the junction read will get an SA tag if and

only if this is the one and unique alignment the STAR software can find. Such a sequence

read with a secondary alignment aligns to the reference on one location (here the 5’ end of

exon n) with e.g. 50 nucleotides while the remaining nucleotides of the read (in our cohort the

read-length is 75 bases) align with the second location (3’ end of exon n+1). The read-mate

(orange arrow) aligns somewhere in between these two locations with the head of the read

pointing toward the head of the junction read, as would be expected in a properly paired read.

Finding additional read-pairs showing this configuration, but always with a breakpoint at the

exact same location, strengthens the evidence for circular transcripts. A custom Perl script

(next section in this document and https://bitbucket.org/snippets/MSmid/Le949d/identify-

circularrna-reads) was written to obtain such a configuration of reads from the BAM files. It is

crucial to only use uniquely mapped reads (MAPQ=255 in STAR notation), to circumvent the

situation that the read that spans the circular junction has homology to other parts of the

genome as well. Of the sequence reads satisfying that criterion, the proper reads indicative

for a circular region were teased out using the alignment locations, flags, CIGAR score

(Concise Idiosyncratic Gapped Alignment Report) and tags available for each read in the BAM

file. In full, ‘normal’ properly paired reads have flags 163 and 83, or flag 147 and 99, depending

on orientation and strand (flags derived from the Sequence Alignment Map specification (Li et

al. 2009)). When one of these reads contains a SA tag (Secondary Alignment), part of the

read uniquely maps to one location while the remaining part of the read maps to another

location, with a controversy between the orientation and location of the two parts of a read. If

this is the case, the read gets an additional entry in the BAM file with the information for the

secondary alignment for that part of the read, with the flag changed to 2129 (if the flag was

83), 2209 (for 163), 2193 (for 147) and 2145 (for 99). To identify a circular region, a trio of read

alignments then must be present with flags in the following possible orders: 2129_163_83,

83_163_2129, 2209_83_163, 163_83_2209, 2193_99_147, 147_99_2193, 2145_147_99 and

99_147_2145. This does depend on the BAM file being ordered by chromosomal start

location, but it is not required that these 3 read alignments are consecutively listed in the BAM

file. The one additional constraint was that the trio of reads must all be mapped to the same

chromosome. The start location of a region is defined as the alignment location of the first

read in the trio and, since the alignment location in the BAM file is defined by the 5’ end of the

read, the end location of the circular region is obtained by using the alignment location of the

last read of the trio and add the number of matches from the CIGAR score of that read. Only

regions with at least 5 reads crossing the circular junction were included. Then, we verified if

a read pair exists with one read crossing the junction (green arrow figure 1) with the read-mate

positioned outside the candidate circular region. If the molecule is circular such read-pairs

should not be present; thus, when such read-pairs are found, the region is removed for that

sample. Regions were furthermore removed if the start and end coordinates were less than

175 bases apart, to avoid overlapping read-mates. Regions larger than 2.3 Mb were also

excluded (size of biggest known gene CNTNAP2) to avoid identification of regions that are

artefacts of the RNA-seq protocol (inaccurate ligation of distinct cDNAs or template switching

during cDNA synthesis may yield false-positive isoforms). Finally, regions annotated to

pseudogenes were removed, as were those annotated to the immunoglobin variable chain

regions. Next, the GENCODE annotation was used to obtain the exon locations of genes that

exactly matched with the circular region. To quantify the abundance, it is important to note that

in the RNA-seq protocol fragmentation of RNA is performed before the cDNA synthesis step.

This removes the question of unwanted multiple copies of a circular RNA during cDNA

synthesis, because through strand displacement the reverse transcriptase (RT) could

generate a linear cDNA molecule containing multiple copies of the circle (Szabo and Salzman

2016) (similar to rolling circle amplification). For each sample, STAR also outputs the raw read

counts for all genes. These were used to correlate with the number of junction reads of the

circular transcripts found in a gene. To normalize between samples, the Trimmed Mean of M-

values (TMM) implemented in edgeR (Robinson and Oshlack 2010) was used.

References

Guo JU, Agarwal V, Guo H, Bartel DP. 2014. Expanded identification and characterization of
mammalian circular RNAs. Genome Biol 15: 409.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome
Project Data Processing S. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25: 2078-2079.

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH,
Munschauer M et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory
potency. Nature 495: 333-338.

Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, Subramanian S, Kalari KR. 2016. Circular RNAs
and their associations with breast cancer subtypes. Oncotarget 7: 80967-80979.

Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of
RNA-seq data. Genome Biol 11: R25.

Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. 2012. Circular RNAs are the predominant
transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7: e30733.

Szabo L, Salzman J. 2016. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev
Genet 17: 679-692.

Perl script to identify circularRNAs.

Author: Marcel Smid 1
License: CC:BY:SA:NC (Creative Commons Attribution-ShareAlike-NonCommercial 4.0 International) 2
Disclaimer: author is not professionally trained as programmer, and realizes TIMTOWTDI. 3
4
find circular RNAs, using mapped reads with mate spanning the junction 5
prerequisites: 6
DATA 7
-RNA processed without a poly(A) selection step 8
-paired-end sequence data 9
-mapped by the STAR aligning software (https://github.com/alexdobin/STAR) 10
-bam file sorted and indexed 11
-expects prefix 'chr' for chromosomes 12
13
Perl and other necessary files / tools 14
-package File::Find 15
-samtools (https://github.com/samtools/) 16
-Gencode gene annotation, gtf format (ftp://ftp.ebi.ac.uk/pub/databases/gencode/) 17
18
19
############ VERSION DEVELOPED FOR WINDOWS BOX, HARDCODED PATHS 20
############ - set lines 27-33 21
 22
 23
use File::Find; 24
 25
#location of bam files (.bai needed!) 26
$dir = "C:/temp/"; 27
#location of output files 28
$outdir = "C:/temp/"; 29
#location of samtools 30
$samdir = "C:/temp/"; 31
#location of Gencode GTF 32
$gtf = "C:/temp/gencode.v23.annotation.gtf"; 33
 34
patterns of read-flags, as provided by SAM specifications 35
$pattern = " 2129 2209 2193 2145"; 36
$pattern2 = "83 163 147 99"; 37
 38
needed for windows, otherwise samtools will not auto-close after each bam file 39
optional change to wanted chromosomes only 40
$chr_string = "chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX"; 41
 42
#show print statements immediately 43
$|=1; 44
 45

annotation from Gencode, extract HAVANA exons information 46
make sure the Gencode version matches the reference genome version used by STAR for mapping 47
open GTF, $gtf or die "Cannot find gtf file"; 48
while ($line=<GTF>) { 49
 chomp $line; 50
 @fields = split "\t", $line; 51
 if ($fields[2] eq "exon" && $fields[1] eq "HAVANA") { 52
 #chr_exon start 53
 $uni = $fields[0]."_".$fields[3]; 54
 55
 #chr_exon end 56
 $uni2 = $fields[0]."_".$fields[4]; 57
 58
 #annot 59
 $temp = $fields[8]; 60
 $temp =~ s/"//g; 61
 $temp =~ /gene_id (.+?);.+gene_name (.+?);.+exon_number (\d+?);/; 62
 # $ensembl = $1; $name = $2; $exon = $3; 63
 $annot = $1."\t".$2."\t".$3; 64
 65
 unless (defined $gtf_annot{$uni}) { 66
 $gtf_annot{$uni} = $annot; 67
 } 68
 unless (defined $gtf_annot{$uni2}) { 69
 $gtf_annot{$uni2} = $annot; 70
 } 71
 } 72
} 73
print "GTF loaded\n"; 74
find(\&process_file, $dir); 75
 76
 77
sub process_file { 78
 $open = $File::Find::name; 79
 80
 #loop per bam-file 81
 if ($open =~ /\.bam$/) { 82
 $sample_name = $_; 83
 # optionally parse $_ to get a cleaner sample_name for output 84
 85
 print "running ",$sample_name,"\n"; 86
 87
 # get reads using samtools, -F 4 for mapped reads only 88
 open IN, $samdir."samtools view -F 4 $open $chr_string |" or die "cannot find input bam $open"; 89
 open OUT, ">".$outdir.$sample_name."_mapped_circRNA.txt"; 90
 91
 #reset variables for new sample 92
 $start=time();$row=0;undef %wanted;undef %region; undef %region_flag; 93
 undef %flags; $correct_count=$regions_count=0; 94

 95
 LBL1:while ($line=<IN>) { 96
 $row++; 97
 if ($row%10000000==0) {print $sample_name,": ",$row,"\n";} 98
 99
 @fields = split "\t", $line; 100
 # just to really make sure it doesn't parse MT if ppl remove $chr_string 101
 if ($fields[2] eq "chrM") { 102
 close IN; 103
 last LBL1; 104
 print "oops. parsing chrM is a bad idea\n"; 105
 } 106
 107
 #prevent match of flag 145 129 108
 $temp = " ".$fields[1]; 109
 110
 #check flag pattern for wanted reads, only use uniquely mapped (MAPQ==255) 111
 if ($pattern =~ /$temp/ && $fields[4]==255) { 112
 chomp $line; 113
 114
 #fill hash by readname 115
 push @{$wanted{$fields[0]}}, $line; 116
 next LBL1; 117
 } 118
 if ($pattern2 =~ /$fields[1]/ && $fields[4]==255) { 119
 chomp $line; 120
 # contains proper pair flags; check for secondary alignment label and MAPQ of 255 (unique map) 121
 # in STAR mapped bam file, the secondary alignment is present in the last field 122
 # if data has been MarkDuplicate by Picard, then it is not the last field, but in 1 case field[11] 123
 # not sure if this field - after MarkDup by Picard - is universal 124
 125
 # after STAR 126
 if ($fields[$#fields] =~ /^SA:Z/) { 127
 128
 #after STAR & Markduplicate 129
 #if ($fields[11] =~ /^SA:Z/) { 130
 #$flag{$fields[1]}++; 131
 132
 #fill hash by readname 133
 push @{$wanted{$fields[0]}}, $line; 134
 135
 next LBL1; 136
 137
 } 138
 # but also the third partner is needed; this read does not have secondary alignment 139
 # will only be needed/present if either the 21xx read has been seen, or the one with the SA label 140
 if (defined $wanted{$fields[0]}) { 141
 push @{$wanted{$fields[0]}}, $line; 142
 } 143

 } 144
 145
 } 146
 $inter=time();print "all lines parsed in ",$inter-$start," seconds\n"; 147
 148
 # reads indicative of circRNA have specific order of flags 149
 # several possibilities depending on read orientations 150
 $correct = " 2129_163_83 83_163_2129 2209_83_163 163_83_2209 2193_99_147 147_99_2193 2145_147_99 99_147_2145"; 151
 152
 # now check for circular RNA 153
 foreach $readname (keys %wanted) { 154
 # we need a trio 155
 if (scalar @{$wanted{$readname}} == 3) { 156
 # need certain combinations in the correct order, so get order of flags for this read 157
 $flag=" "; 158
 for $i (0..2) { 159
 $temp=$wanted{$readname}[$i]; 160
 @fields=split "\t", $temp; 161
 $flag .= $fields[1]."_"; 162
 # while we are here, save some data 163
 if ($i==0) { $junction_left = $fields[3]; $chr_left=$fields[2];} 164
 if ($i==1) { $chr_middle=$fields[2];} 165
 if ($i==2) { $pos_right = $fields[3]; $cigar_right = $fields[5]; $SA = $fields[$#fields];} 166
 } 167
 #remove last _ 168
 chop $flag; 169
 170
 171
 # check if this is a combi plus order indicative of circular read 172
 if ($correct =~ /$flag/) { 173
 #check if all reads are on same chromosome 174
 if ($SA =~ /SA:Z:(chr.+?),/) { 175
 if ($1 eq $chr_left) { 176
 if ($chr_left eq $chr_middle) { 177
 $correct_count++; 178
 179
 # gather region info for output 180
 # the left junction is the mapped position (5' start pos of read) 181
 # the right junction is the mapped position plus the number of matches 182
 # as listed by CIGAR. The CIGAR score always must be xxMyyH, or at least 1 or more digits followed by M 183
 $cigar_right =~ /(\d+)M/; 184
 $junction_right = $pos_right + $1 - 1; 185
 $uni = $chr_left.":".$junction_left."-".$junction_right; 186
 $region{$uni}++; 187
 $region_flag{$uni}{$flag}++; 188
 $flags{$flag}=1; 189
 } 190
 } 191
 } 192

 193
 } 194
 } 195
 } 196
 print $correct_count," circular trio's found.\nFinding regions in gtf and output\n"; 197
 198
 # match with gencode 199
 # if no match, then still output 200
 # OUTPUT has region where circRNA has start and end-point (Chr-start-end), 201
 # the total number of reads supporting the junction, also specified by flag type 202
 # size of region (end-start), followed by annotation, if matching with HAVANA exons 203
 204
 print OUT "Region\tTotal"; 205
 foreach $flag (keys %flags) { 206
 print OUT "\t",$flag; 207
 } 208
 print OUT "\tSize\tEnsemble_start\tGene_start\texon_number_start\tEnsemble_end\tGene_end\texon_number_end\n"; 209
 210
 foreach $region (keys %region) { 211
 $regions_count++; 212
 print OUT $region,"\t",$region{$region}; 213
 foreach $flag (keys %flags) { 214
 print OUT "\t",$region_flag{$region}{$flag}; 215
 } 216
 #split region for matchin with Encode 217
 $region =~ /(chr.+):(\d+)-(\d+)/; 218
 print OUT "\t",$3-$2,"\t"; 219
 $uni = $1."_".$2; 220
 221
 if (defined $gtf_annot{$uni}) { 222
 print OUT $gtf_annot{$uni},"\t"; 223
 } else { 224
 print OUT "\t\t\t"; 225
 } 226
 $temp=$3; 227
 $uni = $1."_".$temp; 228
 if (defined $gtf_annot{$uni}) { 229
 print OUT $gtf_annot{$uni},"\n"; 230
 } else { 231
 print OUT "\n"; 232
 } 233
 } 234
 $end = time(); 235
 print $regions_count," regions found.\nTotal runtime: ",$end-$start," seconds.\n\n"; 236
 close; 237
 238
 } # end of bam loop 239
 240
} # end of process dir loop 241

