Supplemental methods: Identification of circRNA reads

Existing methods to identify circRNAs from sequence data (Salzman et al. 2012; Memczak et
al. 2013; Guo et al. 2014; Nair et al. 2016; Szabo and Salzman 2016) rely on using unmapped
reads in a transcriptome BAM file, either by fragmenting the reads and realigning these shorter
fragments to the reference genome (Memczak et al. 2013; Nair et al. 2016), or by aligning the
unmapped reads to a custom database of exon-exon junctions (Salzman et al. 2012). In
contrast, the method developed here takes a new position by taking advantage of the
information provided by the STAR aligner for the mapped reads. When one part of a
sequence-read maps to a location and the remaining part to another location in a manner not
explained by canonical exon-intron-exon structure, the STAR mapper can assign a
“Secondary Alignment” tag (SA) to such a read.

When using paired-end sequence data, and assuming a circular RNA molecule is present (top
part Figure 1) the sequence read that aligns over the crossing of the non-canonical junction
(green arrows) would ‘point toward’ its read-mate somewhere in the circle. Aligning these
reads to the linear reference (middle part Figure 1), the junction read will get an SA tag if and
only if this is the one and unique alignment the STAR software can find. Such a sequence
read with a secondary alignment aligns to the reference on one location (here the 5’ end of
exon n) with e.g. 50 nucleotides while the remaining nucleotides of the read (in our cohort the
read-length is 75 bases) align with the second location (3’ end of exon n+1). The read-mate
(orange arrow) aligns somewhere in between these two locations with the head of the read
pointing toward the head of the junction read, as would be expected in a properly paired read.
Finding additional read-pairs showing this configuration, but always with a breakpoint at the
exact same location, strengthens the evidence for circular transcripts. A custom Perl script
(next section in this document and https://bitbucket.org/snippets/MSmid/Le949d/identify-
circularrna-reads) was written to obtain such a configuration of reads from the BAM files. It is
crucial to only use uniquely mapped reads (MAPQ=255 in STAR notation), to circumvent the

situation that the read that spans the circular junction has homology to other parts of the

genome as well. Of the sequence reads satisfying that criterion, the proper reads indicative
for a circular region were teased out using the alignment locations, flags, CIGAR score
(Concise Idiosyncratic Gapped Alignment Report) and tags available for each read in the BAM
file. In full, ‘normal’ properly paired reads have flags 163 and 83, or flag 147 and 99, depending
on orientation and strand (flags derived from the Sequence Alignment Map specification (Li et
al. 2009)). When one of these reads contains a SA tag (Secondary Alignment), part of the
read uniquely maps to one location while the remaining part of the read maps to another
location, with a controversy between the orientation and location of the two parts of a read. If
this is the case, the read gets an additional entry in the BAM file with the information for the
secondary alignment for that part of the read, with the flag changed to 2129 (if the flag was
83), 2209 (for 163), 2193 (for 147) and 2145 (for 99). To identify a circular region, a trio of read
alignments then must be present with flags in the following possible orders: 2129 163 83,
83 163 2129, 2209 83 163,163 83 2209, 2193 99 147,147 99 2193,2145 147 99 and
99 147 2145. This does depend on the BAM file being ordered by chromosomal start
location, but it is not required that these 3 read alignments are consecutively listed in the BAM
file. The one additional constraint was that the trio of reads must all be mapped to the same
chromosome. The start location of a region is defined as the alignment location of the first
read in the trio and, since the alignment location in the BAM file is defined by the 5’ end of the
read, the end location of the circular region is obtained by using the alignment location of the
last read of the trio and add the number of matches from the CIGAR score of that read. Only
regions with at least 5 reads crossing the circular junction were included. Then, we verified if
a read pair exists with one read crossing the junction (green arrow figure 1) with the read-mate
positioned outside the candidate circular region. If the molecule is circular such read-pairs
should not be present; thus, when such read-pairs are found, the region is removed for that
sample. Regions were furthermore removed if the start and end coordinates were less than
175 bases apart, to avoid overlapping read-mates. Regions larger than 2.3 Mb were also
excluded (size of biggest known gene CNTNAP2) to avoid identification of regions that are

artefacts of the RNA-seq protocol (inaccurate ligation of distinct cDNAs or template switching

during cDNA synthesis may vyield false-positive isoforms). Finally, regions annotated to
pseudogenes were removed, as were those annotated to the immunoglobin variable chain
regions. Next, the GENCODE annotation was used to obtain the exon locations of genes that
exactly matched with the circular region. To quantify the abundance, it is important to note that
in the RNA-seq protocol fragmentation of RNA is performed before the cDNA synthesis step.
This removes the question of unwanted multiple copies of a circular RNA during cDNA
synthesis, because through strand displacement the reverse transcriptase (RT) could
generate a linear cONA molecule containing multiple copies of the circle (Szabo and Salzman
2016) (similar to rolling circle amplification). For each sample, STAR also outputs the raw read
counts for all genes. These were used to correlate with the number of junction reads of the
circular transcripts found in a gene. To normalize between samples, the Trimmed Mean of M-

values (TMM) implemented in edgeR (Robinson and Oshlack 2010) was used.

References

Guo JU, Agarwal V, Guo H, Bartel DP. 2014. Expanded identification and characterization of
mammalian circular RNAs. Genome Biol 15: 409.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome
Project Data Processing S. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25: 2078-2079.

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH,
Munschauer M et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory
potency. Nature 495: 333-338.

Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, Subramanian S, Kalari KR. 2016. Circular RNAs
and their associations with breast cancer subtypes. Oncotarget 7: 80967-80979.

Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of
RNA-seq data. Genome Biol 11: R25.

Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. 2012. Circular RNAs are the predominant
transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7: e30733.

Szabo L, Salzman J. 2016. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev
Genet 17: 679-692.

OOONOUNPAWNE

Perl script to identify circularRNAs.

Author: Marcel Smid

License: CC:BY:SA:NC (Creative Commons Attribution-ShareAlike-NonCommercial 4.0 International)

Disclaimer: author is not professionally trained as programmer, and realizes TIMTOWTDI.
#

find circular RNAs, using mapped reads with mate spanning the junction

prerequisites:

DATA

-RNA processed without a poly(A) selection step

-paired-end sequence data

-mapped by the STAR aligning software (https://github.com/alexdobin/STAR)
-bam file sorted and indexed

-expects prefix 'chr' for chromosomes

Perl and other necessary files / tools
-package File::Find
-samtools (https://github.com/samtools/)
-Gencode gene annotation, gtf format (ftp://ftp.ebi.ac.uk/pub/databases/gencode/)

T g g g S

HHHHHHHHHHHHE VERSION DEVELOPED FOR WINDOWS BOX, HARDCODED PATHS
T - set lines 27-33

use File::Find;

#location of bam files (.bai needed!)

$dir = "C:/temp/";

#location of output files

$outdir = "C:/temp/";

#location of samtools

$samdir = "C:/temp/";

#location of Gencode GTF

$gtf = "C:/temp/gencode.v23.annotation.gtf";

patterns of read-flags, as provided by SAM specifications
$pattern =" 2129 2209 2193 2145";
$pattern2 = "83 163 147 99";

needed for windows, otherwise samtools will not auto-close after each bam file
optional change to wanted chromosomes only

$chr_string = "chrl chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chrll chrl2 chrl3 chrl4 chrl5 chrl6 chrl7 chrl8 chrl9 chr20 chr21 chr22 chrX";

#show print statements immediately
$|=1;

annotation from Gencode, extract HAVANA exons information
make sure the Gencode version matches the reference genome version used by STAR for mapping
open GTF, $gtf or die "Cannot find gtf file";
while ($line=<GTF>) {
chomp $line;
@fields = split "\t", $line;
if ($fields[2] eq "exon" && $fields[1] eq "HAVANA") {
#chr_exon start
$uni = $fields[0]."_".$fields[3];

#chr_exon end
$uni2 = $fields[0]."_".$fields[4];

#annot

$temp = $fields[8];

$temp =~ s/"/lg;

$temp =~ /gene_id (.+?);.+gene_name (.+7?);.+exon_number (\d+?);/;
$ensembl = $1; $name = $2; $exon = $3;

$annot = $1."\t".$2."\t".$3;

unless (defined $gtf_annot{$uni}) {
$gtf_annot{$uni} = $annot;

}

unless (defined $gtf_annot{$uni2}) {
$gtf_annot{$uni2} = $annot;

}

}

}
print "GTF loaded\n";
find(\&process_file, $dir);

sub process_file {
$open = $File::Find::name;

#loop per bam-file
if ($open =~ N\.bam$/) {
$sample_name = $_;
optionally parse $_ to get a cleaner sample_name for output

print "running ",$sample_name,"\n";

get reads using samtools, -F 4 for mapped reads only
open IN, $samdir."samtools view -F 4 $open $chr_string |" or die "cannot find input bam $open";
open OUT, ">".$outdir.$sample_name."_mapped_circRNA.txt";

#reset variables for new sample
$start=time(); $row=0;undef %wanted;undef %region; undef %region_flag;
undef %flags; $correct_count=$regions_count=0;

LBL1:while ($line=<IN>) {

$row++;
if ($row%210000000==0) {print $sample_name,": ", $row,"\n";}

@fields = split "\t", $line;
just to really make sure it doesn't parse MT if ppl remove $chr_string
if ($fields[2] eq "chrM") {

close IN;

last LBL1;

print "oops. parsing chrM is a bad idea\n";

}

#prevent match of flag 145 129
$temp =" ".$fields[1];

#check flag pattern for wanted reads, only use uniquely mapped (MAPQ==255)
if ($pattern =~ /$Stemp/ && $fields[4]==255) {
chomp $line;

#fill hash by readname
push @{$wanted{$fields[0]}}, $line;

next LBL1;

}

if ($pattern2 =~ /$fields[1]/ && $fields[4]==255) {
chomp $line;

contains proper pair flags; check for secondary alignment label and MAPQ of 255 (unique map)
#in STAR mapped bam file, the secondary alignment is present in the last field

if data has been MarkDuplicate by Picard, then it is not the last field, but in 1 case field[11]

not sure if this field - after MarkDup by Picard - is universal

after STAR
if (Sfields[$#fields] =~ /"SA:Z/) {

#after STAR & Markduplicate
#if ($fields[11] =~ /"SA:Z/) {
#$flag{$fields[1]}++;

#fill hash by readname
push @{$wanted{$fields[0]}}, $line;

next LBL1,;

but also the third partner is needed; this read does not have secondary alignment
will only be needed/present if either the 21xx read has been seen, or the one with the SA label
if (defined $wanted{$fields[0]}) {
push @{$wanted{$fields[0]}}, $line;
}

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

$inter=time();print "all lines parsed in ", $inter-$start," seconds\n";

reads indicative of circRNA have specific order of flags
several possibilities depending on read orientations
$correct =" 2129_163_83 83_163_2129 2209_83_163 163_83_2209 2193 99_147 147_99_2193 2145_147_99 99_147_2145",

now check for circular RNA
foreach $readname (keys %wanted) {
we need a trio
if (scalar @{$wanted{$readname}} == 3) {
need certain combinations in the correct order, so get order of flags for this read

$flag="",
for $i (0..2) {
$temp=$wanted{Sreadname}[$i];
@fields=split "\t", $temp;
$flag .= $fields[1]."_";
while we are here, save some data
if ($i==0) { $junction_left = $fields[3]; $chr_left=$fields[2];}
if ($i==1) { $chr_middle=%fields[2];}
if ($i==2) { $pos_right = $fields[3]; $cigar_right = $fields[5]; $SA = $fields[$#fields];}
}
#remove last _
chop $flag;

check if this is a combi plus order indicative of circular read
if ($correct =~ /$flag/) {
#check if all reads are on same chromosome
if ($SA =~ ISA:Z:(chr.+?),/) {
if ($1 eq $chr_left) {
if ($chr_left eq $chr_middle) {
$correct_count++;

gather region info for output

the left junction is the mapped position (5' start pos of read)

the right junction is the mapped position plus the number of matches

as listed by CIGAR. The CIGAR score always must be xxMyyH, or at least 1 or more digits followed by M
$cigar_right =~ /(\d+)M/;

$junction_right = $pos_right + $1 - 1;

$uni = $chr_left.":".$junction_left."-".$junction_right;

$region{Suni}++;

$region_flag{$uni}{$flag}++;

$flags{$flag}=1;

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

}

print $correct_count," circular trio's found.\nFinding regions in gtf and output\n";

match with gencode

if no match, then still output

OUTPUT has region where circRNA has start and end-point (Chr-start-end),

the total number of reads supporting the junction, also specified by flag type

size of region (end-start), followed by annotation, if matching with HAVANA exons

print OUT "Region\tTotal";
foreach $flag (keys %flags) {
print OUT "\t",$flag;

print OUT "\tSize\tEnsemble_start\tGene_start\texon_number_start\tEnsemble_end\tGene_end\texon_number_end\n";

foreach $region (keys %region) {
$regions_count++;
print OUT $region,"\t",$region{$region};
foreach $flag (keys %flags) {
print OUT "\t",$region_flag{$region}{$flag};
}

#split region for matchin with Encode
$region =~ /(chr.+):(\d+)-(\d+)/;

print OUT "\t",$3-$2,"\t";

$uni =$1." ".$2;

if (defined $gtf_annot{$uni}) {

print OUT $gtf_annot{Suni},"\t";
}else {

print OUT "\t\t\t";

}
$temp=$3;
$uni = $1."_".$temp;
if (defined $gtf_annot{$uni}) {
print OUT $gtf_annot{$uni},"\n";

}else {
print OUT "\n";
}
}
$end = time();
print $regions_count," regions found.\nTotal runtime: ",$end-$start," seconds.\n\n";
close;

} # end of bam loop

} # end of process dir loop

