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SUPPLEMENTAL METHODS 
 
Tumor samples in the Ohio cohort. In the Ohio cohort, fresh-frozen tumor was snap-frozen in 

liquid nitrogen within 30 minutes of resection, and DNA and RNA were purified after macro-
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dissection using a cryostat to ensure ≥70% representation of tumor.  

 

Genomic DNA sequencing.  Genomic DNA was isolated from samples using standard methods 

involving phenol/chloroform extraction and isopropanol precipitation. Sample quality was 

assessed using a Nanodrop spectrophotometer and Picogreen double stranded DNA assay 

(Thermo Fisher Scientific).  
 

From Ohio cohort samples, 59 T/N pairs were sequenced at ~90x mean depth of coverage by 

Complete Genomics WGS (CGI; Supplemental Table S1). The CGI aligner was used to map 

paired-end WGS reads (2 x 35 bp) against the human reference genome assembly GRCh37 

(hg19) (Carnevali et al. 2012). The Ohio cohort also included 52 HPV-positive and 1 HPV-

negative OSCC T/N pairs from which Illumina WGS data were generated at New York Genome 

Center (NYGC), including 40x mean coverage for normal samples and ~90x coverage for tumor. 

Illumina WGS data for 17 HPV-positive and 24 HPV-negative cancers were downloaded from 

TCGA. For Illumina data, sequence reads were aligned against human reference genome hg19 

using BWA.aln version 0.5.9 (Li and Durbin 2010). We identified duplicate reads, realigned 

reads surrounding indels, and recalculated alignment quality scores using GATK v.3 (McKenna 

et al. 2010).  

 

RNA-seq libraries and analysis. Total RNA was isolated from Ohio cohort OSCC samples using 

TRIzol (Invitrogen) extraction followed by isopropanol precipitation. Libraries were prepared 

using an Illumina TruSeq stranded RNA kit protocol resulting in ~350 nt cDNA inserts. 

Sequence data were generated using an Illumina HiSeq 2500 in high output mode. Paired end, 

2 x 125 nt reads were sequenced at >40 million reads per sample. RNA-seq data for TCGA 

samples were downloaded from the TCGA portal (previously at https://tcga-data.nci.nih.gov/, 

migrated to https://portal.gdc.cancer.gov). RNA-seq reads from 18 HPV-positive and 2 HPV-

negative OSCC Ohio cohort samples were aligned to GRCh37 human reference genome using 

STAR aligner 2.3.1z; 14 HPV-positive OSCC were aligned to GRCh37 using STAR 2.4.0c; and 

52 HPV-positive and 24 HPV-negative OSCC were aligned to GRCh37.p13 reference assembly 

which includes non-canonical chromosomes (Dobin et al. 2013) and STAR 2.4.2a. RNA-seq 

reads from all TCGA samples were aligned using GRCh37.p13 and STAR 2.4.2a. 

 



 3 

For batch correction of RNA-seq data, transcript structures first were downloaded from Gencode 

v.18 (http://www.gencodegenes.org/) as gene models to determine expression levels of each 

transcript. Aligned reads were counted using HTSeq (Anders et al. 2015), and raw counts were 

transformed into transcripts per million reads (TPM). Transcript expression values were 

adjusted for GC content using Bioconductor EDASeq (http://www.bioconductor.org/). Genes 

with low expression values (TPM < 1 in >80% of OSCC) were excluded from further analysis. A 

pseudo-count of one was added to TPM values to avoid undefined data upon log 

transformation. Resulting log2 TPM values were normalized and batch-corrected using the 

Bioconductor sva function ComBat (Leek et al. 2012). Variance in expression levels was 

calculated for each gene. Unsupervised hierarachical clustering of the 500 most highly variable 

genes in various defined sets of OSCC was performed using the Ward D2 method. 
 

To assess the potential impact of distinct STAR aligner software versions and human genome 

reference assembly releases used in analysis of RNA-seq reads, principal components analysis 

was performed to assess RNA-seq sample data for 151 RNA-seq OSCC before and after 

reanalysis with the harmonized pipeline STAR 2.4.2a and reference genome assembly 

GRCh37.p13. The results revealed minimal impacts of the aligner and reference genome 

assembly version differences (Supplemental Fig. S5K).  

 

HPV transcript analysis. To construct a custom, hybrid genome template for sequence 

alignments (Akagi et al. 2014), we downloaded the reference human (hg19) genome from 

UCSC genome browser (https://www.genome.org/) and concatenated it together with HPV types 

16 (NC_001526.2), 18 (NC_001357.1), 31 (HQ537687.1), 33 (HQ537707.1), 35 (M74117.1) and 

69 (AB027020.1) genomes from NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/), and 

HPV types 52 (HPV52REF.1), 58 (HPV58REF.1), 56 (HPV56REF.1), 51 (HPV51REF.1), 59 

(HPV59REF.1), 39 (HPV39REF.1) and 45 (HPV45REF.1) from PaVE database 

(https://pave.niaid.nih.gov/). 

 

Somatic variant confirmation. Two approaches were taken to confirm somatic mutation calls. In 

the first, RNA-seq reads were aligned against the human hg19 reference genome using GSNAP 

(Wu and Nacu 2010). Quality and depth of mapped reads were evaluated, and mutation 

positions that were covered in RNA-seq data at > 20x coverage with uniquely aligned reads 

(mapping quality score [MAPQ] >=30) were identified. Mapped reads supporting alternative 

alleles comprising somatic variants were counted using samtools’ mpileup (Li et al. 2009). We 
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required the alternative alleles to be supported by >=5% of aligned RNA-seq reads. Mapped 

reads supporting alternative variant allele were counted using samtools’ mpileup (Li et al. 2009) 

for each variant position.  

 

In the second approach, a custom panel of Agilent SureSelect capture baits was designed for 

61 recurrently mutated genes in HPV-positive OSCC and 58 genes in HPV-negative OSCC.  

These included the 24 and 25 significantly mutated genes identified by MutSig (Li et al. 2009) in 

HPV-positive and HPV-negative OSCC, respectively (Fig. 1, Supplemental Fig. S1A). 

Following hybrid capture of genomic DNA from 16 HPV-positive and 8 HPV-negative cancers, 

targeted resequencing was performed at average depth of sequencing coverage > 200x. 

Paired-end reads were aligned against human reference genome hg19 using BWA-MEM (Li 

2013). Aligned reads were realigned and re-calibrated, and duplicate pairs were removed using 

GATK. Mapped reads supporting alternative variant allele were counted using samtools’ 

mpileup. Variant calls supported by >40x depth of sequencing coverage, with >5% of mapped 

reads supporting the alternative allele, and showing no significant strand bias or map quality 

bias (each p<0.01), were considered to be confirmed (Supplemental Table S1R).  

Comparison of human reference genome assemblies used in variant detection. To determine 

whether or not use of the more recent GRCh38 human genome reference assembly would 

substantially change the variant calls made with GRCh37 (hg19), as was used throughout this 

study, we re-analyzed WES data from 311 HPV-positive and HPV-negative T/N pairs. Out of 

331 total WES samples analyzed in this study (Supplemental Table S1F), 311 samples were 

available for re-download from TCGA. We used BWA-0.7.15 to align sequence reads against 

hg19 and hg38, with the alternate locus-aware alignment protocol used for hg38. Mutect2 was 

used to call SNVs, based on the Mutect2 directory for the number of supporting reads for 

alternative alleles for each tumor/normal sample pair.  Variants with population allele frequency 

> 0.01 and non-synonymous variants were identified using VEP v. 92. Results were displayed in 

a scatterplot comparing the log10-transformed variant frequencies per sample based on hg38 vs. 

hg19, and a correlation coefficient was calculated based on Pearson’s correlation 

(Supplemental Fig. S1K).  

 

To compare variant calls based on hg19 vs. hg38 for individual genes, WES data from 217 HPV-

negative T/N matched pairs from TCGA were re-analyzed. These samples were comprised of 

an arbitrary subset of 285 HPV-negative T/N WES samples studied here (Supplemental Table 
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S1F). WES reads were aligned against hg19 and hg38 using BWA-0.7.15, with an alternate 

locus-aware alignment protocol used for hg38. As before, variants were called using Mutect2. 

Counts of somatic variants were determined for the 25 MutSig genes that were significantly 

mutated in HPV-negative OSCC, in comparing human reference genome assemblies hg19 vs. 

hg38. Variants were filtered for population allele frequency < 0.01 and for non-synonymous 

variants using VEP v. 92 (Supplemental Table S3F).  

 

Annotation of somatic SNVs. To identify annotation identifiers for somatic SNVs, their 

chromosomal coordinates and nucleotide substitutions as mapped to the hg19 reference 

genome assembly were submitted as inputs to VEP v. 94 at Ensembl to query the COSMIC 

(https://cancer.sanger.ac.uk/cosmic), dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) and 

Ensembl variation databases. Variant ID outputs were refined further by manual inspection 

(Supplemental Table S4A).  

 

Gene ontology. Gene ontologies and statistical significance of enrichment were 

assessed using the Panther database and suite of analytical tools (www.pantherdb.org/) 

(Mi et al. 2013). 
 

CNV detection. Mapped WGS sequence reads from each T/N pair for 103 HPV-positive OSCC 

and 50 HPV-negative OSCC were counted in 2 kb bins genome-wide. For CGI WGS data, 

mean depths of coverage were extracted for reads mapped to each 2 kb genomic bin from 

coverageRefScore data generated by the CGI data analysis pipeline. For Illumina WGS data, 

paired-end reads were aligned using BWA.aln (Li and Durbin 2010) and processed using GATK 

v3. To adjust for differences in depths of coverage within or between paired T/N samples, reads 

were down-sampled to 100 million per sample, using DownsampleSam in Picard tools (Broad 

Institute). To mitigate differences between platforms and alignment protocols, only uniquely 

aligned Illumina reads with reliable alignment scores (MAPQ >= 30) were counted. For both CGI 

and Illumina data, the Bioconductor package CNAnorm was used to correct genomic G/C 

nucleotide content, normalize read counts and detect somatic copy number alterations 

(Gusnanto et al. 2012). The relative ploidy of each 2 kb bin was calculated as the ratio of 

sequencing depth of coverage in each tumor vs. its matched normal sample. These ratios were 

smoothed using the DNAcopy algorithm within CNAnorm (Venkatraman and Olshen 2007). DNA 

copy number status was segmented by merging adjacent 2 kb bins based on similar average 

ratios of copy numbers. In subsequent analysis, genomic segments (based on 2 kb bin 
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resolution) having a copy number (i.e. estimated ploidy) < 1.5 were defined as regions of copy 

number loss, while segments with copy number > 2.5 were defined as regions of copy number 

gain. For analysis of gene-level copy number in samples studied by TCGA WES, segmented 

copy number calls (based on microarray data) were downloaded from the TCGA portal. 

 

Frequency distribution of copy number gains or losses. To calculate the expected number of 

copy number alterations for each tumor, amplified segments (resulting from genomic 

segmentation as described above) were permuted 100 times. Similarly, lost segments also were 

permuted for each tumor. We used the binomial distribution to calculate the significance of the 

observed vs. expected number of samples harboring amplified segments anywhere within 500 

kb bins, and those bins with p<0.01 were considered to be significantly amplified. Comparable 

analysis identified 500 kb bins with significant copy number losses. Cumulative lengths of 

significantly gained or lost 500 kb bins were calculated for each chromosome arm as displayed 

(Fig. 5). The number and fraction of OSCC samples with copy number estimates were counted 

and plotted for each bin. In a second approach, we used GISTIC 2.0.22 (Mermel et al. 2011) to 

identify significant alterations in somatic copy numbers of broad genomic regions, and obtained 

similar results (data not shown). 
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