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SUPPLEMENTAL METHODS

Tumor samples in the Ohio cohort. In the Ohio cohort, fresh-frozen tumor was snap-frozen in

liquid nitrogen within 30 minutes of resection, and DNA and RNA were purified after macro-



dissection using a cryostat to ensure 270% representation of tumor.

Genomic DNA sequencing. Genomic DNA was isolated from samples using standard methods
involving phenol/chloroform extraction and isopropanol precipitation. Sample quality was
assessed using a Nanodrop spectrophotometer and Picogreen double stranded DNA assay

(Thermo Fisher Scientific).

From Ohio cohort samples, 59 T/N pairs were sequenced at ~90x mean depth of coverage by
Complete Genomics WGS (CGI; Supplemental Table S1). The CGI aligner was used to map
paired-end WGS reads (2 x 35 bp) against the human reference genome assembly GRCh37
(hg19) (Carnevali et al. 2012). The Ohio cohort also included 52 HPV-positive and 1 HPV-
negative OSCC T/N pairs from which lllumina WGS data were generated at New York Genome
Center (NYGC), including 40x mean coverage for normal samples and ~90x coverage for tumor.
lllumina WGS data for 17 HPV-positive and 24 HPV-negative cancers were downloaded from
TCGA. For lllumina data, sequence reads were aligned against human reference genome hg19
using BWA.aln version 0.5.9 (Li and Durbin 2010). We identified duplicate reads, realigned
reads surrounding indels, and recalculated alignment quality scores using GATK v.3 (McKenna
et al. 2010).

RNA-seq libraries and analysis. Total RNA was isolated from Ohio cohort OSCC samples using
TRIzol (Invitrogen) extraction followed by isopropanol precipitation. Libraries were prepared
using an lllumina TruSeq stranded RNA kit protocol resulting in ~350 nt cDNA inserts.
Sequence data were generated using an lllumina HiSeq 2500 in high output mode. Paired end,
2 x 125 nt reads were sequenced at >40 million reads per sample. RNA-seq data for TCGA

samples were downloaded from the TCGA portal (previously at https://tcga-data.nci.nih.gov/,

migrated to https://portal.gdc.cancer.gov). RNA-seq reads from 18 HPV-positive and 2 HPV-

negative OSCC Ohio cohort samples were aligned to GRCh37 human reference genome using
STAR aligner 2.3.1z; 14 HPV-positive OSCC were aligned to GRCh37 using STAR 2.4.0c; and
52 HPV-positive and 24 HPV-negative OSCC were aligned to GRCh37.p13 reference assembly
which includes non-canonical chromosomes (Dobin et al. 2013) and STAR 2.4.2a. RNA-seq
reads from all TCGA samples were aligned using GRCh37.p13 and STAR 2.4.2a.



For batch correction of RNA-seq data, transcript structures first were downloaded from Gencode
v.18 (http://www.gencodegenes.org/) as gene models to determine expression levels of each
transcript. Aligned reads were counted using HTSeq (Anders et al. 2015), and raw counts were
transformed into transcripts per million reads (TPM). Transcript expression values were
adjusted for GC content using Bioconductor EDASeq (http://www.bioconductor.org/). Genes
with low expression values (TPM < 1 in >80% of OSCC) were excluded from further analysis. A
pseudo-count of one was added to TPM values to avoid undefined data upon log
transformation. Resulting log> TPM values were normalized and batch-corrected using the
Bioconductor sva function ComBat (Leek et al. 2012). Variance in expression levels was
calculated for each gene. Unsupervised hierarachical clustering of the 500 most highly variable

genes in various defined sets of OSCC was performed using the Ward D2 method.

To assess the potential impact of distinct STAR aligner software versions and human genome
reference assembly releases used in analysis of RNA-seq reads, principal components analysis
was performed to assess RNA-seq sample data for 151 RNA-seq OSCC before and after
reanalysis with the harmonized pipeline STAR 2.4.2a and reference genome assembly
GRCh37.p13. The results revealed minimal impacts of the aligner and reference genome

assembly version differences (Supplemental Fig. S5K).

HPV transcript analysis. To construct a custom, hybrid genome template for sequence
alignments (Akagi et al. 2014), we downloaded the reference human (hg19) genome from
UCSC genome browser (https://www.genome.org/) and concatenated it together with HPV types
16 (NC_001526.2), 18 (NC_001357.1), 31 (HQ537687.1), 33 (HQ537707.1), 35 (M74117.1) and
69 (AB027020.1) genomes from NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/), and
HPV types 52 (HPV52REF.1), 58 (HPV58REF.1), 56 (HPV56REF.1), 51 (HPV51REF.1), 59
(HPV59REF.1), 39 (HPV39REF.1) and 45 (HPV45REF.1) from PaVE database
(https://pave.niaid.nih.gov/).

Somatic variant confirmation. Two approaches were taken to confirm somatic mutation calls. In
the first, RNA-seq reads were aligned against the human hg19 reference genome using GSNAP
(Wu and Nacu 2010). Quality and depth of mapped reads were evaluated, and mutation
positions that were covered in RNA-seq data at > 20x coverage with uniquely aligned reads
(mapping quality score [MAPQ] >=30) were identified. Mapped reads supporting alternative

alleles comprising somatic variants were counted using samtools’ mpileup (Li et al. 2009). We



required the alternative alleles to be supported by >=5% of aligned RNA-seq reads. Mapped
reads supporting alternative variant allele were counted using samtools’ mpileup (Li et al. 2009)

for each variant position.

In the second approach, a custom panel of Agilent SureSelect capture baits was designed for
61 recurrently mutated genes in HPV-positive OSCC and 58 genes in HPV-negative OSCC.
These included the 24 and 25 significantly mutated genes identified by MutSig (Li et al. 2009) in
HPV-positive and HPV-negative OSCC, respectively (Fig. 1, Supplemental Fig. S1A).
Following hybrid capture of genomic DNA from 16 HPV-positive and 8 HPV-negative cancers,
targeted resequencing was performed at average depth of sequencing coverage > 200x.
Paired-end reads were aligned against human reference genome hg19 using BWA-MEM (Li
2013). Aligned reads were realigned and re-calibrated, and duplicate pairs were removed using
GATK. Mapped reads supporting alternative variant allele were counted using samtools’
mpileup. Variant calls supported by >40x depth of sequencing coverage, with >5% of mapped
reads supporting the alternative allele, and showing no significant strand bias or map quality

bias (each p<0.01), were considered to be confirmed (Supplemental Table S1R).

Comparison of human reference genome assemblies used in variant detection. To determine
whether or not use of the more recent GRCh38 human genome reference assembly would
substantially change the variant calls made with GRCh37 (hg19), as was used throughout this
study, we re-analyzed WES data from 311 HPV-positive and HPV-negative T/N pairs. Out of
331 total WES samples analyzed in this study (Supplemental Table S1F), 311 samples were
available for re-download from TCGA. We used BWA-0.7.15 to align sequence reads against
hg19 and hg38, with the alternate locus-aware alignment protocol used for hg38. Mutect2 was
used to call SNVs, based on the Mutect2 directory for the number of supporting reads for
alternative alleles for each tumor/normal sample pair. Variants with population allele frequency
> 0.01 and non-synonymous variants were identified using VEP v. 92. Results were displayed in
a scatterplot comparing the log+o-transformed variant frequencies per sample based on hg38 vs.
hg19, and a correlation coefficient was calculated based on Pearson’s correlation

(Supplemental Fig. S1K).

To compare variant calls based on hg19 vs. hg38 for individual genes, WES data from 217 HPV-
negative T/N matched pairs from TCGA were re-analyzed. These samples were comprised of

an arbitrary subset of 285 HPV-negative T/N WES samples studied here (Supplemental Table



S1F). WES reads were aligned against hg19 and hg38 using BWA-0.7.15, with an alternate
locus-aware alignment protocol used for hg38. As before, variants were called using Mutect2.
Counts of somatic variants were determined for the 25 MutSig genes that were significantly
mutated in HPV-negative OSCC, in comparing human reference genome assemblies hg19 vs.
hg38. Variants were filtered for population allele frequency < 0.01 and for non-synonymous

variants using VEP v. 92 (Supplemental Table S3F).

Annotation of somatic SNVs. To identify annotation identifiers for somatic SNVs, their
chromosomal coordinates and nucleotide substitutions as mapped to the hg19 reference
genome assembly were submitted as inputs to VEP v. 94 at Ensembl to query the COSMIC
(https://cancer.sanger.ac.uk/cosmic), dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) and

Ensembl variation databases. Variant ID outputs were refined further by manual inspection
(Supplemental Table S4A).

Gene ontology. Gene ontologies and statistical significance of enrichment were
assessed using the Panther database and suite of analytical tools (www.pantherdb.org/)
(Mi et al. 2013).

CNYV detection. Mapped WGS sequence reads from each T/N pair for 103 HPV-positive OSCC
and 50 HPV-negative OSCC were counted in 2 kb bins genome-wide. For CGI WGS data,
mean depths of coverage were extracted for reads mapped to each 2 kb genomic bin from
coverageRefScore data generated by the CGI data analysis pipeline. For lllumina WGS data,
paired-end reads were aligned using BWA.aln (Li and Durbin 2010) and processed using GATK
v3. To adjust for differences in depths of coverage within or between paired T/N samples, reads
were down-sampled to 100 million per sample, using DownsampleSam in Picard tools (Broad
Institute). To mitigate differences between platforms and alignment protocols, only uniquely
aligned lllumina reads with reliable alignment scores (MAPQ >= 30) were counted. For both CGl
and lllumina data, the Bioconductor package CNAnorm was used to correct genomic G/C
nucleotide content, normalize read counts and detect somatic copy number alterations
(Gusnanto et al. 2012). The relative ploidy of each 2 kb bin was calculated as the ratio of
sequencing depth of coverage in each tumor vs. its matched normal sample. These ratios were
smoothed using the DNAcopy algorithm within CNAnorm (Venkatraman and Olshen 2007). DNA
copy number status was segmented by merging adjacent 2 kb bins based on similar average

ratios of copy numbers. In subsequent analysis, genomic segments (based on 2 kb bin



resolution) having a copy number (i.e. estimated ploidy) < 1.5 were defined as regions of copy
number loss, while segments with copy number > 2.5 were defined as regions of copy number
gain. For analysis of gene-level copy number in samples studied by TCGA WES, segmented

copy number calls (based on microarray data) were downloaded from the TCGA portal.

Frequency distribution of copy number gains or losses. To calculate the expected number of
copy number alterations for each tumor, amplified segments (resulting from genomic
segmentation as described above) were permuted 100 times. Similarly, lost segments also were
permuted for each tumor. We used the binomial distribution to calculate the significance of the
observed vs. expected number of samples harboring amplified segments anywhere within 500
kb bins, and those bins with p<0.01 were considered to be significantly amplified. Comparable
analysis identified 500 kb bins with significant copy number losses. Cumulative lengths of
significantly gained or lost 500 kb bins were calculated for each chromosome arm as displayed
(Fig. 5). The number and fraction of OSCC samples with copy number estimates were counted
and plotted for each bin. In a second approach, we used GISTIC 2.0.22 (Mermel et al. 2011) to
identify significant alterations in somatic copy numbers of broad genomic regions, and obtained

similar results (data not shown).
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