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[bookmark: _Toc402951984]Data collection
The following table summarizes the sources for all data used in this study. For a more detailed table of SRA accession numbers and read alignment statistics, see Supplemental Table S1.
[bookmark: _3dy6vkm]
Sources
Illumina Body Map 2.0 at https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
Brawand et al. 2011
Merkin et al. 2012
Harr and Turner 2010
Non-human primate reference transcriptome resource (NHPRTR) (Pipes et al. 2013)
Cortez et al. 2014
Wong et al. 2015


(Table on next page.)
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	Species
	Reference
genome
	Brain
	Heart
	Kidney
	Liver
	Lung
	Sk. muscle
	Testis

	Human
	hg19
	Brawand et al., 2011;
Illumina Body Map 2.0
	Brawand et al., 2011;
Illumina Body Map 2.0
	Brawand et al., 2011;
Illumina Body Map 2.0
	Brawand et al., 2011;
Illumina Body Map 2.0
	Illumina Body Map 2.0
	Illumina Body Map 2.0
	Brawand et al., 2011;
Illumina Body Map 2.0

	Chimp
	panTro4
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	NHPRTR
	NHPRTR
	Brawand et al., 2011

	Bonobo
	panTro4
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	NHPRTR
	NHPRTR
	Brawand et al., 2011

	Gorilla
	gorGor3
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	
	
	Brawand et al., 2011

	Orangutan
	ponAbe2
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	Brawand et al., 2011
	
	
	

	Macaque
	rheMac8
	Brawand et al., 2011;
Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012

	Marmoset
	calJac3
	Cortez et al., 2014
	Cortez et al., 2014
	Cortez et al., 2014
	Cortez et al., 2014
	NHPRTR
	NHPRTR
	

	Mus musculus
	mm10
	Brawand et al., 2011;
Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Brawand et al., 2011;
Merkin et al., 2012

	Mus spretus
	mm10
	
	
	
	Wong et al. 2015
	
	
	Harr and Turner, 2010

	Mus caroli
	mm10
	
	
	
	Wong et al. 2015
	
	
	

	Rat
	rn6
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012

	Rabbit
	oryCun2
	This study
	This study
	This study
	This study
	This study
	This study
	This study

	Dog
	canFam3
	This study
	This study
	This study
	This study
	This study
	This study
	This study

	Ferret
	musFur1
	This study
	This study
	This study
	This study
	This study
	This study
	This study

	Cow
	bosTau6
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012
	Merkin et al., 2012

	Armadillo
	dasNov3
	
	This study
	This study
	This study
	This study
	This study
	

	Opossum
	monDom5
	Brawand et al., 2011;
This study
	Brawand et al., 2011;
This study
	Brawand et al., 2011;
This study
	Brawand et al., 2011;
This study
	This study
	This study
	Brawand et al., 2011;
This study



[bookmark: _Toc402951985]RNA-seq library preparation
Briefly, 10 μg total RNA was poly-A selected twice using Dynabeads mRNA Purification Kit (Invitrogen, 610.06). Resulting mRNA was DNase treated (Ambion, AM1907) and then fragmented using heat. First strand cDNA synthesis was performed using the SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen, 11917-010), supplementing in SuperScript III Reverse Transcriptase (Invitrogen, 18080-093), incorporating SUPERase*In (Ambion, AM2694), and Actinomycin D (USB, 10415). First strand cDNA was cleaned using 1.8 RNAClean XP SPRI beads (Beckman Coulter, A64987). Second-Strand Synthesis was performed replacing dTTP with dUTP, and the resulting double-stranded cDNA was cleaned using a MinElute PCR Purification Kit (Qiagen, 28004). Illumina libraries were constructed by repairing the ends of the cDNA, ligating adapters, and cleaning/size-selecting with 0.7 SPRI. Illumina libraries were treated with USER to excise dUTP, and amplified via PCR using Fusion Master mix with GC buffer (NEB, F532S).

[bookmark: _Toc402951986]Genome and transcriptome annotations
All genomes were downloaded from the UCSC Genome Browser (Tyner et al. 2017). To assemble transcriptomes, Ensembl gene annotations (Aken et al. 2017) were downloaded from UCSC Table Browser (table ensGene) and converted to sequence using BEDTools (Quinlan and Hall 2010). 

Hg19 was used as the reference genome rather than GRCh38 because Ensembl ortholog annotations for GRCh38 were not available at the time of study. It is estimated that GRCh38 increases the number of mappable mRNAs by 3% (Schneider et al. 2017) and thus should minimally impact our RNA-seq based study. 

Ortholog annotations were downloaded from Ensembl BioMart (Ensembl Genes 90) (Kinsella et al. 2011). Only genes that met the following criteria were used for this study: (1) no duplications in any of the studied mammals, (2) an ortholog present in either armadillo or opossum (i.e. placental mammal or marsupial outgroup), (3) no more than three gene losses across primates (human, chimp, gorilla, orangutan, macaque, marmoset), (4) no more than one gene loss across glires (mouse, rat, rabbit), and (5) no more than one gene loss across laurasiatherians (cow, dog, ferret).
[bookmark: _1t3h5sf]
[bookmark: _Toc402951987]Phylogenetic tree
The phylogenetic tree of vertebrate species was downloaded from UCSC Genome Browser at http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/ (Tyner et al. 2017). Distances between mammals used in this study were extracted using the Environment for Tree Exploration Toolkit (Huerta-Cepas et al. 2016).

[bookmark: _2s8eyo1][bookmark: _Toc402951988]Quantifying expression difference
To calculate pairwise expression differences between each species (“comparing species”) and a reference species (e.g., human in Fig. 1, or mouse in Supplemental Fig. S8), we applied principal component analysis (PCA) on pairwise gene expression levels (log10TPM), considering only genes that were expressed (> 0 TPM) in at least one species. For each tissue and each pair of species, we used the first principal component as the best fit line between the two species’ expression profiles. We then defined the pairwise expression difference as the orthogonal distance from the observed expression level in the comparing species to the best fit line. We used PCA rather than a linear regression because PCA accounts for noise in expression values from both species, while the linear regression would only model noise in the comparing species and treat the reference species as an independent variable (Supplemental Fig. S4). 

[bookmark: _Toc402951989]Fitting linear and nonlinear regression models to mean squared expression distances
Under an Ornstein Uhlenbeck (OU) model, the expected mean squared distance across time follows a power law relationship (y = axk). To fit this relationship between our observed mean squared expression distances (y) and evolutionary time (x), we log-transformed both axes to relate the variables linearly: log(y) = log(a) + klog(x). We then used least squares regression to find coefficients a and k. For genes whose expression evolution fit better under a Brownian motion model (see below), we used least squares regression to find the best fit line between mean squared expression distances and evolutionary time.

[bookmark: _Toc402951990]Assessment of confounders in modelling expression difference
Annotation errors
To determine whether the observed power law relationship between expression distances and evolutionary time is driven by annotation errors, we first assessed the quality of the ortholog annotations by aligning the Ensemble-annotated human transcriptome to all other species’ transcriptomes and vice versa using tblastx (Madden 2013). The reciprocal-best-aligning ortholog pairs matched Ensembl one-to-one ortholog annotations in 95% - 99% of cases, with concordance rate decreasing linearly across evolutionary distance between species (Supplemental Fig. S1A). We next calculated the average sequence identity between Ensembl-annotated orthologs and their human counterpart by multiplying the fraction of aligned sequence and the sequence identity of the alignment. When plotting the mean sequence identity vs. evolutionary time (Supplemental Fig. S1B) we found that this relationship is linear, as expected. 

Batch Effects
To determine whether batch effects contributed to the power law relationship we observe between expression distances and evolutionary time, we performed a least squares regression to predict log-transformed values of expression distances using batch (i.e., data source) as a categorical dependent variable. Because our batches are somewhat confounded with evolutionary time (e.g., all great ape data is from a single data source), we did find that batch alone explains ~30% of the variance in expression distances (Supplemental Fig. S6B). However, we found that adding log-transformed values of evolutionary time to the regression explains an additional ~60% of the variance (i.e., both variables together explain ~90% of the variation) in each of the five tissues for which we have expression data for all primates (brain, heart, kidney, liver, testis) (Supplemental Fig. S6B), suggesting that the power law relationship between expression and evolutionary time is present regardless of batch effects.

Sampling Bias
Each species in our dataset has a different number of sampled individuals. Because this will introduce biases in expression distance, we analyzed the correlation between sample size in each species and evolutionary distance from human (Supplemental Fig. S7). For brain, heart, and kidney, there is a negative correlation between sample size and evolutionary time; while for liver, lung, skeletal muscle, and testis, the correlation is positive. Thus, sampling bias is unlikely to drive the power law relationship between expression distance and evolutionary time, which is consistent across all tissues (Supplemental Fig. S5). However, we note the negative correlation found in brain, heart, and kidney may inflate our estimated divergence. To overcome this bias in cross-tissue analyses, we construct a dataset in which the numbers of samples are matched across brain, heart, kidney, liver, and testis (Supplemental Table S1) and use this dataset for all analyses comparing across tissues. We do not include lung or skeletal muscle in this matched dataset because of the lack of expression data for all primates for these tissues.
[bookmark: _17dp8vu]
[bookmark: _Toc402951991]Relationship between gene expression level and OU variance
As expected, genes with low expression levels are estimated to have high OU variance, but this is likely largely contributed from technical, rather than true biological, variance (Silvestro et al. 2015). To account for this, we focused only on genes whose estimated OU mean (θ) was over 5 TPM. We chose this cutoff because it removes the majority of the relationship between OU variance and expression level, while preserving the majority of expressed genes for analysis (Supplemental Fig. S10A). We note that even among genes with TPM > 5, those with higher expression level still have slightly lower OU variance, contrary to expectations of heteroscedasticity (Supplemental Fig. S10B).  

[bookmark: _Toc402951992]Jackknifing procedure for estimating robustness of OU process parameters
To test the robustness of the OU model, we used a jackknifing procedure, where we subsampled phylogenies ranging from 3 to 16 species (out of a total of 17 species). For each phylogeny size, we created ten randomly subsampled phylogenies. We then fit the OU model as described in Methods. 
[bookmark: _z337ya]
[bookmark: _Toc402951993]Functional relationship with evolutionary variance and sequence conservation 
We tested for enriched GO categories across genes in all four categories of high or low evolutionary variance and high or low sequence conservation. Sequence conservation of a gene was defined by mean phyloP score (Siepel et al. 2005) across the coding region of the longest annotated coding transcript of that gene. For each tissue separately, we defined “high” or “low” based on the median evolutionary expression variance and median phyloP score, and assigned all genes expressed at > 5 TPM to one of four categories. For GO enrichment analysis, where only sets with relatively large numbers of genes are typically enriched at levels that survive multiple hypothesis testing correction, we first unified the genes of each category across all tissues and then used GOrilla (Eden et al. 2009) to test for enrichments in the combined gene lists. Because gene function is related to evolutionary variance, for the background set we used the appropriate list of all high or low expression variance genes expressed at > 5 TPM.

[bookmark: _Toc402951994]Essential, haploinsufficient, and disease gene sets
The following gene lists were downloaded from the McArthur Lab gene lists repository at https://github.com/macarthur-lab/gene_lists: essential in culture, essential in mice, ClinGen haploinsufficient genes, genes with any disease association reported in ClinVar, and neuromuscular disease genes. 

Rare, single genes contributing to non-syndromic autism spectrum disorder were downloaded from the SFARI database at https://gene.sfari.org/ by selecting Category 1 genes (rare single gene variants, disruptions/mutations, and submicroscopic deletions/duplications directly linked to ASD) with a gene score of 1 (high confidence), 2 (strong candidate) or 3 (suggestive evidence). 

Genes contributing to congenital heart disease were curated by filtering for genes annotated with “Congenital heart defects” in OMIM’s Morbid Map at https://omim.org/downloads/ as well as genes associated with congenital heart disease (DOID:1682) from the MGI Disease Ontology Browser at http://www.informatics.jax.org/disease.

[bookmark: _Toc402951995]Defining tissue-restricted gene expression
Because our dataset consists of closely related tissues (e.g. heart and skeletal muscle, Supplemental Fig. S2), we did not want to define only genes expressed in a single tissue as tissue-restricted. We found that the distribution of number of tissues in which genes are expressed > 5 TPM (Supplemental Fig. S16) is somewhat bimodal and, based on visual inspection, defined a cut-off of three or fewer tissues as tissue-restricted. The observation that tissue-restricted disease genes had lower variance compared to non-disease genes was robust to different cutoffs (Supplemental Fig. S17). However, lower cutoffs result in fewer genes defined as tissue-restricted, reducing our power to achieve statistical significance for downstream analyses.

[bookmark: _Toc402951996]RNA-seq library preparation for neuromuscular disease dataset patient data
[bookmark: _GoBack]Briefly, muscle biopsies or RNA were shipped frozen from clinical centers via a liquid nitrogen dry shipper and stored in liquid nitrogen cryogenic storage. All samples analyzed with H&E showed muscle quality sufficient to proceed to RNA-seq. RNA was extracted from muscle biopsies via the miRNeasy Mini Kit from Qiagen per kit instructions. All RNA samples were measured for quantity and quality and samples had to meet the minimum cutoff of 250 ng of RNA and RNA Quality Score of 6 to proceed with library prep. RNA-seq library preparation was performed at the Broad Institute Genomics Platform using the poly-A selection of mRNA with an Illumina TruSeq kit. Paired-end sequencing was performed in the Genomics Platform on Illumina HiSeq 2000 instruments. Read length and sequence coverage information is available in Supplemental Table S4.

[bookmark: _Toc402951997]Datasets for detecting lineage-specific expression programs
Within each tissue, OU parameters for the univariate OU model (OUall) as well as for the multivariate OU model for the hypothesis at hand (e.g., OUprimates, OUrodents, etc.) were estimated for each gene as described in Methods. We tested all genes with a mean expression > 1 TPM across all species. In the multivariate models, we tested for differential expression between the clade of interest and all ancestral species. To compare results across branch length, we tested models OUprimates (human, rhesus, marmoset), OUrodents (Mus musculus, Mus caroli, rat), OUlaurasians (dog, cow, ferret), and OUlagomorphs (Mus musculus, rat, rabbit) on a liver dataset constructed such that each species in the clade of interest is obtained from a different data source and each hypothesis tests for differential expression across 3 species against 8 comparing species (Supplemental Table 1). To compare results across tissues, we utilized the dataset matched for the same number of samples across tissues and tested an expanded OUprimate model (human, chimp, bonobo, gorilla, rhesus vs. Mus musculus, rat, rabbit, dog, ferret, cow, opossum) in brain, heart, kidney, liver, and testis (Supplemental Table 1). In the full analyses, we used all available data in each tissue. 
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