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Extended Details for Inferring CNV profiles from RNA-seq data
Inferring genomic CNV profiles to infer lineage 
	To garner additional support for the hypothesis that the yellow “transitional state” cells represent a pre-resistant population, we also generated inferred genomic copy number data to compare to the transcriptome data.  Integrating both RNA expression data and genomic CNV data would allow us to determine whether particular subsets of the population with similar expression patterns were also more likely to share CNV mutational patterns, as might be expected through simple selection for genetic mutations. Conversely, if many cells with highly divergent CNV mutational patterns nonetheless shared very similar transcriptional patterns, one would expect that the “transitional” expression state might be due to additional factors that could reflect epigenetic or gene regulatory modifications. This is conceptually similar to the Luria-Delbrück fluctuation analysis that was performed in the Shaffer et al., (2017) study to demonstrate that resistance to BRAFi treatment in their cells could be due to non-heritable effects arising stochastically among cells from several clonal populations (Shaffer et al. 2017). If random genetic mutations were giving rise to resistant cells in this scenario, one would expect that a small number of cells would spontaneously develop resistance, and that these cells may display distinct genomic mutations patterns while potentially displaying shared transcriptomic patterns.

	To check whether this phenomenon holds true in our 451Lu melanoma data, we first performed copy number variation (CNV) analysis from the scRNA-seq data, as has been described previously (Patel et al. 2014; Tirosh et al. 2016). Briefly, genes were binned into sliding windows containing 100 consecutive genes, to ensure that the alterations due to differential expression patterns would be averaged out over a large enough region such that very large CNVs could be detected independent of expression differences. In addition, 100 karyotypically normal Human 293T cells with scRNA-seq profiles of approximately the same depth were used to derive the baseline reference for calibrating relative CNV calls and to validate that this method would not incorrectly call CNV patterns in karyotypically normal data (Fig. 5B). To ensure that the CNV profiles we inferred using this method match what would have been found as directly measured from the DNA, we additionally isolated DNA from bulk cell populations from each of the parental and resistant populations and generated DNA libraries directly (Supplemental Table S4). We found a high degree of concordance between the CNV profiles derived from the scRNA-seq data and the bulk DNA-Seq data (Fig. S12). This suggested that the thousands of cells sequenced using the scRNA-seq protocol could also be used as proxy to infer clonal CNV relationships. 

The inferred CNV patterns showed two major clones that corresponded to the parental and resistant cell populations. Depletions on chr9p and amplifications on chr1p, chr7p, chr11q, chr20q, and chr22q were signatures for the resistant cells, and these large regions of genomic alterations match what has been reported in other CNV profiles using bulk melanoma samples (Beroukhim et al. 2010). Beyond the two dominant clones, these cells were further classified into 8 subgroups, or “clonal lineages.” However, none of these 8 subgroups of cells showed an enrichment for the cells that are identified as having the “transitional” transcriptome patterns (yellow bars in Fig. 5B), which could be found in several of the 8 subgroups. This suggested that these cells were derived from several unrelated clonal lineages, and were likely not derived from a single strictly heritable lineage.  This is consistent with the hypothesis that non-genetic effects contribute to the acquisition of resistance to BRAF inhibitors in melanoma cells, and is consistent with previous reports (Shaffer et al. 2017; Sharma et al. 2017).

Extended Details for SAKE: NMF and t-SNE 
Non-Negative Matrix Factorization (NMF)
The goal for matrix factorization is to find two (or more) matrices such that we can multiply them and reconstruct the original matrix. By doing this, we can explore latent features and interactions between two different kinds of entities. One way to approach this problem is to first initialize these two matrices with some random values, calculate how different their product is to the original matrix, and then try to minimize the difference iteratively until it converges. Rules of updating the parameters aiming to finding a local minimum of the difference have been proposed. Non-negative matrix factorization (NMF) was first introduced as a method to extract key features for facial image reconstructions (Lee and Seung 1999).  After the seminal paper (Seung and Lee 2001) proposing two straightforward multiplicative update rules to resolve the factorization problem, it was quickly implemented in multiple fields. It was also applied in biomedical field for cluster gene expression profile from bulk RNA-Seq data (Gao and Church 2005; Kim and Park 2007; Gaujoux and Seoighe 2010). It can be used to extract categories of objects as well as intuitive features. 
Briefly, NMF attempts to factor a given gene expression matrix, X, of M genes and N samples into two separate matrices: (1) a H matrix of N samples belonging to k clusters and (2) a W matrix containing the relative importance of each of the M genes in determining whether a sample belongs to each of the k clusters. W and H are chosen as the matrices that minimize the errors in the reconstructed version of X represented by W x H (Equation 1). This factorization can be attempted for a range of different values of k, with each iteration providing a quantitative measure of the robustness of cluster assignments upon randomization.  In addition, NMF automatically provides a quantitative estimate of the reconstruction errors, e.g. the residual difference between the starting matrix and a given k factorization into W and H. 
[bookmark: _Ref501760653]Equation 1. Update rules for non-negative matrix factorization (NMF)


Compute predicted matrix from W and H
[image: ]

Compute squared error for each pair
[image: ]


Compute the gradient according to squared error
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Update each element in W and H
[image: ]

Consensus clustering
While each NMF run is not guaranteed to find the global minimum solution, the most stable solutions can be determined after multiple NMF runs by selecting for the value of k that shows the least variation in cluster membership and the smallest within-cluster distances. More specifically, one can minimize the residuals between the original X (MxN) matrix and the factorized W (Mxk) and H (kxN) matrices while simultaneously maximizing the cophenetic correlation coefficients that measure the relationship between actual pairwise sample distances and clustered dendrogram distances. Visual representation of matrix residuals and cophenetic correlation coefficients for a range of values of k is used to identify the number of clusters present in the dataset. Once an optimal number of clusters, k, has been determined, it is suggested to next perform a larger number of iterations of the NMF algorithm with fixed k, to robustly and quantitatively estimate the likelihood that each sample belongs to a given cluster and the relative importance of each marker gene in determining cluster membership.  These quantitative estimates of the number of clusters present, the cluster assignments of each sample, and the relative importance of gene features to each cluster are what give NMF an edge over more traditional gene expression clustering methods.
Quantitative clustering measurement
[bookmark: _GoBack]Once we obtain the two factorized matrices W (Mxk) and H (kxN), we can quantitatively estimate the confidence of calling samples into each group.  By dividing each data point over its column sum, we could convert matrix H (kxN) into a probability that each sample belongs to a specific cluster as well as it’s distance to all other (Equation 2). This way, thresholds could be used to filter out low confidence calls or ambiguous samples
[bookmark: _Ref370582233]

Equation 1. Formula for cluster membership
We can evaluate cluster membership via the non-negative basis matrix [image: ] 
[image: ]
where [image: ] is the probability that the j-th sample belongs to cluster Θ.

Feature extraction
[bookmark: _Ref370554614][bookmark: _Ref360069439]After classifying samples into k clusters using the number estimated from consensus clustering, one can next calculate feature scores for each of the attributes [genes/transcripts in expression profile] across groups using W (Mxk) (Equation 3) (Kim and Park 2007). Genes that are uniquely expressed in a particular group will have a high feature score, within the range of [0, 1]. The closer the feature score is to one, the more specific that gene is expressed in single group specifically. We can also rank and select genes whose feature scores are greater than [image: ], where [image: ] and  [image: ] are the median and the median absolute deviation (MAD) of feature score respectively, and the maximal values in the corresponding rows of W have to be larger than the median of all elements in W (Kim and Park 2007). This enables further filtering of the gene or transcript sets, such that only genes that are highly associated with clusters are retained, and less informative genes can be filtered out.
[bookmark: _Ref370582249][bookmark: _Ref501761689]
Equation 3. Formula for calculating feature (gene) score.

We can select cluster-specific genes via the non-negative basis matrix [image: ] 
[image: ]

where [image: ] is a probability that the i-th gene contributes to cluster Ω, i.e.


[image: ]

The feature (gene) score is a real value within the range of [0, 1].  The higher the feature (gene) score value, the more cluster-specific the corresponding gene (Kim and Park 2007).

t-SNE visualization of clusters
	T-distributed stochastic neighbor embedding (t-SNE, van der Maaten & Hinton, 2008) has emerged as an excellent visualization tool for single cell genomics studies. The goal of t-SNE plots is to represent the most relevant differences between samples in a low dimensional 2D or 3D scatterplot, such that, for example, clusters on a t-SNE plot might represent different cellular types. T-SNE implementations for gene expression datasets generally begin by reducing the very high dimensional expression matrix (m genes by n samples) into a lower dimensional set of principal components (PCs) that encode most of the variance in the dataset, typically 20-30 PCs. The t-SNE algorithm then calculates the distance between samples along each of these PCs and attempts to non-linearly embed the PCs into a 2D or 3D representation that recapitulates relatedness of samples. This tends to work well when a filtered list of a few thousand genes that carry the most relevant information of cellular identity is used as the input to the t-SNE algorithms. In addition, it has been demonstrated that the results from t-SNE may vary widely from different runs that don’t saturate the perplexity of the embedded dimensions, such that cluster membership may not be reproducible from run to run (Wattenberg et al., 2016).  When perplexity is well chosen (typically 5-50, but well below the number of points) and the algorithm is allowed to iterate until saturation (typically ~1000), tSNE maps can be excellent tools for visualization of single cell datasets. For this reason, SAKE employs tSNE maps as one way to visualize the output of its clustering algorithm, to complement the heatmaps and feature scores.  Importantly, we were pleased to note that t-SNE positions tend to agree well with NMF clusters identified by SAKE, despite the fact that the NMF algorithms do not use similar algorithmic techniques (PCs, nonlinear embedding, etc). 

Performance on large datasets
	The ability of the SAKE method to handle very large datasets (~50k cells) was measured using a large set of 68,000 peripheral blood mononuclear cells (PBMCs) sorted by known cell surface markers and sequenced using the 10x genomics platform (Zheng et al. 2017). The computational time required for this dataset scaled approximately linearly with the number of samples analyzed, with a maximum time of 5 hours for the full data set (Fig. S1B).  In addition, the accuracy of SAKE did not correlate with the number of cells analyzed (Fig. S1C).  This suggests that SAKE can handle datasets at scale without loss of accuracy.  
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Supplemental Methods
RNA-seq library preparation for bulk melanoma cell samples
Total RNA was extracted from approximately 10^6 freshly collected melanoma cells following standard TRIzol RNA extraction protocols.  RNA-seq libraries were prepared from 500ng of total RNA using the Illumina TruSeq Stranded Total RNA kit. Libraries were barcoded and pooled in order to obtain a minimum of ~40 million reads per library on the Illumina HiSeq 5000 platform.  

RNA-seq library preparation using the Fluidigm/Smart-Seq platform 
RNA-seq library preparation Cultured cells (70-80% confluency) were trypsinized and resuspended into a single cell suspension in media. Cells were then diluted to 175-300 cells/ul and loaded onto a medium (10-17 uM) Fluidigm C1 IFC. Single cell capture was done on the IFC and the number of cells captured at each site was noted using a phase contrast microscope. Only single cells were used for analysis. cDNA was amplified on the chip using the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech) and quantified using picogreen assay. ERCC (External RNA Controls Consortium) RNA spike-in Mix (Ambion, Life Technologies) was also added to the reaction. Libraries for sequencing were prepared in 96 well plates using the Illumina Nextera XT DNA Sample Preparation kit according to the protocol supplied by Fluidigm. Final quantification by bioanalyzer using Agilent's High Sensitivity DNA Analysis Kit as well as qPCR. Libraries were then sequenced 76bp single end on Illumina NextSeq platform to a depth of 5-15 million reads per cell. 

RNA-seq library preparation using the 10x Genomics platform
Samples were submitted to Genome Technology Center at NYU Langone Health for processing on 10x Genomics Chromium and sequencing. A Chromium Single Cell 3' Library and Gel Bead Kit V2 (PN-120237), Chromium Single Cell 3' Chip Kit V2 (PN-120236) and Chromium i7 Multiplex Kit (PN-120262) were used with a 10x Genomics Chromium for Single-Cell Library Preparation Instrument, per the manufacturer's specifications and manuals and then sequenced paired-end 150 bp on HiSeq 4000 to a depth of 90000 UMI per cell. UMI counts for each cellular barcode were quantified and used to estimate the number of cells successfully captured and sequenced. The Cell Ranger Single-Cell Software suite was used for demultiplexing, barcode processing, alignment, and initial clustering of the raw scRNA-seq profiles.

RNA-seq data processing 
STAR 2.5.2b (Dobin et al, 2012) was used to align sequencing data to the Human hg19 reference genome with gene transfer format (GTF) file downloaded from UCSC (on date 2016-05-25). The hg38 reference build was not used for ease in comparing to previously published results, but most gene expression abundance counts are expected to be very similar. For bulk and Fluidigm C1 single-cell RNA-seq libraries, samples with less than 80% uniquely mapped reads were filtered out before downstream analyses. Kallisto 0.42.5 was then used for abundance estimation using the same GTF file to get the gene expression matrix, M. Log-transformation is then applied on this gene expression matrix, as M′ = log2(M + 1). DESeq2 was used to identify differential expressed genes between conditions. Hg38 was not used for ease in comparing to the results of previous methods. 

Bulk DNA-Seq library preparation 
Cultured cells at 70-80% confluency were trypsinized and counted. DNA was extracted from 3-4 million cells using Qiagen DNeasy Blood and Tissue kit following the manufacturer's instructions. DNA output was measured using a nanaodrop. 2ug DNA was fragmented using a Covaris sonicator. Following this,  libraries for sequencing were prepared by subjecting the resulting DNA fragments to end-repair, 3′ adenylation and ligation of TruSeq barcoded adapters. After ligation, DNA fragments were size selected using Ampure XP beads. A 0.75 ratio of beads to sample was used to select fragments larger than 200bp and avoid adapter dimers. These fragments were further amplified by PCR, cleaned using Qiaquick PCR Purification Kit and then once again size selected using Ampure XP beads with a 0.75 ratio of beads to sample. The final libraries were then quantified on Nanodrop and Bioanalyzer using Agilent's High Sensitivity DNA Analysis Kit. 10nM of each sample was then pooled together and the resulting pool was then sequenced single read 76bp length on the Illumina NextSeq to a depth of 6-7 million reads per sample.  

Inferred CNV profiles from RNA-seq data
The inferCNV algorithm (Tirosh et al. 2016) was used to generated inferred copy number profiles from the scRNA-seq data in order to estimate genetic relatedness of the thousands of cells in our 10x datasets. Briefly, genes were binned into sliding windows containing 100 consecutive genes, to ensure that the alterations due to differential expression patterns would be averaged out over a large enough region such that very large CNVs could be detected independent of expression differences. In addition, 100 karyotypically normal Human 293T cells with scRNA-seq profiles of approximately the same depth were used to derive the baseline reference for calibrating relative CNV calls and to validate that this method would not incorrectly call CNV patterns in karyotypically normal data, which were obtained from 10x website (https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t). 

FACS sorting to isolate populations expressing identified markers
Cells were trypsinized and resuspended in FACS buffer (PBS with 0.1% BSA and 0.05% Sodium Azide) and stained with 2ug Anti-DCT antibody conjugated to Alexa Fluor 488 for 30 minutes (TRP2 Antibody (C-9): sc-74439 from Santa Cruz Biotechnology). Stained cells were then run on a Becton Dickinson FACS Aria (SORP) Cell Sorter and cells expressing High DCT were bulk sorted into DMEM media supplemented with 10% FBS and 1% Pencillin-Streptavadin. The sorted cells were then immediately plated on 96-well plates at a concentration of 5000 cells/well. Cells were allowed to grow to 70-75% confluency before PLX-4720 treatment. PLX-4720 treatment (0.5uM and 1.0uM) was done for 48 hours and then MTT assay was performed using Vybrant® MTT Cell Proliferation Assay Kit from Thermo Fisher Scientific. 

Similarly, cells were trypsinized and resuspended in FACS buffer and co-stained with 0.6ug anti-AXL conjugated to PE and 2ug anti-NRG1 antibody conjugated to FITC ( Axl Antibody (H-3): sc-166269 PE and Neuregulin-1 Antibody (E-12): sc-393006 FITC respectively from Santa Cruz Biotechnology) for 45 minutes. Stained cells were then run on a Becton Dickinson FACS Aria (SORP) Cell Sorter and cells expressing high AXL and high NRG1 were bulk sorted into DMEM media supplemented with 10% FBS and 1% Pencillin-Streptavadin. Sorted cells were immediately plated on a 384 well plate at a concentration of 1500 cells/well and allowed to attach to the plate overnight. They were then either left untreated or treated with a concentration of 1uM of PLX-4720 for 48 hours before Cell Titer Glo assay was performed according to the manufacturer's protocol. 

Imaging
Cells were plated on glass coverslips coated with Poly L-Lysine solution (0.1% w/v from Sigma Aldrich) and allowed to grow for 24 hours before drug treatment. Cells were treated with either 0.5µM or 1.0µM concentration of PLX-4720 for 2 hours, 24 hours, 48 hours and 72 hours. Cells after treatment were washed with PBS and fixed using ice-cold Methanol. Fixed cells were blocked with 5% FBS in PBS overnight at 4°C and stained with a 1:50 concentration of Anti-DCT antibody conjugated to Alexa Fluor 488, diluted in 5% FBS in PBS overnight at 4°C. For Anti-AXL and Anti-NRG1 anitbody staining cells were blocked with Normal Mouse Control Serum (from Thermo Fisher) and co-stained at 1:100 for Anti AXL and 1:50 for Anti-NRG1 in 1% Mouse serum. This was followed by NucBlue® Fixed Cell ReadyProbes® Reagent (Cat No R37606, Thermo Fisher) counterstaining of nuclei according to the manufacturer's manual and mounted on a slide using ProLong™ Diamond Antifade Mountant. The imaging was done on a confocal microscope.


SAKE clustering 
SAKE works on gene expression matrix, M, as input. Columns correspond to cells/samples and rows correspond to genes/transcripts. Each element of M corresponds to the expression of a gene/transcript in a given cell. By default, SAKE does not perform any normalizations or corrections for cell cycle or batch effects. The users should perform gene/transcript abundance estimation before feeding the gene expression matrix into SAKE for clustering, feature extraction, and other downstream analysis.

Normalized mutual information 
For the published datasets we chose to evaluate the performance of clustering tools, the normalized mutual information (NMI) is calculated to compare the similarity between the SAKE (and other tools) clustering results and the published cell-labels. To calculate NMI, we first construct confusion matrix and derive accuracy and precision from it. By counting the number of overlapping points for each pair of clusters between C(r) and C(g), we can construct a summary table. The mutual information can be calculated via: 
[image: ]
where p(x,y) is the joint probability distribution function of X and Y, and p(x) and p(y) are the marginal probability distribution functions of X and Y respectively. The normalized mutual information can then be calculated by accounting for the entropy in each of X and Y. First, entropy of a cluster w 
[image: ]
where: c is a classification in the set C of all classifications. is probability of a data point being classified as c in cluster w. Then, normalized mutual information (NMI):
[image: ]
Benchmark comparison 
For all the published datasets we tested, we used the original processed gene expression matrix provided by the authors (Figure. 2a). For data that contained raw read counts, we divided each column by the ”total library size” scaling factor to account for differences in sequencing depth, which provide us with reads per million (RPM) value. Log transformations were then applied to the gene count table with a pseudo count of 1. 

For each method, we varied the clustering parameters to obtain the optimal clustering results obtainable by each method, as described by the authors in the initial publication and as measured by concordance with the validated results presented in each publication. For t-SNE + k-means, gene filters using median absolute deviation (MAD) or custom filtering criteria were applied. Rtsne (version 0.13) package was used with the default parameters. We used the k reported by the original authors as the input for k-means clustering to identify the specific number of clusters. For SC3 (version 1.5.2), we followed the instructions in the package for gene filtering and clustering. For SINCERA, we used the z-score normalization and automatic cluster identification as described in the original publication. For SEURAT (version 1.4.0.12), we performed t-SNE embedding with the default parameters once and then clustered the data using the DBSCAN algorithm several times, for which we varied the density parameter G in the range of 0.6-3 to find a maximal NMI and reported that number in the summary table. 

Nearest Shrunken Centroids
This nearest centroid classification method computes a standardized centroid for each group. For each gene, we first calculate the average gene expression in each group divided by the within-in group standard deviation. The nearest shrunken centroids method shrinks each of the group centroids toward the overall centroid for all classes by an amount defined as threshold (Tibshirani et al. 2002). If the value of the centroid is less than the threshold, it will be shrunk to zero. We can then classify new sample based on its distance to the centroids from each group to predict its group membership. We used spearman correlation coefficient as our distance metrics. As applied to the melanoma 10x and C1 datasets, the centroid of the expression patterns for each of the parental and resistant populations was calculated to obtain a median expression pattern for that population across all genes present in the 10x dataset. Spearman rank correlations were then used to score the distance of all cells in the sample from these centroids and this distance was the score for how “BR-like” or “Parental-like” each cell appeared. 
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Table S1 | Summary statistics of bulk RNA-Seq libraries. Bulk RNA-Seq libraries from A375 and 451Lu cell lines were used to study the mechanisms of acquiring resistances to BRAF inhibitors. Libraries with greater than 80% of uniquely mapped reads were kept and used for downstream analysis. 

	Cell Type
	Cell state
	Sample_ID
	Library size
	Number of Expressed genes
	Uniquely mapped reads

	A375
	Parental
	Par4A
	123,634,179
	21,187
	80.63%

	A375
	Parental
	Par5A
	26,043,236
	19,584
	84.30%

	A375
	Resistant
	BR2
	37,348,819
	20,559
	83.04%

	A375
	Resistant
	BR2
	26,255,004
	20,490
	84.08%

	451Lu
	Parental
	Par13
	68,038,418
	19,682
	79.27%

	451Lu
	Parental
	Par19
	52,415,207
	19,462
	83.94%

	451Lu
	Resistant
	BR3
	45,209,591
	19,850
	86.57%

	451Lu
	Resistant
	BR3
	33,976,488
	19,378
	83.24%






Table S2 | Summary statistics of single-cell RNA-Seq libraries. Single-cell RNA-Seq libraries from A375 and 451Lu cell lines were sequenced through Fluidigm C1 or 10X Genomics to study the mechanisms of acquiring resistances to BRAF inhibitors. Libraries with greater than 80% of uniquely mapped reads were kept and used for downstream analysis. 

	Cels Type
	Cell state
	Number of cells
	Average Library size (Reads/UMI)
	Average number of expressed genes
	Technology

	A375
	Parental
	78
	14,252,703
	12,155
	Fluidigm C1

	A375
	Resistant
	52
	5,403,036
	10,018
	Fluidigm C1

	451Lu
	Parental
	84
	12,888,714
	11,640
	Fluidigm C1

	451Lu
	Resistant
	113
	15,442,471
	11,382
	Fluidigm C1

	451Lu
	Parental
	3,298
	93,908
	5,453
	10X Genomics

	451Lu
	Resistant
	3,247
	86,815
	5,369
	10X Genomics



.




Table S4 | Summary statistics of bulk DNA-Seq libraries. Bulk DNA-Seq libraries from 451Lu cell line were sequenced through SeqXE protocol to study the general copy number variation profiles across parental and resistant populations.

	Cell Type
	Cell state
	Library size
	Uniquely mapped reads
	Technology

	451Lu
	Parental
	7,706,801
	68.42%
	Genomic DNA-Seq

	451Lu
	Resistant
	6,465,479
	69.61%
	Genomic DNA-Seq
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