Supplemental Material

GrapeTree: Visualization of core genomic relationships among 100,000

bacterial pathogens

Authors: Zhemin Zhou?", Nabil-Fareed Alikhan?, Martin J. Sergeant?, Nina Luhmann?, Cétia

Vaz?5, Alexandre P. Francisco?#, Jodo André Carrico®, Mark Achtman'’
Affiliations:

Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL,
United Kingdom

2Instituto de Engenharia de Sistemas e Computadores: Investigacdo e Desenvolvimento
(INESC-ID), Lisboa, Portugal

3Universidade de Lisboa, Faculdade de Medicina, Instituto de Microbiologia and Instituto de

Medicina Molecular, Lisboa, Portugal
4Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

SADEETC, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,

Lisboa, Portugal

"Corresponding authors:

Z.Z.: zhemin.zhou@warwick.ac.uk

M.A.: m.achtman@warwick.ac.uk



mailto:zhemin.zhou@warwick.ac.uk
mailto:m.achtman@warwick.ac.uk

Table of Contents

Details Of GrapeTree LAYOUL .......eeviiiiiiiiiiiiieeeeeeie ettt 3
BrancCh COlAPSING. ......oi e e 3
S = LA o3 = 0| S 4
Y= Va1 To oo 1 | S 8
Supplemental Figure S1. Zooming in on a subset of data in GrapeTree EB........................ 10
Supplemental Figure S2. MSTree V2 algorithm and asymmetric distances.............cccc........ 11
Supplemental Figure S3. Node layout algorithm in GrapeTree..........oovveviiiiiiieeeeeeiiiin 12

Supplemental Figure S4. Sensitivity vs precision for balanced and unbalanced quartets. ... 13

Supplemental Figure S5. Flowchart and decision tree for branch recrafting. ....................... 14

LR LT (=T 1o ST 1 15



Details of GrapeTree Layout

Branch collapsing. The branch collapsing algorithm in the GrapeTree visualization
takes account of both automatic and manual collapsing of branches within a tree. It
requires a tree (T), constructed of nodes (V) and edges (E). The algorithm iterates once
through a tree, resulting in time complexity of O(v), where v is the number of nodes in

the tree (Algorithm 2).

Algorithm 2 Branch collapsing

Input: Tree T(V,E)
sets of descendants D(v) for any node v € V/,
sets of nodes C which are manually collapsed,
sets of nodes U which are manually expanded,
automatic collapsing length K,
length of edge L(v) that connects node v to its parent
Output: collapsed GrapeTree
1: for each node v € U do

2. for each descendant d € D(v) do

3 s(d) = False

4: for each node v € C do

5. for each descendant d € D(v) do

6: s(d) = True

7: for each node v € V do

8. ifs(v) =True V(s(v) = False \L(v) < K) then

9: if parent of v is empty then
10: Move label of v to its parent
11: Move all children of v to its parent
12: Move all strains in v to its parent
13: Delete v

14: Redraw GrapeTree with remaining nodes

Node size. GrapeTree has a general method for merging multiple entries into a single

node containing indistinguishable genotypes (same ST, missing data), or after branches



are collapsed. The radius of each node, r, is dependent on the number of entries, m,

and the settings in the control panel for “Kurtosis” (k) according to

r = mk/?
Collapsing branches manually will change the relative node size automatically but can

be subsequently adjusted for aesthetic improvements through changing Kurtosis.

Static layout. The static layout implemented by GrapeTree is a hybrid between the
Bubble Tree algorithm [S1], and its earlier predecessor, the Equal-Daylight algorithm
[S2] (Table 1). The node size in GrapeTree is proportional to the number of
indistinguishable bacterial strains, and edges are proportional to inter-node distances

and cannot be bent in order to ensure that they accurately represent genetic distances.

Table 1: Summary of differences in rendering between the layouts of GrapeTree, Bubble Tree
and the Equal-daylight algorithm.

GrapeTree Bubble Tree Equal-Daylight
Node size Proportional to number of | Ignored Ignored

strains
Edge lengths Proportional to inter-node | Ignored Proportional to inter-

distance node distance
Bends in edges No Allowed once No

The GrapeTree static layout algorithm aims to optimize two properties: 1) separating all
the nodes from each other and 2) distributing all the nodes as evenly as possible for the

resolution of the layout across the two-dimensional surface (plane).

A tree T(V,E) is a special directed acyclic graph with one root node r. There is a unique
shortest directed path from r to any other node v € V. If a node u lies on the path from
the root to node v, then u is an ancestral node of v and v is a descendant node of u. We

denote the set of all ancestors of v as ancestral(v) and the set of all descendants of v



as descendant(v) respectively. We also denote children(v) as a subset of nodes in

descendant(v) directly incident to v.

For any node v in a GrapeTree visualization, we want to locate all its descendants
within an enclosing disk centered on v (Supplemental Fig. S3). For each node

¢; € children(v), we draw c;and descendant(c;) within a proportion of this enclosing
disk, denoted as the child’s circular sector, CCS(ci). In order to provide enough space to
place ciand descendant(c;), this sector must have a minimal central angle of accs(ci)
and a minimal radius of rccs(Ci). Then it is easy to see that the placement for all

¢; € children(v), do not overlap with each other as long as their CCSs are not
overlapping. In order to achieve maximum resolution, namely distribute all children of v
evenly in the enclosing disk, we introduce a separating arc s, which is an area that
separates any two neighboring CCSs. All children(v) are separated more as s
increases. The value of s is limited by the fact that all CCSs and the separating arcs
between them need to be placed within the enclosing disk centered on v, as mentioned

above.

We denote DCS(v) (descendants circular sector) as a minimal circular sector that
consists of all CCS(ci) for node v. The central angle of DCS(v) needs to be smaller than

217, in order to be placed in the enclosing disk around v without overlapping.

We can also show that T has a non-overlapping layout if every node v € V has

apcs(v) < 2m. We already know that v does not overlap with any node

d € descendant(v), as described above. Node v also does not overlap with any

a € ancestral(v), because v is a descendant of a and located in an enclosing disk that
is centered on a. Finally, node v does not overlap with any other node v’ that is neither
its ancestor nor its descendant as well, because i) we can always find a node a that is

the nearest common ancestor of both v and v’ and ii) v and v’ do not overlap because



both nodes are descendants of a that are located in different, non-overlapping CCSs.

The whole layout problem can then be formulated as:

max given that Vn € N:apcs(v) < 21
S

for any node v € V and a known value for s, DCS(v) can be calculated based on all
DCS(ci) for c; € children(v). The recursion is illustrated by an example in Supplemental

Fig. S3 and can be separated into the following two steps.

1) Calculate CCS(ci). CCS(ci) is a minimal circular sector that has to be large enough
to include both node ciand all its descendants in DCS(c;). The area of CCS(c)) is
determined by three factors: the length | of the edge from v to ¢;, the radius r of node ¢;
and the area of DCS(c;), which is determined by both the central angle apcs(ci) and the
radius rpcs(ci). We draw two possible circular sectors, where CS1 is a sector that tries to

cover node c;jitself:

/TS
Qcs1 = 2 * arcsin (l n r)

rCSl = l + ZT

in which the central angle covers ciif s > 1, otherwise some overlapping (normally at

the tips of the trees) is allowed. And CS2 is a sector that guarantees to cover DCS(cj):

Tpes(€i)
l+7r

Acsy = 2 max <arcsin( ), poleMove([rpcs(c;), 1/2 apcs(c)], [(1+ r),n]))

Tesz = L+ 1+ 1pes(cy)

The function poleMove(p, 0") converts the polar coordinates of a point p into a new
polar system that has a new pole at coordinate 0’ and can be summarized as in

Algorithm 3.



Algorithm 3 poleMove

Input: point p with polar coordinate [rp,ap], new pole o’ with coordinate [r,, a,’]
Output: new coordinates|r, a;,| for point p

1: Convert [, a,] to Cartesian coordinates:

[%p, ¥p] = [1 * cos(ay) , 7 * sin(ay)]
2: Convert [r,, a,r] to Cartesian coordinates:
[x,r, ¥o'] = [y * cos(a,r), T, * sin(a,r)]
3: Compute Cartesian coordinates of p with new origin:
[xz’,,yl;] = [xp ~ X" Yp ~ yo’]

4: Convert [x}, yp] to Polar Coordinates:

)= (e« 05 ()

Finally, CCS(cj) is a combination of both CS1 and CS2 and is determined by:
accs(c;) = max(acsy, acsz)
Tees(€) = max(resy, Tesz)

2) Compute the static layout. We can then calculate the shape of DCS(v), which has
the following radius and central angle:

T V) = max Tees(c;
pes(V) ciechloon(v) ces(ci)

S
apcs(v) = Z (accs (c) + —)
ci€children(v) Tpcs (n)

For any given separating arc s, we can obtain the DCS(v) for any node v in the
GrapeTree recursively from tips to the root and estimate a new separating arc by
comparing the maximum apcs(v) to 21. Although the optimal value of s can be obtained
using dedicated solvers, the time consumption of those methods is intractable. Instead,
we use an iteration method, which takes linear time in practice, to obtain an acceptable

approximation for s.



The algorithm is written in pseudo-codes as:

Algorithm 4 static GrapeTree layout

Input: Tree T(V, E), maximum number of trial X
Output: Optimal separating arc s
1: sy =2n/|V|
2: S=1]
3: for each trial tin [0..X] do
4:  for each node v in Vyeorger dO
Compute DCS(v)

5
6: A= max dpcs(v)

7. if Ay < 2m then
8: Append (s;,A;) t0 S
_ SgRm
Serr ="

10: s =s; in S that gives maximum value of A4;

Dynamic layout. The dynamic layout uses the force-directed layout in JavaScript D3 [S3]
to implement a velocity Verlet integrator for simulating physical forces on particles [S4].
This algorithm sets the repulsion/attraction forces on nodes and an optimum distance
(branch length) between nodes. However, along with other force-directed algorithms,
repulsion between the nodes is favored, and hence the true branch lengths between
nodes are rarely honored. As a result, identifying the true grouping of nodes can be
difficult because two clusters may appear more distant than they should be according to
their branch length. In addition, the force-directed algorithm rarely reaches an optimum,
resulting in repeated screen updates after minor rotations of branch location. These
features can result in poor performance, especially when a large humber of nodes are
involved. Once node positions are fixed after halting the force-directed algorithm,
subsequent manual re-positioning of individual nodes is independent of the other node

positions, and results in a distorted graph.

In order to overcome these limitations, we implemented an algorithm that corrects the

branch lengths such that they are always true to their original values. Manual movements



of nodes are then restricted to those that do not falsify branch lengths, and child nodes

are moved together with the parent node.



A [ ST (Achtman 7 Gene MLST) Country
Africa Other
[ rorrozse) @z 21 [Jz0e2(5] [ Kenya [90] [l united Kingdom [95]
[a4zsery []36311221 [T2186 (5] )
[ Malawi [69] [ united States [52]
W 313m087 [Js2s116]  []22125] ) )
[ Mali [16] [l Vexico [8]
[Csesa1  [J1544 1141 [T]37615) WoRC 1] [ india 2
E 2?;9[8[; ;16] E 22;55 E’ ;)] Eig?j {:} E Mozambique [10] E Brazil (1]
Uganda [10] Japan [1]
[CIsesss)  [Jazea(8]  [J412114) [ Ethiopia [7] [ Pakistan 1]
20721701 20891 [J192113] [ Nigeria (4]
oo [Josm [T South Africa [1]
[J128 1491 [ 2066 (6]
[Js02a41 328161

Supplemental Figure S1. Zooming in on a subset of data in GrapeTree EB. (A) MSTree V2 of cgMLST (3,002 loci) from 19,670 Salmonella enterica serovar Typhi-
murium genomes in EnteroBase. Nodes are colored by legacy 7-gene MLST ST. The yellow polygon highlights genomes from ST131 and ST302 which were selected
for further analysis. An interactive version of this tree is available at http://bit.ly/2vjTn4l. All genomes, metadata and genotyping results are available to registered
EnteroBase users at http://bit.ly/21ZSW1q. (B) Neighbour-Joining tree based on cgMLST of the selected genomes from part A, color-coded by country of isolation.
An interactive version of this tree is available at http://bit.ly/2H8py8F. All genomes, metadata and genotyping results are available at http://bit.ly/2HrlwM1.



Non-redundant profiles

V; | Present | Absent
A4 u.
1
Asymmetric Hamming-like distances | _~>
Present | Qor1 0
J
Harmonic tiebreaker (HT) Absent 1 0

Edmonds algorithm

A

Minimum spanning arborescence

Tree construction (dMST)
Tree reconfiguration v
N Shortest unvisited edge u—v
" in the dMST

Y

Local branch recrafting

New edge is still
the shortest ?

Set as unvisited

All edges have
been visited ?

MSTree V2

Supplemental Figure S2. MSTree V2 algorithm and asymmetric distances. A) Workflow
involved in the MSTree V2 algorithm. Edmonds’ algorithm (Edmonds 1967) was calculated using
the Tarjan rapid implementation (Tarjan 1977) provided in the C++ Edmonds-alg open-source
package by A. Tofigh (Tofigh 2009). B) Calculation of normalized, asymmetric Hamming-like
distance for all possible combinations of allelic values in the calculation of the edge distance d(u—
v). The genetic distance for each locus within an ST profile is 0 when the locus contains the same
allele in u and v, and 1 when that locus contains distinct alleles. It is 1 when v contains an existing
allele at that locus but the allele is missing in u, and is otherwise 0.



Supplemental Figure S3. Node layout algorithm in GrapeTree. The node layout depends
on the calculation of descendent circular sectors (DCS) for each node. Node v has two
children, nodes ¢, and c,. All the descendants (dotted circles) of ¢, are encompassed within
DCS(c,) (cyan), whereas ¢, has no descendants. Node ¢, is larger than either v or ¢, because it
contains multiple entries. A) Initial calculation. B) Child’s circular sector CSS(c,) (green, left) is
drawn to include both ¢, and all its descendants. C) CSS(c,) (green, right) is drawn to include
large node c,. D) DCS(v) is drawn as a summarized circular sector (dotted lines) that includes
both CSS(c,) and CSS(c,) plus a separating arc s (pink) between them.



A Balanced quartets B Unbalanced quartets

1 2 3 4 1 2 3 4
C D
1.0 1.0 %
0.9 0.9
> 0.8 0.8
fy et
=
s et
& 07 0.7
[¢D)
n Ave. allelic distance
@\%@QQQ
0.6 Qb@%@/\‘i@q\@& 0.6
O-0-@-@ NJ/RapidNJ W
O-O-@@® g0eBURST
0.5 0O0@@ dvst 0.5
O-O@@® VsTreeV2
0.4 0.4
O QO 0 MO HN O O QR MO0 MO HNH O
Q Q
CILI LS CrLILITL S
Precision Precision

Supplemental Figure S4. Sensitivity vs precision for balanced and unbalanced quartets.
Balanced and unbalanced quartets have identical topologies ((1,2),(3,4)). A quartet was scored as a
balanced quartet if all pairwise distances satisfied d, > d, where di denotes intra-group distances
d(1,2) and d(3,4) and d, denotes external distances between any other pair of nodes. All quartets that
did not satisfy d_ > d were scored as unbalanced quartets. A) Cartoon of balanced quartet. B) Cartoon
of unbalanced quartet. C-D) Quartets were binned according to their average allelic distance as in
Fig. 4. C) Performance for balanced quartets. All algorithms performed well. D) Performance for
unbalanced quartets. NJ resolves unbalanced quartets accurately, but the sensitivity was <0.6 for all
minimum spanning tree algorithms. Precision was low for goeBURST and dMST but remained high
with MSTree V2 because local branch recrafting removes most inaccurate splits.



A Local branch recrafting

B Model A
Contemporar,
Node uinu—v ( P Y)
u w v
¢ 1-l, | I T-ky
\ | An unvisited node w
7] thatconnectstou
Model A Model B :
(contemporary) (Anc-Des) : Model selection
C Model B
(Ancestor-Descendant)
u
T-ly |

assign u:=w

T

Complete

Supplemental Figure S5. Flowchart and decision tree for branch recrafting. A) Detailed workflow for the local
branch recrafting of edge u—v dependent on the probabilities of models A and B for each previously unvisited node
w. B) Cartoon of Model A in which nodes u and w are contemporary sisters that diverged from a hypothetical common
ancestor. C) Cartoon of Model B in which node w is the direct ancestor of u. The probabilities of each model and the
branch parameters |, k,, |, and k_ are calculated using equations 1 and 2 in Methods. (D-J) Cartoon of local branch
recrafting. Solid lines indicate currently connected nodes while dotted branches indicate possible alternative connec-
tions. Blue lines in (E, G, ) are the branches involved in the model comparisons: Red lines in (F, H, J) show the outputs
of the model comparisons. (D) The shortest branch (A—E) that connects two trees t(A) and t(E) according to Edmonds’
algorithm. (E) (A—E) is compared with branch (A—F), where node F has the lowest harmonic average distance to other
nodes. (F) (A—F) has higher probability. (G) (A—F) is compared with all the nodes that are directly connected with F.
(H) (A—F) is still the most probable branch. (I-J) The same process is performed for tree t(A), which results in (B—F)
becoming the most probable branch.



Reference List

S1. Grivet S., Auber D., Domenger P.J., and Melancon G. (2006). Bubble tree
drawing algorithm. In Computer Vision and Graphics, Wojciechowski K, Smolka B,
Palus H, Kozera RS, Skarbek W, Noakes L, eds. Springer), pp. 633-641.

S2. Felsenstein J. (2004). Drawing trees. In Inferring phylogenies, (Sunderland,

Massachusetts, US: Sinauer Associates, Inc.), pp. 573-584.

S3. Bostock M., Ogievetsky V., and Heer J. (2011). D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics 17: 2301-23009.

S4. Dwyer T. (2009). Scalable, versatile and simple constrained graph layout.
Eurographics 28.

S5. Edmonds J. (1967). Optimum branchings. J. Res. Nat. Bur. Standards 71B:
233-240.

S6. Tarjan R.E. (1977). Finding optimum branchings. Networks 7: 25-35.

S7. Tofigh, A. (2009). Optimum branchings and spanning aborescences.

http://edmonds-alg.sourceforge.net/.

15



	Details of GrapeTree Layout
	Supplemental Figure S1. Zooming in on a subset of data in GrapeTree EB.
	Supplemental Figure S2. MSTree V2 algorithm and asymmetric distances.
	Supplemental Figure S3. Node layout algorithm in GrapeTree.
	Supplemental Figure S4. Sensitivity vs precision for balanced and unbalanced quartets.
	Supplemental Figure S5. Flowchart and decision tree for branch recrafting.
	Reference List



