
1

Supplemental Material

GrapeTree: Visualization of core genomic relationships among 100,000

bacterial pathogens

Authors: Zhemin Zhou1*, Nabil-Fareed Alikhan1, Martin J. Sergeant1, Nina Luhmann1, Cátia

Vaz2,5, Alexandre P. Francisco2,4, João André Carriço3, Mark Achtman1*

Affiliations:

1Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL,

United Kingdom

2Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento

(INESC-ID), Lisboa, Portugal

3Universidade de Lisboa, Faculdade de Medicina, Instituto de Microbiologia and Instituto de

Medicina Molecular, Lisboa, Portugal

4Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

5ADEETC, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,

Lisboa, Portugal

*Corresponding authors:

Z.Z.: zhemin.zhou@warwick.ac.uk

M.A.: m.achtman@warwick.ac.uk

mailto:zhemin.zhou@warwick.ac.uk
mailto:m.achtman@warwick.ac.uk

2

Table of Contents
Details of GrapeTree Layout ... 3

Branch collapsing. ... 3

Static layout. .. 4

Dynamic layout. ... 8

Supplemental Figure S1. Zooming in on a subset of data in GrapeTree EB. 10

Supplemental Figure S2. MSTree V2 algorithm and asymmetric distances. 11

Supplemental Figure S3. Node layout algorithm in GrapeTree. ... 12

Supplemental Figure S4. Sensitivity vs precision for balanced and unbalanced quartets. ... 13

Supplemental Figure S5. Flowchart and decision tree for branch recrafting. 14

Reference List ... 15

3

Details of GrapeTree Layout
Branch collapsing. The branch collapsing algorithm in the GrapeTree visualization

takes account of both automatic and manual collapsing of branches within a tree. It

requires a tree (T), constructed of nodes (V) and edges (E). The algorithm iterates once

through a tree, resulting in time complexity of O(v), where v is the number of nodes in

the tree (Algorithm 2).

Algorithm 2 Branch collapsing

Input: Tree 𝑇𝑇(𝑉𝑉,𝐸𝐸)

sets of descendants 𝐷𝐷(𝑣𝑣) for any node 𝑣𝑣 ∈ 𝑉𝑉,

sets of nodes 𝐶𝐶 which are manually collapsed,

sets of nodes 𝑈𝑈 which are manually expanded,

automatic collapsing length 𝐾𝐾,

length of edge 𝐿𝐿(𝑣𝑣) that connects node 𝑣𝑣 to its parent

Output: collapsed GrapeTree

1: for each node 𝑣𝑣 ∈ 𝑈𝑈 do

2: for each descendant 𝑑𝑑 ∈ 𝐷𝐷(𝑣𝑣) do

3: 𝑠𝑠(𝑑𝑑) = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

4: for each node 𝑣𝑣 ∈ 𝐶𝐶 do

5: for each descendant 𝑑𝑑 ∈ 𝐷𝐷(𝑣𝑣) do

6: 𝑠𝑠(𝑑𝑑) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

7: for each node 𝑣𝑣 ∈ 𝑉𝑉 do

8: if 𝑠𝑠(𝑣𝑣) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ⋁(𝑠𝑠(𝑣𝑣) = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⋀𝐿𝐿(𝑣𝑣) ≤ 𝐾𝐾) then

9: if parent of 𝑣𝑣 is empty then

10: Move label of 𝑣𝑣 to its parent

11: Move all children of 𝑣𝑣 to its parent

12: Move all strains in 𝑣𝑣 to its parent

13: Delete 𝑣𝑣

14: Redraw GrapeTree with remaining nodes

Node size. GrapeTree has a general method for merging multiple entries into a single

node containing indistinguishable genotypes (same ST, missing data), or after branches

4

are collapsed. The radius of each node, r, is dependent on the number of entries, m,

and the settings in the control panel for “Kurtosis” (k) according to

𝑟𝑟 = 𝑚𝑚𝑘𝑘/2

Collapsing branches manually will change the relative node size automatically but can

be subsequently adjusted for aesthetic improvements through changing Kurtosis.

Static layout. The static layout implemented by GrapeTree is a hybrid between the

Bubble Tree algorithm [S1], and its earlier predecessor, the Equal-Daylight algorithm

[S2] (Table 1). The node size in GrapeTree is proportional to the number of

indistinguishable bacterial strains, and edges are proportional to inter-node distances

and cannot be bent in order to ensure that they accurately represent genetic distances.

Table 1: Summary of differences in rendering between the layouts of GrapeTree, Bubble Tree
and the Equal-daylight algorithm.

 GrapeTree Bubble Tree Equal-Daylight

Node size Proportional to number of
strains

Ignored Ignored

Edge lengths Proportional to inter-node
distance

Ignored Proportional to inter-
node distance

Bends in edges No Allowed once No

The GrapeTree static layout algorithm aims to optimize two properties: 1) separating all

the nodes from each other and 2) distributing all the nodes as evenly as possible for the

resolution of the layout across the two-dimensional surface (plane).

A tree T(V,E) is a special directed acyclic graph with one root node r. There is a unique

shortest directed path from r to any other node v ∈ V. If a node u lies on the path from

the root to node v, then u is an ancestral node of v and v is a descendant node of u. We

denote the set of all ancestors of v as 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣) and the set of all descendants of v

5

as 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) respectively. We also denote 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣) as a subset of nodes in

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) directly incident to v.

For any node v in a GrapeTree visualization, we want to locate all its descendants

within an enclosing disk centered on v (Supplemental Fig. S3). For each node

𝑐𝑐𝑖𝑖 ∈ 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣), we draw ci and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑖𝑖) within a proportion of this enclosing

disk, denoted as the child’s circular sector, CCS(ci). In order to provide enough space to

place ci and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑖𝑖), this sector must have a minimal central angle of aCCS(ci)

and a minimal radius of rCCS(ci). Then it is easy to see that the placement for all

𝑐𝑐𝑖𝑖 ∈ 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣), do not overlap with each other as long as their CCSs are not

overlapping. In order to achieve maximum resolution, namely distribute all children of v

evenly in the enclosing disk, we introduce a separating arc s, which is an area that

separates any two neighboring CCSs. All 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣) are separated more as s

increases. The value of s is limited by the fact that all CCSs and the separating arcs

between them need to be placed within the enclosing disk centered on v, as mentioned

above.

We denote DCS(v) (descendants circular sector) as a minimal circular sector that

consists of all CCS(ci) for node v. The central angle of DCS(v) needs to be smaller than

2π, in order to be placed in the enclosing disk around v without overlapping.

We can also show that T has a non-overlapping layout if every node v ∈ V has

𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷(𝑣𝑣) ≤ 2𝜋𝜋. We already know that v does not overlap with any node

𝑑𝑑 ∈ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣), as described above. Node v also does not overlap with any

𝑎𝑎 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣), because v is a descendant of a and located in an enclosing disk that

is centered on a. Finally, node v does not overlap with any other node v’ that is neither

its ancestor nor its descendant as well, because i) we can always find a node a that is

the nearest common ancestor of both v and v’ and ii) v and v’ do not overlap because

6

both nodes are descendants of a that are located in different, non-overlapping CCSs.

The whole layout problem can then be formulated as:

𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠

 given that ∀𝑛𝑛 ∈ 𝑁𝑁: 𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷(𝑣𝑣) ≤ 2𝜋𝜋

for any node v ∈ V and a known value for s, DCS(v) can be calculated based on all

DCS(ci) for 𝑐𝑐𝑖𝑖 ∈ 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣). The recursion is illustrated by an example in Supplemental

Fig. S3 and can be separated into the following two steps.

1) Calculate CCS(ci). CCS(ci) is a minimal circular sector that has to be large enough

to include both node ci and all its descendants in DCS(ci). The area of CCS(ci) is

determined by three factors: the length l of the edge from v to ci, the radius r of node ci

and the area of DCS(ci), which is determined by both the central angle aDCS(ci) and the

radius rDCS(ci). We draw two possible circular sectors, where CS1 is a sector that tries to

cover node ci itself:

𝑎𝑎𝐶𝐶𝐶𝐶1 = 2 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑟𝑟 𝑠𝑠
𝑙𝑙 + 𝑟𝑟

�

𝑟𝑟𝐶𝐶𝐶𝐶1 = 𝑙𝑙 + 2𝑟𝑟

in which the central angle covers ci if 𝑠𝑠 ≥ 1, otherwise some overlapping (normally at

the tips of the trees) is allowed. And CS2 is a sector that guarantees to cover DCS(ci):

𝑎𝑎𝐶𝐶𝐶𝐶2 = 2 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(
𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐𝑖𝑖)
𝑙𝑙 + 𝑟𝑟

) ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝([𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐𝑖𝑖), 1/2 𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐𝑖𝑖)], [(𝑙𝑙 + 𝑟𝑟),𝜋𝜋])�

𝑟𝑟𝐶𝐶𝐶𝐶2 = 𝑙𝑙 + 𝑟𝑟 + 𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐𝑖𝑖)

The function 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝, 𝑜𝑜’) converts the polar coordinates of a point p into a new

polar system that has a new pole at coordinate o’ and can be summarized as in

Algorithm 3.

7

Algorithm 3 poleMove

Input: point p with polar coordinate �𝑟𝑟𝑝𝑝,𝑎𝑎𝑝𝑝�, new pole o’ with coordinate [𝑟𝑟𝑜𝑜′ ,𝑎𝑎𝑜𝑜′]

Output: new coordinates�𝑟𝑟𝑝𝑝′,𝑎𝑎𝑝𝑝′ � for point p

1: Convert �𝑟𝑟𝑝𝑝,𝑎𝑎𝑝𝑝� to Cartesian coordinates:

 �𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝� = �𝑟𝑟𝑝𝑝 ∗ cos�𝑎𝑎𝑝𝑝� , 𝑟𝑟𝑝𝑝 ∗ sin�𝑎𝑎𝑝𝑝��

2: Convert [𝑟𝑟𝑜𝑜′ ,𝑎𝑎𝑜𝑜′] to Cartesian coordinates:

 [𝑥𝑥𝑜𝑜′ ,𝑦𝑦𝑜𝑜′] = [𝑟𝑟𝑜𝑜′ ∗ cos(𝑎𝑎𝑜𝑜′) , 𝑟𝑟𝑜𝑜′ ∗ sin(𝑎𝑎𝑜𝑜′)]

3: Compute Cartesian coordinates of p with new origin:

 �𝑥𝑥𝑝𝑝′ ,𝑦𝑦𝑝𝑝′� = �𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑜𝑜′ ,𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑜𝑜′�

4: Convert �𝑥𝑥𝑝𝑝′ ,𝑦𝑦𝑝𝑝′� to Polar Coordinates:

�𝑟𝑟𝑝𝑝′,𝑎𝑎𝑝𝑝′ � = ���𝑥𝑥𝑝𝑝′ �

2 + �𝑦𝑦𝑝𝑝′�
2, tan−1 �

𝑦𝑦𝑝𝑝′

𝑥𝑥𝑝𝑝′
��

Finally, CCS(ci) is a combination of both CS1 and CS2 and is determined by:

𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝐶𝐶𝐶𝐶1,𝑎𝑎𝐶𝐶𝐶𝐶2)

𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝐶𝐶𝐶𝐶1, 𝑟𝑟𝐶𝐶𝐶𝐶2)

2) Compute the static layout. We can then calculate the shape of DCS(v), which has

the following radius and central angle:

𝑟𝑟𝐷𝐷𝐶𝐶𝐶𝐶(𝑣𝑣) = max
𝑐𝑐𝑖𝑖∈𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣)

𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖)

𝑎𝑎𝐷𝐷𝐶𝐶𝐶𝐶(𝑣𝑣) = � �𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖) +
𝑠𝑠

𝑟𝑟𝐷𝐷𝐶𝐶𝐶𝐶(𝑛𝑛)�
𝑐𝑐𝑖𝑖∈𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣)

For any given separating arc s, we can obtain the DCS(v) for any node v in the

GrapeTree recursively from tips to the root and estimate a new separating arc by

comparing the maximum aDCS(v) to 2π. Although the optimal value of s can be obtained

using dedicated solvers, the time consumption of those methods is intractable. Instead,

we use an iteration method, which takes linear time in practice, to obtain an acceptable

approximation for s.

8

The algorithm is written in pseudo-codes as:

Algorithm 4 static GrapeTree layout

Input: Tree 𝑇𝑇(𝑉𝑉,𝐸𝐸), maximum number of trial X
Output: Optimal separating arc s

1: 𝑠𝑠0 = 2𝜋𝜋 |𝑉𝑉|⁄

2: 𝑆𝑆 = []

3: for each trial t in [0. .𝑋𝑋] do

4: for each node 𝑣𝑣 in 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 do

5: Compute 𝐷𝐷𝐷𝐷𝐷𝐷(𝑣𝑣)

6: 𝐴𝐴𝑡𝑡 = max
𝑛𝑛∈𝑁𝑁

𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷(𝑣𝑣)

7: if 𝐴𝐴𝑡𝑡 ≤ 2𝜋𝜋 then

8: Append (𝑠𝑠𝑡𝑡,𝐴𝐴𝑡𝑡) to 𝑆𝑆

9: 𝑆𝑆𝑡𝑡+1 = 𝑠𝑠𝑡𝑡∗2𝜋𝜋
𝐴𝐴𝑡𝑡

10: 𝑠𝑠 = 𝑠𝑠𝑡𝑡 in 𝑆𝑆 that gives maximum value of 𝐴𝐴𝑡𝑡

Dynamic layout. The dynamic layout uses the force-directed layout in JavaScript D3 [S3]

to implement a velocity Verlet integrator for simulating physical forces on particles [S4].

This algorithm sets the repulsion/attraction forces on nodes and an optimum distance

(branch length) between nodes. However, along with other force-directed algorithms,

repulsion between the nodes is favored, and hence the true branch lengths between

nodes are rarely honored. As a result, identifying the true grouping of nodes can be

difficult because two clusters may appear more distant than they should be according to

their branch length. In addition, the force-directed algorithm rarely reaches an optimum,

resulting in repeated screen updates after minor rotations of branch location. These

features can result in poor performance, especially when a large number of nodes are

involved. Once node positions are fixed after halting the force-directed algorithm,

subsequent manual re-positioning of individual nodes is independent of the other node

positions, and results in a distorted graph.

In order to overcome these limitations, we implemented an algorithm that corrects the

branch lengths such that they are always true to their original values. Manual movements

9

of nodes are then restricted to those that do not falsify branch lengths, and child nodes

are moved together with the parent node.

United Kingdom [95]Kenya [90]
Malawi [69] United States [52]

Mali [16]
DRC [11]
Mozambique [10]
Uganda [10]

Mexico [8]

Ethiopia [7]
Nigeria [4]

India [2]
Brazil [1]
Japan [1]

Pakistan [1]

South Africa [1]

Country
Africa Other19 [10388]

34 [3867]
313 [987]
36 [354]
2379 [146]
213 [88]
568 [85]
2072 [70]
99 [61]
128 [49]
302 [44]

2076 [27]
3631 [22]
323 [16]
1544 [14]

3975 [10]
2956 [9]
3224 [8]
2089 [7]
98 [7]

2066 [6]
328 [6]

2082 [5]
2186 [5]
2212 [5]
376 [5]
2080 [4]
2214 [4]
4121 [4]
1921 [3]

ST (Achtman 7 Gene MLST)A B

ST313

ST313ST302

ST302

Supplemental Figure S1. Zooming in on a subset of data in GrapeTree EB. (A) MSTree V2 of cgMLST (3,002 loci) from 19,670 Salmonella enterica serovar Typhi-
murium genomes in EnteroBase. Nodes are colored by legacy 7-gene MLST ST. The yellow polygon highlights genomes from ST131 and ST302 which were selected
for further analysis. An interactive version of this tree is available at http://bit.ly/2vjTn4I. All genomes, metadata and genotyping results are available to registered
EnteroBase users at http://bit.ly/2IZSW1q. (B) Neighbour-Joining tree based on cgMLST of the selected genomes from part A, color-coded by country of isolation.
An interactive version of this tree is available at http://bit.ly/2H8py8F. All genomes, metadata and genotyping results are available at http://bit.ly/2HrlwM1.

Non-redundant pro�les

Harmonic tiebreaker (HT)

Minimum spanning arborescence
(dMST)

Shortest unvisited edge u→v
in the dMST

Local branch recrafting

Asymmetric Hamming-like distances

Edmonds algorithm

New edge is still
the shortest ?

All edges have
been visited ?

Y

Y

N

N

Set as unvisited

MSTree V2

Tree recon�guration

Tree construction

Present

Absent

ui

vi Present Absent

0 or 1 0

1 0

BA

Supplemental Figure S2. MSTree V2 algorithm and asymmetric distances. A) Work�ow
involved in the MSTree V2 algorithm. Edmonds’ algorithm (Edmonds 1967) was calculated using
the Tarjan rapid implementation (Tarjan 1977) provided in the C++ Edmonds-alg open-source
package by A. To�gh (To�gh 2009). B) Calculation of normalized, asymmetric Hamming-like
distance for all possible combinations of allelic values in the calculation of the edge distance d(u→
v). The genetic distance for each locus within an ST pro�le is 0 when the locus contains the same
allele in u and v, and 1 when that locus contains distinct alleles. It is 1 when v contains an existing
allele at that locus but the allele is missing in u, and is otherwise 0.

DCS(c1)

c2

v

CCS(
c 1)

c2

v

CCS(
c 1)

CCS(c
2)

c2

v

s DCS(v)

CCS(
c 1)

CCS(c
2)

c2

v

A B

C D

DCS(c1)

DCS(c1) DCS(c1)

c1 c1

c1 c1

Supplemental Figure S3. Node layout algorithm in GrapeTree. The node layout depends
on the calculation of descendent circular sectors (DCS) for each node. Node v has two
children, nodes c1 and c2. All the descendants (dotted circles) of c1 are encompassed within
DCS(c1) (cyan), whereas c2 has no descendants. Node c2 is larger than either v or c1 because it
contains multiple entries. A) Initial calculation. B) Child’s circular sector CSS(c1) (green, left) is
drawn to include both c1 and all its descendants. C) CSS(c2) (green, right) is drawn to include
large node c2. D) DCS(v) is drawn as a summarized circular sector (dotted lines) that includes
both CSS(c1) and CSS(c2) plus a separating arc s (pink) between them.

1 2 3 4 1 2 3 4

A B

C D

NJ/RapidNJ

goeBURST

dMST

MSTree V2

0-500
500-1000

1000-1500

1500-2000
Ave. allelic distance

Unbalanced quartetsBalanced quartets

Precision

Se
ns

iti
vi

ty

Precision
Supplemental Figure S4. Sensitivity vs precision for balanced and unbalanced quartets.
Balanced and unbalanced quartets have identical topologies ((1,2),(3,4)). A quartet was scored as a
balanced quartet if all pairwise distances satis�ed de > di, where di denotes intra-group distances
d(1,2) and d(3,4) and de denotes external distances between any other pair of nodes. All quartets that
did not satisfy de > di were scored as unbalanced quartets. A) Cartoon of balanced quartet. B) Cartoon
of unbalanced quartet. C-D) Quartets were binned according to their average allelic distance as in
Fig. 4. C) Performance for balanced quartets. All algorithms performed well. D) Performance for
unbalanced quartets. NJ resolves unbalanced quartets accurately, but the sensitivity was <0.6 for all
minimum spanning tree algorithms. Precision was low for goeBURST and dMST but remained high
with MSTree V2 because local branch recrafting removes most inaccurate splits.

B

A

C
D

E

G

H

F

D

B

A

C
D

E

G

H

F

F

B

A

C
D

E

G

H

F

H

B

A

C
D

E

G

H

F

E

B

A

C
D

E

G

H

F

G

B

A

C
D

E

G

H

F

J
B

A

C
D

E

G

H

F

I

Pr(Model A)>Pr(Model B) ?

ht(u) < ht(w) ?

All neighbours
have been visited ?

d(u→v) < d(w→v)

Y

Y

Y

Y

N

N

N

N

Node u in u→v

Complete

Keep u

assign u := w

An unvisited node w
that connects to u

Model A
(contemporary)

Model B
(Anc-Des)

Local branch recrafting
Model A
(Contemporary)

Model B
(Ancestor-Descendant)

A
B

C

Model selection

u w v

u

w

v

1-lA 1-kA

1-lB 1-kB

t(A) t(E)

Supplemental Figure S5. Flowchart and decision tree for branch recrafting. A) Detailed work�ow for the local
branch recrafting of edge u→v dependent on the probabilities of models A and B for each previously unvisited node
w. B) Cartoon of Model A in which nodes u and w are contemporary sisters that diverged from a hypothetical common
ancestor. C) Cartoon of Model B in which node w is the direct ancestor of u. The probabilities of each model and the
branch parameters lA, kA, lB and kB are calculated using equations 1 and 2 in Methods. (D-J) Cartoon of local branch
recrafting. Solid lines indicate currently connected nodes while dotted branches indicate possible alternative connec-
tions. Blue lines in (E, G, I) are the branches involved in the model comparisons: Red lines in (F, H, J) show the outputs
of the model comparisons. (D) The shortest branch (A→E) that connects two trees t(A) and t(E) according to Edmonds’
algorithm. (E) (A→E) is compared with branch (A→F), where node F has the lowest harmonic average distance to other
nodes. (F) (A→F) has higher probability. (G) (A→F) is compared with all the nodes that are directly connected with F.
(H) (A→F) is still the most probable branch. (I-J) The same process is performed for tree t(A), which results in (B→F)
becoming the most probable branch.

15

Reference List

S1. Grivet S., Auber D., Domenger P.J., and Melancon G. (2006). Bubble tree

drawing algorithm. In Computer Vision and Graphics, Wojciechowski K, Smolka B,

Palus H, Kozera RS, Skarbek W, Noakes L, eds. Springer), pp. 633-641.

S2. Felsenstein J. (2004). Drawing trees. In Inferring phylogenies, (Sunderland,

Massachusetts, US: Sinauer Associates, Inc.), pp. 573-584.

S3. Bostock M., Ogievetsky V., and Heer J. (2011). D3: Data-driven documents.

IEEE Transactions on Visualization and Computer Graphics 17: 2301-2309.

S4. Dwyer T. (2009). Scalable, versatile and simple constrained graph layout.

Eurographics 28.

S5. Edmonds J. (1967). Optimum branchings. J. Res. Nat. Bur. Standards 71B:

233-240.

S6. Tarjan R.E. (1977). Finding optimum branchings. Networks 7: 25-35.

S7. Tofigh, A. (2009). Optimum branchings and spanning aborescences.

http://edmonds-alg.sourceforge.net/.

	Details of GrapeTree Layout
	Supplemental Figure S1. Zooming in on a subset of data in GrapeTree EB.
	Supplemental Figure S2. MSTree V2 algorithm and asymmetric distances.
	Supplemental Figure S3. Node layout algorithm in GrapeTree.
	Supplemental Figure S4. Sensitivity vs precision for balanced and unbalanced quartets.
	Supplemental Figure S5. Flowchart and decision tree for branch recrafting.
	Reference List

