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Supplemental Methods

NUMT exclusion from RNA-seq data: One source of contamination of our analyzed mtDNA
gene expression data is sequencing reads of primitive mtDNA fragments that were transferred
to the nDNA during the course of evolution (Hazkani-Covo et al. 2003; Mishmar et al. 2004).
To control for such contamination, GTEx used nuclear mitochondrial pseudogene transcript
sequences as their reference transcriptome (appears as mtXPN in the GTEx data, where X
represents the mitochondrial gene and N stands for the number of the pseudogene).
Therefore, reads that had higher similarity scores to any given pseudogene, as compared to
the reference mtDNA gene, were excluded from the reads count for mtDNA-encoded genes.
To further control for NUMTSs, we used the normalized read counts (reads per kilo-base per
million reads - RPKM) available in the GTEx consortium data files as our raw data. According
to GTEx documentation, the read alignment distance was <6 (i.e., sequence alighments must
not contain more than six mismatches), thus notably reducing possible contamination by

NUMT reads.

RPKM to TPM conversion in RNA-seq data: The RPKM value for a given gene "i" in each library
(each sample) was converted to TPM (Transcripts Per Million bases) as previously described

(Hashimshony et al. 2012), using the following formula:

RPKM;

= X106
Total library RPKM

TPM;

Control of RNA-seq data for age, gender and cause-of-death: The age variable was obtained
as a continuous factor, whereas gender and cause-of-death were categorical factors. Dummy
variables (1 for gender and 5 for cause-of-death) were used to correct for the effect of these
factors on gene expression, while correcting for multiple testing. Finally, the residual TPM for
each gene in each sample was calculated as the difference between the observed TPM and
the TPM value predicted for this gene by the linear regression, considering phenotypic

parameters (i.e. age, gender and cause-of-death).



Clustered heat maps construction: The median Spearman's rank correlation coefficient
between the pairs of genes/transcripts under consideration were used to create a distance
matrix for hierarchical clustering. Such clustering was obtained according to the similarity of
the correlation of gene/transcript expression with other genes/transcripts under
consideration. The correlation values were color-coded: red — positive correlation, blue —

negative correlation. Non-significant or zero correlations are marked in white.

To construct heat maps for each of the analyzed tissues, we used the gene/transcript order
that was obtained from the hierarchal clustering generated while analyzing the total
expression pattern across all tissues. Additionally, while constructing tissue-specific

correlation distance matrixes, we considered all samples available for the tested tissue.

Brain cell-type determination in single cell RNA-seq analysis: Cells were considered
excitatory-neurons if they displayed higher maximal expression of the pan-glutamatergic
marker-genes (Slc17a6 and Slc17a7) than both the maximal expression of pan-GABAergic
marker-genes (Gadl, Gad2 and Slc32al) and the non-neuronal marker genes (Olig1, Gjal,
Xdh, Ctss and Myl9). Cells were considered inhibitory-neurons if they displayed higher
maximal expression of the pan-GABAergic marker-genes as compared to both the maximal
expression for pan-glutamatergic and non-neuronal marker-genes. Other cells were

considered non-neuronal (Sugino et al. 2006; Tasic et al. 2016).

Statement - usage of human genome sequence versions (GRCh37 and GRCh38): The GTEx
dataset is based on mapping of RNA-seq reads against the GRCh37/hg19; we used mapped
reads which are publicly available, and do not have access to the restricted area of the GTEx
data. As our analyses focus on gene expression correlation among OXPHQOS genes, involving
more than 80 genes that showed consistent and significant correlation values across and
within tissues, it is safe to state that possible small changes in some of the genes' sequences,

among different versions of the human genome, would not significantly alter our conclusions.



Structural predictions: Swiss-model server (https://swissmodel.expasy.org/) (default

parameters) was used to predict the 3D structures of the discussed OXPHOS subunit
alternatively spliced variants. In addition, we used Jpred 4

(http://www.compbio.dundee.ac.uk/jpred/), to predict secondary structures (default

parameters) and assess their conservation between the canonical isoforms and the alternative

ones.
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Figure S1. Workflow of the expression pattern correlation analysis. See also Supplemental
Dataset S4 for Python scripts used during the analysis.
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Figure S2. nDNA-encoded OXPHOS genes show significantly higher co-expression with
mtDNA-encoded OXPHOS genes. A box-plot showing the values of the correlation coefficients
between pairs of OXPHOS genes (intra-OXPHOS) and between OXPHOS genes and randomly chosen
protein-coding genes (OXPHOS-Genome). *** p < 1 x 1071%,
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Figure S3. Expression of LDH subunits across human tissues. A bar-plot showing the median TPM values

of the two LDH subunit-coding genes (LDHA and LDHB) across all human tissues inspected in this study.
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Y
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Correlation of OXPHOS
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Figure S4. Workflow for single-cell RNA-seq data analysis for OXPHOS mito-nuclear
correlation. See also ' Single-cell RNA-seq data analysis' under 'Methods'.
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Figure S5. Graphical representation of the in vivo identification of candidate promoters in nuclear DNA encoded
OXPHOS genes.

(A) A map of the upstream region of a representative OXPHOS gene (NDUFA8) tested for TF binding in DNasel Genomic
Footprinting (DGF) sites. X-axis represent the positions in the promoter region, relative to the transcription start site (TSS). DGF
sites are indicated by blue lines in the upper row and below, all the listed TFs binding to the 1000bp promoter region are shown,
with their ChIP-seq peaks shown as black lines. Note that only TFs with a ChIP-seq peak overlapping a minimum of one DGF are
indicated.

(B) Representation of the results for all nDNA-encoded OXPHOS genes. X-axis represent the positions in the promoter region,
relative to the translation start site (TSS). DGFs are shown by blue lines if they do not overlap with any identified TF-binding peak
in the ChIP-seq experiments and in black and blue lines if they overlap with at least one such TF-binding peak.
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Figure S6. The candidate mito-nuclear OXPHOS expression regulators correlation with
OXPHOS genes. Heat maps representing the median correlation values of the different
candidate regulators, with the mtDNA-encoded (A) and nDNA-encoded (B) OXPHOS genes.
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Figure S7. OXPHOS genes splice-variants correlations and the 'main OXPHOS transcript
cluster'. A heat map of correlation values for the expression of all OXPHOS transcripts. The 'main
OXPHOS transcript cluster' is marked with a blue square. A key for the color code of the Spearman's
correlation coefficients is shown in top left corner.
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Figure S8. Structural comparison between the suggested splice-isoforms and the
canonical spliceisoforms. (A) 3D models comparing the structures of the canonical (red),
alternative (yellow) and sheep (blue) isoforms of NDUFA2, NDUFB6 and NDUFB11. (B) Secondary
structures prediction for the alternative splice-isoforms of NDUFA3 and ATPS5MF, that lacked a
homolog with high sequence similarity and a solved 3D structural model, to the canonical isoforms
of these subunits.



Supplemental Datasets legends and links

Supplemental Dataset S1: Correlation heat maps for OXPHOS genes and splice variants

expression patterns in 48 human tissues. https://figshare.com/s/cc5cb8e5107cbhadda7e3

Supplemental Dataset S2: Correlation matrices for expression patterns of OXPHOS genes and
splice variants of OXPHOS genes in 48 human tissues.

https://figshare.com/s/818279d849951436ee72

Supplemental Dataset S3: Relative correlation heatmaps for splice-variants of genes with
more than one transcript highly = OXPHOS correlated across  tissues.

https://figshare.com/s/223934fe6e99ab3bf528

Supplemental Dataset S4: Python scripts for raw data conversion, normalization and co-

expression analysis. https://figshare.com/s/83db1452d76b266e0e34
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