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[bookmark: _Toc496213248]Curating the repeat index
We supplemented the set of consensuses sequences with data from several sources. First, we added a set of simple and complex satellites found at <http://www.fruitfly.org/sequence/sequence_db/na_re.dros>. We also included the rDNA sequence from (Stage and Eickbush, 2007), and additional TE sequences from (Zanni et al., 2013). Additionally, due the diversity of Het-A copies, we extracted five highly divergent variants of the telomeric TE Het-A from the reference genome and included these in the set of consensus sequences. Further, the TART telomeric TEs contain very long perfect repeats, which we removed from the consensus and placed in separate entries, in accord with how LTRs are handled for LTR retrotransposons (Jurka, 2000).
This set of sequences contained redundancies that would have complicated interpreting the alignments; for example, there were two Protop variants which simply corresponded to internally deleted elements. We manually curated the index by performing all pairwise alignments to identify entries that share considerable homology (Altschul et al., 1990). To make this tractable, we used a clustering strategy to organize these pairwise alignments into groups of potentially redundant entries. We constructed a graph where nodes represent sequences and any pair of sequences that share a BLASTn alignment of >80% identity were connected with an edge. We used the Louvain algorithm (Blondel et al., 2008) as implemented in the Python package louvain 0.5.3 to partition this graph into communities which we then manually inspected; this is purely an organizational step to simplify manual curation. When two sequences represented the same repeat, we aligned them to the reference, and favored the most complete element that was present at multiple insertions. We also aligned all remaining elements to themselves to identify any LTRs that had not been removed and gave them their own entries.
The quality of this index has the potential to impact our interpretation of the data. With respect to our major focus on tandems, if the true start and end of an element are incorrectly located internally in its consensus sequence, then every instance of that repeat in the genome will artifactually produce the signature of a tandem, generating the appearance of a multicopy, high-population-frequency tandem. Therefore, whenever we saw an element with such a junction in our analyses, we examined the alignments of the consensus sequence to the reference genome to confirm that our consensus sequence correctly captured the start and end of the repeat. Batumi, Foldback and Vatovio are not included in subsequent analyses due to errors in Repbase entries and their consequent propensity for mapping artifacts.

[bookmark: _Toc496213249]Estimating the gap size distribution
We examined the set of all reads aligned to the major chromosome arms of the reference genome. Because we knew a priori that the average insert size in the GDL is around 500 bp, we considered any read pair putatively concordant where the reads 1) map to opposite strands, 2) are oriented toward each other, and 3) have a distance between 3’ ends of less than 1kb. On each of the major autosome arms we counted the number of reads with each possible gap size between 0 and 1,000, and normalized this to obtain separate estimates of the gap size distribution (Fig. S1A). Rather than fit parametric distributions to the observed gap size frequencies, we employed the nonparametric kernel density estimator (KDE) with a Gaussian kernel.  We chose an optimal bandwidth by 2-fold cross validation (CV). In short, as we constructed a separate gap size distribution for each autosome arm, we have four estimated frequencies for each gap size, which we assign to two complementary subsets at each iteration of CV; within each subset, the frequencies at each gap size were averaged and the distributions normalized to sum to one.  We constructed 100 such subsets, and cross-validated with respect to the mean-squared error (MSE) over a range of bandwidths between 0 and 100, performing an exponential search over four orders of magnitude. We then pooled the reads from across the chromosomes, taking the KDE with the chosen bandwidth. 

Alignment Parameters
We aligned the data with parameters [bowtie2-align -p <# threads> -<phred format of data> --score-min L,0,<-.64 or -1.0> -L 22 -x <Index> -U <infile> -S <outfile>] and use -.64 as the alignment threshold for the reference genome and -1.0 as the alignment threshold for the insertion index.
[bookmark: _Toc496213250]Converting alignments from insertions to consensus sequences
We first used BLASTN (Altschul et al., 1990) to align all individual repeats to all repeat consensus sequences, and kept those alignments where the identity was at least 80%. If an individual repeat aligned multiple times to the set of consensus sequences, we chose the alignment with the lowest e-value; if there were ties we chose the longest alignment. The result of this is a table describing how the coordinates in each individual insertion correspond to coordinates in the corresponding consensus sequence. We then used the BLAST traceback strings to convert the aligned coordinates of reads from individual insertions to the corresponding coordinates on consensus sequences. If the new aligned length of the read on the consensus was either less than 50% or greater than 150% of the original read length, that alignment was rejected and the read was marked as unaligned. We then updated the CIGAR and MD strings to reflect the new alignment.
An Expectation-Maximization algorithm for identifying structures
To fit the GMM to the data, we employ an Expectation-Maximization (EM) algorithm accelerated with the SquareEM procedure (Varadhan and Roland, 2008). We use the standard update equations for a GMM to update the means and mixing proportions of the model, but hold the covariance constant and tied among all components (Melnykov and Maitra, 2010). The covariance parameter describes the shape of the component distributions; as this relates to the insert size distribution of the sequencing library and does not vary among the individual distributions, it can be learned prior to clustering the data. This constraint coupled with soft-cluster assignments during EM allows the algorithm to automatically identify a reasonable number of clusters given the data, provided that the number of the initial components is greater than the number of real clusters in the data (Fig S2A,B). This makes solving the clustering problem tractable and easy to automate because it eliminates the need for model selection with respect to the number of components in the mixture model.
 Several details of the implementation affect the algorithm’s behavior. First, in SquareEM, a parameter, α, is computed at each iteration based on how the EM update step behaves over a series of test updates and which controls the rate at which EM updates move through parameter space; an additional iterative procedure is required to tune α to preserve EM’s guarantee that the updated model is at least as good as the current model. We limited this tuning procedure to 10 iterations, after which if a suitable α is not identified we set α = -1, which corresponds to a single standard EM update (and thus guaranteeing the likelihood increases monotonically). Second, to ensure the model includes more components than the number of true clusters in the data, we initialize components on randomly chosen data points, but with the constraint that no two components be placed within distance D of each other, and add components until there are no eligible data points remaining. D is set equal to , where  and  are the standard deviations of the component distributions along the first and second eigenvectors of the covariance matrix. This heuristic further ensures that components are well-distributed across the data, rather than concentrated near high copy structures. Third, as the EM iterations proceed, components are merged if their means ever attain the same integer values. The EM procedure is terminated when the change in the log-likelihood drops below 10-3 or after 200 iterations. In practice, the algorithm almost always terminates prior to 200 iterations. Very rarely, an initialization fails to converge; whenever this happens, D is recursively reduced to  to increase the number of components in the model and the algorithm is reinitialized and repeated until it converges. Hard clusters are subsequently formed by assigning each read pair to the most likely cluster.
[bookmark: _Toc496213251]Setting the model covariance
An appropriate covariance matrix for the component distributions needs to be identified for each sequencing library before it can be clustered. A bivariate covariance matrix,  , oriented at angle  can be decomposed , where Q is a matrix with eigenvectors as columns of the form  and  is a diagonal matrix of eigenvalues  . Because we know that the distributions should be oriented at an angle of  relative to the X and Y axes, we set  when the axes represent the same strand and  when the axes represent different strands. Then the matrix  of eigenvalues  and  specifies the covariance, and corresponds to the variances of a bivariate Gaussian along the two eigenvectors. Rather than optimize the variances, we optimized with respect to the standard deviations  and .
To identify the smallest pair of eigenvalues expected to yield a good clustering of the data, we considered the algorithm’s performance on a set of training data. We constructed the training set from insertions of a few high-copy TE families (roo, hobo, Baggins, and DMCR1A) into unique sequence on the major chromosome arms (2L, 2R, 3L, 3R, X). To identify insertions, we clustered the set of read pairs where one end is anchored in a repeat sequence and the other on a chromosome arm for each combination of training family, chromosome arm, and strand using single linkage agglomerative clustering with a distance cutoff of . We chose  using the library’s gap size distribution to perform 10,000 Monte Carlo simulations of three read pairs spanning a junction and determining the maximum distance on either axis between the adjacent reads in a simulated cluster;  is set equal to the 99%-quantile of this maximum distance. We kept all such clusters with at least three reads. To exclude aberrant clusters and PCR-duplicated singletons from the training set, we removed any training cluster that did not yield a single cluster upon reclustering with the largest tested covariance matrix  or which yielded a single cluster upon reclustering with a very small covariance matrix .
To choose  we assessed clustering performance with  for values of  between 1 and  with a step size of 1. At each  we resample with replacement the training set to obtain a sample of 150 training clusters, used SquareEM to recluster each with a 10-component GMM without the constraint that initial components must be distance d apart, and computed average clustering performance, . As we expect that each entry in the training set represents a single true cluster, we defined clustering performance on each training cluster as the mean proportion of reads in the largest cluster identified by EM upon reclustering, such that performance equals 1 if the original cluster is recovered and is less than 1 if it is not. To model the expected clustering performance as a function of  we employed Gaussian Process (GP) Regression as implemented in Scikit-Learn (Pedregosa et al., 2011), an expressive regression model which learns nonlinear relationships from an extensive family of functions; the kernel of the GP is constructed as  with bounds on the Rational Quadratic kernel’s length scales at 1e-20 and 1e20, and the associated hyperparameters chosen by gradient ascent with respect to log-likelihood. We fit with 20 restarts to reduce the odds of becoming trapped at local maxima and use the expectation of the fitted model to set the optimal parameter  equal to the smallest  such that the predicted performance is greater than  (SF 1C). We then assessed clustering performance with   for values of  between 1 and  with a step size of 1, and use the expectation of the fitted GP model to set  equal to the smallest  such that the predicted performance is greater than . We specified the covariance matrix of the GMM for the dataset using . We set , , , and  based on manual examination of clustering performance in a few datasets.

[bookmark: _Toc496213252]Assessing clustering performance
We were primarily concerned with the precision () and recall () of our algorithm which are dependent on the numbers of True Positives (TP), False Positives (FP), and False Negatives (FN). Here, Positive and Negative respond to the statement “These two reads belong in the same cluster.” As this is dependent on knowing the true labels, we assessed performance on simulated data. Ensuring that the algorithm has good recall is important for structure discovery, as a high false negative rate means that the algorithm is likely to identify multiple junctions, where in truth there is only one. Precision, however, is important when studying repeats, as distinct structures often involve similar junctions which yield overlapping read pair distributions that must be resolved; a high false positive rate means that the algorithm will identify a single junction where there are in fact multiple distinct junctions.  We employed two tests to each dataset to summarize how the algorithm behaves in each situation. 1) We assessed recall as a function of the number of reads in a cluster and 2) assessed precision as a function of the distance between two junctions along both eigenvectors of the model’s covariance.
To assess our ability to recover true clusters as a function of read counts for a particular sample, for each read count from 2 to 20, we clustered twenty sets of ten simulated read pair distributions of that read count and computed the recall as implemented in Scikit-Learn.
To assess our ability to distinguish two nearby junctions in a given dataset, we considered the precision on simulated distributions of 20 reads each spanning junctions spaced some distance apart. We tested precision along both the first and second eigenvectors of the covariance matrix, clustering ten simulated mixture distributions at each of 150 evenly spaced distances between zero and four times the covariance matrix’s standard deviation along the corresponding eigenvector. As the relationship between precision and distance is sigmoidal, we summarized the trend with the generalized logistic function  where A and K are the lower and upper asymptotes respectively. We used nonlinear least-squares regression, fitting with scipy.optimize.curvefit. We set A=min(Precision) and K=1. We chose as our initial guess Q=1, B=1, v=1 , such that when x=M,  and will be halfway between the two asymptotes, so we set M halfway between the largest X such that y is at the lower asymptote and the smallest X such that y is at the upper asymptote. For all but two samples this initialization method found a good solution. In these two samples, we repeated the regression, setting M with the more robust initial guess , and obtained reasonable fits both times.
[bookmark: _Toc496213253]Efficiency of EM on the Global Diversity Lines
When applied to the GDL, the algorithm converged prior to 200 iterations in all but 55 of the 1,137,005 EM runs; 46 of these 55 were cases where a precision error prevented convergence, and the algorithm was reinitialized. The average time to convergence was .03 seconds (median .004) requiring on average 3.76 SquareEM iterations.
[bookmark: _Toc496213254]Estimating the read depth distributions
Because the GC-content of read pairs can bias estimates of read depth (Dohm et al., 2008), we constructed the joint distribution of the read depth of a position and the expected GC-content of the PCR amplicon for a read pair spanning that position. We computed the expected GC-content of a read pair spanning each position in the reference genome using the read length and insert size distribution. To exclude mismapped read pairs we restrict ourselves to read pairs where the sum of the mapping qualities of both ends was more than 30. To exclude homozygous deletions and masked sequence, we excluded positions where the average coverage within a 470 nt window was less than .1 or the proportion of repeat-masked nucleotides in the same window exceeded 1%. We then combined the coverage and %GC signals into a separate two-dimensional histogram for each autosome arm, where %GC is divided into 1% bins. Rather than fit parametric distributions to the observed read depth frequencies, we employed the nonparametric kernel density estimator with a Gaussian kernel to account for the wide range of shapes we observed.  We chose an optimal bandwidth for each %GC bin separately by 2-fold cross validation (CV). In short, as we constructed a separate conditional read depth distribution for each autosome arm, we have four frequency estimates for each read count, which we assign to two complementary subsets at each iteration of CV; within each subset, the frequencies at each read count are averaged and the distributions are normalized to sum to one. Because the frequency of positions where read count = 0 is still partially contaminated by deletions and masked positions, we excluded this bin from CV to avoid oversmoothing.  We constructed 100 such subsets, and cross-validated with respect to the mean-squared error (MSE) over a range of bandwidths between 0 and 100, performing an exponential search.  
[bookmark: _Toc496213255]Identifying putative technical artifacts
Chimeric inserts are a common source of false positives when inferring structures from paired-end data. Because they arise when two fragments of the genome are joined by chance during library preparation, they will not produce a diagonal cluster of reads, like a true junction, but rather one or more identical read pairs. The presence of PCR duplicates means that not all chimeric inserts will be singletons, but rather there may be multiple reads with identical 5’-ends. Thus, we only considered structures identified by EM that were supported by two or more reads with distinct 5’ coordinates. Clusters that failed to meet this criterion were flagged as putative technical artifacts.
[bookmark: _Toc496213256]Estimating the location of junctions
Each cluster of read pairs should represent the junction of a structure in the sequenced genome, and the distance between each read pair and the true junction location is the gap size of that read pair. So, we estimated the location of the underlying junction as the average position of all read pairs in the cluster, offset by one-half the average gap size along both the X- and Y-axes. The offset is negative on reverse strands, positive on forward strands (Supplemental Fig S1B).

[bookmark: _Toc496213257]Estimating junction copy number
We estimated the copy number, N, of structures in a manner that accounts for GC-bias by modeling the read count, X, of a tandem junction as the sum of the reads originating from each of the N copies of the junction in the sequenced genome:

where  is the read count distribution for a single copy sequence with the same local GC-content as the junction (see Supplemental Methods). To express beliefs about the copy number given the number of supporting reads, we compute the posterior distribution as:
	
To compute the likelihood  we make use of the Central Limit Theorem (CLT). As read depth is modelled as the sum of independent and identically distributed random variables, provided N is not very small,  should be well approximated by the Normal distribution  , where  and are the mean and standard deviation of read depth over a single copy junction. In practice, even for small  we found this yielded good estimate of the posterior, so we employed this approximate likelihood rather than the more computationally intensive exact likelihood with convolutions of the read depth distribution. Thus:
 
We used the posterior distribution to obtain maximum a posterior (MAP) estimates of copy number as well as to define 98% credible intervals around the MAP estimates. We approximate the normalization factor for the posterior as the sum , not considering copy number hypotheses greater than 2000 more than the expected copy number.
[bookmark: _Toc496213258]Identifying reads containing tandem junctions
Tandem dimers arising from double insertions should contain sequence from the target site within their tandem junctions. The length of intervening sequence may vary depending on the element, and non-LTR retrotransposons are known to have variable target site duplications (Linheiro and Bergman, 2012). Consequently, the amount of sequence derived from the tandem elements themselves may be small. We therefore used permissive alignment criteria to identify reads spanning tandem junctions, and then restricted ourselves to tandem junctions whose existence was also supported by read pair alignments. To identify reads that might contain tandem junctions, we went back to the raw sequencing reads for each sample and extracted all reads containing an 11-14 nucleotide seed from the 3’-end of each DNA and non-LTR TE. For DNA transposons, the seed is the exact 3’-end, but as many non-LTR contain polyA tracts at the 3’-ends of their consensus sequences, we chose a 12-nt sequence within 20 nt of the polyA tract. Because the initial seeds were short, we then BLASTed these reads against the repeat consensus sequences and assigned each read to the element with which it forms the best high-scoring pair as determined by e-value and then realigned each read to that element’s consensus. If a read contains a tandem junction there should be two non-overlapping intervals homologous to the repeat, so we first selected the hit with the highest e-value, excluded any other alignments overlapping this hit and among the remaining hits chose the highest e-value alignment. If there were two equally good alignments, we chose the alignment which matched the strand of the first hit. We required that both alignments have e-values less than .05 and that they extend to within 3 nt of the read’s end. To further ensure the reads contain true tandem junctions, for DNA transposons we required that the junctions involve sequence within 10-nt of each end of the consensus. To avoid discarding 5’-truncated elements, we did not apply this criterion to non-LTR retrotransposon tandems.
To identify intervening sequence, we extracted all sequence between the ends of the tandem repeats. To ensure a sequence and its reverse complement were treated as equivalent, we choose the lexicographically maximum string of each intervening sequence and its reverse complement. To exclude long polyA tracts from the intervening sequences of non-LTR retrotransposons, we removed polyA and polyT tracts five nucleotides or more in length, along with all sequence 5’ or 3’, respectively. 
[bookmark: _Toc496213259]Inferring euchromatic TE insertions from junctions
A TE insertion generates two junctions, one with either side of the insertion site. These junctions should fall in opposite quadrants of our scatterplots (e.g. (-,-) and (+,+) or (-,+) and (+,-) ). Thus, identifying insertions from the set of junctions requires matching pairs of junctions. Because insertions along the assembled chromosome arms are likely to be far apart, we favored a simple clustering strategy. We therefore employed single linkage agglomerative clustering with a distance cutoff of 300 nt to cluster all junctions of a given element in opposite quadrants of each chromosome arm. To ensure we did not miss reference insertions – which will be masked – we disregarded masked nucleotides when computing distance. We estimated the insertion’s location as the average estimated position of its junctions.

[bookmark: _Toc496213260]Matching junctions between samples
When we need to make more precise statements about whether a set of junction estimates reflect the same underlying structure, we employ a clustering strategy based on the idea that there is a set of true structures  present in the populations, with frequencies  and sequence coordinates . In this manner of thinking, the probability that an estimated junction  with uncertainty  arose from underlying structure  is 

This is tantalizingly similar to the sort of Gaussian Mixture Model for which EM can find good solutions. We use a similar set of update equations to cluster the data



As this model is not a GMM these update procedures do not optimize its likelihood (i.e. not an EM procedure), but they are similar to the updates in a Fuzzy C-Means algorithm and cluster the junctions in a reasonable manner. The inclusion of mixing proportions allows the algorithm to automatically arrive at a reasonable number of clusters by driving the mixing proportions of extraneous components toward zero. To initialize the model, we place components on random data points until each data point is within one standard deviation of exactly one component. We then iteratively apply the update equations to the model parameters for at least ten iterations. We base the termination criteria on the proportion of junctions whose most likely cluster assignment,  has changed after the update. To prune the model, at each iteration we remove any component that fails to explain at least one data point better than the other components. We terminate after 200 iterations or if the proportion of cluster assignments which change after an update remains less than .001 for ten updates. After termination, we define hard cluster assignments but do not consider the mixing proportions when doing so. To understand why, consider the log likelihood ratio between two possible cluster assignments for a data point (for ease of representation, in the univariate case)

The displacement of the cluster centers from the data point only contributes to the log-likelihood ratio in the last term and the strength of this contribution decreases with the uncertainty of the data. This is not unreasonable: If a data point’s location were entirely uncertain, a good guess would be to assign it to the cluster with the highest mixing proportion. Nonetheless, we prefer the clear cluster boundaries that result from assigning data to the nearest cluster center.
We assess the performance of this approach on simulated data. For each simulation we randomly choose 25 (x,y)-coordinates in a 6,000 by 6,000 nt space as the set of true junctions and define a population frequency for each. Based on its frequency, we randomly assign each junction as being present/absent in GDL strains. For each junction in a given sample, we simulate a read pair distribution from the library’s gap size distribution and estimate the junction’s location as specified above—taking the average read pair location and shifting by half the gap size along each axis. We then cluster all of the simulated junctions in the population. Thus, each junction  originated from true location  and has been assigned to a cluster which has location . This simulation scheme allows us to use the true locations and correct cluster assignments as benchmarks against which the clustering performance can be measured. To assess the ability of the algorithm to estimate the true locations of the underlying junctions we employ the root-mean-square-deviation

To assess the ability to recover the true clusters, we compare the obtained cluster assignments to the correct cluster assignments using pairwise recall as implemented in Sklearn.
To understand how the read counts of junctions affected these measure, we ran simulations with random population frequencies over a range of 20 read depths from 3 to 1,000, log-uniformly spaced, with 20 replicates each. To understand how population frequency affected these measures, we ran simulations for every population frequency between 1/85 to 85/85 inclusive with the read depth held constant at 8, with 4 replicates each. We find that this cluster approach does a good job estimating the true junction locations, with the RMSD decreasing as read depth and frequency increase (Fig S4 A,B). We also find that it effectively recovers the true cluster assignments, with recall generally close to 1 in all simulations (Fig S4 C, D). 
Nonetheless, as this approach to clustering leverages our expectations of how junction estimates are distributed around the true junction, it is likely to behave poorly when those expectations are strongly violated, such as when the distribution of read pairs from which the junction is estimated is truncated. Such violated assumptions are difficult to model but are likely to split into multiple clusters junctions which should be truly grouped as single cluster. However, each junction in a cluster belongs to a particular sample and this provides an opportunity to detect clustering errors. If two nearby clusters represent distinct structures, there should be no association between which samples are represented in each cluster. On the other hand, if two clusters represent the same structure, those samples present in the first cluster should tend to be absent from the second, and vice versa. The probability that such an inverse association occurs by chance can be obtained using a one-tailed Fisher’s exact test. Therefore, we employ a hierarchical clustering scheme to identify and join incomplete clusters from the first clustering step. We test all pairs of clusters whose centers are within 100-bp for an inverse association and join the pair with the lowest p-value. We repeat this procedure until no pair rejects the null hypothesis at a significance level of .01.
[bookmark: _Toc496213261]Estimating the error of junction estimates
The above clustering strategy requires that the degree of uncertainty around each junction estimate be quantifiable. Because we estimate junction locations using the average coordinate of read pairs in a cluster, the error of these estimates should be approximately distributed according to the Normal distribution  where  is the expected covariance of the read pair distribution and the  is the read count. In principle  could be estimated from the insert size distribution, but in the EM clustering step, we found that parameters chosen this way resulted in low recall compared to those learned from training data. TE insertions generate two junctions with their target site which can be reformulated as independent estimates of the same sequence coordinate by subtracting the length of the element from the position of the 3’-junction within the consensus. The difference between two sample means and  of the same population can be related to the population variance  as follows (for simplicity we present the univariate case):

where  and  are the respective sample sizes and  is the population mean. The Normal distributions are parameterized by mean and variance. Because these are approximately Normally distributed, the difference between the means is also Normally distributed

 The variance of this difference is then 

Because the expectation of the difference is zero, by definition the variance is also:

So,

We use this relationship to estimate  by fitting a nonlinear least squares regression with the read counts of the two junctions as the predictor variables and the squared difference of the means as the response variable.
To estimate this, we use the set of TE insertions we identified and limit ourselves to junctions with LTRs, as they are less prone to forming unexpected structures than non-LTR and DNA transposons. To limit bias, we exclude all insertions within 500nt of masked sequenced, which includes reference TE insertions. As with the GMM, , where Q is a matrix with eigenvectors as columns of the form  and  is a diagonal matrix of eigenvalues  , and we know  when the axes represent the same strand and  when the axes represent different strands. We estimate the variance along each eigenvector separately by carrying out nonlinear least squares regressions between the read counts and squared difference of the means along that eigenvector using the Levenberg-Marquardt algorithm as implemented in scipy.optimize.curvefit with default settings. The regression returns the expected parameter and standard deviation around the point estimate. To be somewhat conservative, we add one standard deviation to the estimated variance when clustering.
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