Ke et al.
Saturation mutagenesis reveals manifold determinants of exon definition

Supplemental Methods: Perl and Python scripts

TABLE OF CONTENTS

RBP Immunoprecipitation Experiment

IpBarCodeParse . Pl . .o e e e e e e e 2
IPSequenceParse. pl ... e e e e e e e e e aeaeaeea e 4
CalculatePPD Pl o e e e e e e e e e e e e e e 7

RBP 7mer Experiment

1T 3 1= o I 1 = T o 11
RegressionsFDR . Pl ... e e e e e e e e e e e aemememe e 12
RS =T 01] = o 18
StepwiseCombined . Pl - . oo e e e e e e e e e me e e e m e 27
LIS 500 e (O o 1 35
VarKmerContribution . pl _ . e e e e e e e e a e a e aaaaaaa 42

2T 1 e |0 gf= T o o Y 46

B R A R T A R R A S R A R R A AR
B

IpBarCodeParse.pl

#

Strictly screens sequencing data by demanding that bar code for protein of interest
is

matched perfectly

B R A R T A R A R A R R AR
R

use warnings;

use strict;

my %bases = ();

$bases{"A"} = "T";
$bases{"'C"} = "G";
$baseS{IlGlI} = IICII;
$bases{"T"} = "A";

my %bar_codes = ();
open(FILE, “exp_2 rna_quantities.csv');
while(<FILE>){
chomp $_;
my @props = split(/\,/, $);
$bar_codes{$props[2]} = $props[0];

}
close(FILE);

my %groups = ();
my %phreds = ();
my %ids = Q;

my $total_sequences = 0O;
for(my $number = 1; $number < 5; $number++){
open(FILE, '20150410_S1 LO0OO".$number." R1 001.fastq'™);
my $counter = 0;
my $current_phred = ""';
my $current_id = "";
my $is_good =
my $current_membership = "";
while(<FILE>){
chomp $_;
if(($counter % 4) == 0){
$current_id = $_;
Yelsif(($counter % 4) == 1){
my $seq_bar = substr($_, 0, 8);
if(exists($bar_codes{$seq_bar})){
if(Yexists($groups{$bar_codes{$seq_bar}})){
$groups{$bar_codes{$seq_bar}} = [1;
$ids{$bar_codes{$seq_bar}} = [1;
$phreds{$bar_codes{$seq_bar}} = [1;

}
push(@{$groups{$bar_codes{$seq_bar}}}, $);
push(@{$ids{$bar_codes{$seq bar}}}, $current_id);
$current_membership = $bar_codes{$seq_bar};
$is_good =

}else{
$is_good =

by

$total_sequences++;
Yelsif(($counter % 4) == 3 && $is_good){

push(@{$phreds{$current_membership}}, $);
}

$counter++;

}
close(FILE);
by
foreach my $group (sort keys %groups){
open(WRITE, ">"_$group." Perfect');
my $size = scalar(@{$groups{$group}});
for(my $i = 0; $i < $size; $i++){
print WRITE $ids{$group}[$i].""\n";
print WRITE $groups{$group}[$i]-'""\n"";
print WRITE $phreds{$group}[$i]-""\n"";

}

close(WRITE);

print $group.'\t"_$size."\t".$total_sequences.'"\t" . ($sizes/$total_sequences).'"\n";
}
sub rc{

my $seq = $_[0];
my $reverse_seq = reverse($seq);
my @seq_bases = split(//, $reverse_seq);
my $rc_seq = ""';
foreach my $base (@seq_bases){
$rc_seq = $rc_seq.$bases{$base};

}

return $rc_seq;

HH AT R R R R R R R R R R R R R R
HH

IpSequenceParse.pl

#

1)Demands that read sequences already screened for perfect bar codes by
ParseData.pl contains

a perfect match to one of our known mutants at the expected nt distance from the
bar code

2) Calculates the read count and frequency for all sequences of interest

HH AR R R R R R R R R R R R R R R H
HH

use warnings;

use strict;

my %real_seqgqs = ();

my %bases = ();

$bases{"A"} = "T";
$bases{"'C"} = "G";
$bases{"G"} = "C";
$bases{"T"} = "A";
$bases{"N"} = "N";

open(FILE, "*HM90summVNewLEISC'™);
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
my $mut_area = substr($props[3], 24, 47);
$real_seqs{$mut_area} = 1;
}
close(FILE);
my @classes;
open(FILE, "exp_2_rna_qgquantities2.csv");
while(<FILE>){
chomp $_;
my @props = split(/\,/, $);
push(@classes, $props[0]);

}
close(FILE);

open(WRITEO, ">UH Normalized_ Frequencies/summary_part 2'");
foreach my $class (@classes){
my $start = time();
open(FILE, $class."_Perfect');
my $total_good_reads = O;
my %read_count = ;
my $is_kept = 0;
my $kept_index = -1;
my @seq_phreds;
my $bad = 0;
my $line_count = O;
while(<FILE>){
chomp $_;
my $1 = length($));
if(($line_count % 3) == 1){
if($l >= 47){
my $seq = rc($);
my $already_in = O;
for(my $i = 0; $i < ($1-46) && '$already_in; $i++){
my $sub_seq = substr($seq, $i, 47);
if(exists($real_seqs{$sub_seq})){

if(lexists($read_count{$sub_seq})){
$read_count{$sub_seq} = O;
}

$read_count{$sub_seq} += 1;
$total_good_reads++;
$already_in = 1;

$is_kept = 1;

$kept_index = $i;

Yelse{
$is_kept = 0;
}
¥
Yelse{

$is _kept = 0;

}
Yelsif(($line_count % 3) == 2 && $is_kept){
my $seq_quality = reverse($);
$seq_quality = substr($seq_quality, $kept_index, 47);
my @scores;
for(my $i = 0; $i < 47; $i++){
push(@scores, ord(substr($seq_quality, $i, 1))-33);
}

my $avg_phred = average(\@scores);
if($avg_phred < 21){
$bad++;

}
push(@seq_phreds, $avg_phred);
e

$line_count++;

}

close(FILE);

my @real_read counts;

my $real = 0;

open(WRITE1, ">UH_Normalized Frequencies/".$class." Frequency');

foreach my $key (sort {$read_count{$b}<=>$read_count{$a}} keys %read count){
push(@real_read_counts, $read_count{$key});
print WRITE1

$key."\t"_$read_count{$key}."\t".($read_count{$key}/$total_good_reads).'"\n";

$real++;

close(WRITEL);

my $average_avg_phred = average(\@seq_phreds);

my $staddev_avg_phred staddev(\@seq_phreds);

my $average_real = average(\@real_read_counts);

my $staddev_real = staddev(\@real_read_counts);

print WRITEO
$class."\t".$real .""\t"_$total_good_reads.'"\t"_$average_real .""\t"_$staddev_real .""\t".$
average_avg_phred.'"\t"._.$staddev_avg_phred.' "\t _$bad.'"\n";

my $end = time(Q);

my $elapsed = $end-$start;

print $class.'"\t"_$elapsed."\n";

}
close(WRITEO);

sub average{
my @values = @{$_[O01};
my $length scalar(@values);
my $total = O;
foreach my $value (@values){

$total = $total + $value;

+

my $avg = $total/$length;

return $avg
b
#function to calculate the standard deviation of a set of values iIn an array
#given that there exists an average function
sub staddev{

my @values = @{$_[0]1};

my $avg = average(\@values);

my $total = O;

foreach my $value (@values){

$total = $total + (Bvalue-$avg)**2;

my $length = scalar(@values);
my $stdd = ($total/($length-1))**_5;
return $stdd;

sub rc{
my $seq = $_[0];
my $reverse_seq = reverse($seq);
my @seq_bases = split(//, $reverse_seq);
my $rc_seq = ""';
foreach my $base (@seq_bases){
if(exists($bases{$base})){
$rc_seq = $rc_seq.$bases{$base};
}else{
die $base.'"\n";
}

}

return $rc_seq;

B R A R T A R R A S R A R R A AR
R

CalculatePPD._pl

#

For a given protein pull down, calculates a PPD by using the frequency of a
sequence in the

pull down library of interest and its frequency in the input library, controlling
for

the amount of RNA used and for artificial pull down per immunoglobulin used (mouse,
rabbit,

or goat)

B R A R R A R A R R R S R I R R A AR
R

use warnings;
use strict;

my $READ_MIN = $ARGV[O];
my %quantities = ();

my %classes = ();

my %label_to_class = ();

my @classes_array;

open(FILE, "bar_codes™);

while(<FILE>){
chomp $_;
my @props = split(/\,/, $);
$classes{$props[0]1} = [$props[0], $props[1l], $props[31];
$label_to_class{$props[0]} = $props[0];
$Squantities{$props[0]} = $props[4];
push(@classes_array, $props[0]);

3
close(FILE);
#Find controls

my %controls =);
my %control_totals = ();
my %experimental _totals = ();
foreach my $key (keys %classes){
my @control_type = split("_", $classes{$key}[0]);
iT($control_type[0] eq "MOUSE™ || $control_type[0] eq "RABBIT" ||
$control_type[0] eq "GOAT'™){
$controls{$key} = {};
open(FILE, $key." Frequency'™);
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
$controls{$key}{$props[0]} = $props[1];
$control_totals{$key} += $props[1];

close(FILE);
Yelse{

$experimental_totals{$key} = 0O;

open(FILE, $key." Frequency');

while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
$experimental_totals{$key} += $props[1];

}
print $key.'"\t"_$experimental_totals{$key}.""\n";

close(FILE);
+

for(my $exp = 1; $exp < 3; $exp++){

my %input_class = ();

my %input_class raw = ();

my $current_input = "1_"_$exp;

open(FILE, "1_"_%exp."_Frequency');

while(<FILE>){
chomp $_;
my @props = split(/\t/, $));
$input_class{$props[0]} = $props[2];
$input_class_raw{$props[0]} = $props[1];

+
close(FILE);
foreach my $class (@classes_array){
my @File_props = split("_", $class);
my $control_label = $classes{$class}[0];
my @control_props = split("_", $control_label);

if($file_props[0] ne "1" && $control_props[0] ne "MOUSE"™ && $control_props[0]

ne "RABBIT" && $control props[0] ne "GOAT" && $File _props[1] == $exp){
print $control_props[0].-"\n";
my %output class = ();
open(FILE, $class."_Frequency');
my $not_present = 0;
my $not_present freqs = ""';
my $total_seqs = O;
open(WRITE,

">Experiment_Controlled_Fractions_Modified " _.$READ MIN."/"_.$class."_Controlled_Fracti

ons™);
my $pseudo = 0;
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
$output_class{$props[0]} = $props[1];
$total_seqs += S$props[1l];

if(Yexists(Sinput_class{$props[0]1}H){

$not_present++;

$not_present_freqs = $not_present_freqgs."\t".$props[1l];
Yelsif($input_class_raw{$props[0]} >= $READ_MIN){

my $controlled_ei_num;

my $out_prop;

my $cont_prop;

my $out_quant;

my $cont_quant;

if(lexists($controls{$classes{$class}[1]1}{$Sprops[01})){
$controlled_ei_num =

(($output_class{$props[0]}/Sexperimental totals{Sclass})*$quantities{$classes{Sclass}

[01})-

((1/s$control_totals{$classes{$class}[1]})*$quantities{$classes{$classes{$class}[1]}[O

1:

$out_prop = ($output_class{$props[0]}/Sexperimental_totals{Sclass});

$cont_prop = (1/%control_totals{$classes{$class}[1]});

$out_quant = out_prop*quantities{$Sclasses{$class}[0]1};

$cont_quant =
$cont_prop*$quantities{$classes{Sclasses{$class}[1]}[01};

$pseudo++;

}else{

$controlled_ei_num =
(($output_class{$props[0]}/Sexperimental totals{Sclass})*$quantities{$classes{Sclass}
[013)-
(($controls{$classes{$class}[1]}H{$props[0]}/Scontrol_totals{$classes{$class}[1]})*$qu
antities{$classes{$classes{$class}[1]}[01});

$out_prop = ($output_class{$props[0]}/$experimental_ totals{$class});

$cont_prop =
($controls{$classes{$class}[1]H{Sprops[0]}/$control_totals{$classes{Sclass}[1]});

$out_quant = out_prop*quantities{Sclasses{$class}[0]};

$cont_quant =
$cont_prop*$quantities{$classes{Sclasses{$class}[1]1}[0]};:

my $controlled_ei =
$controlled_ei_num/($input_class{$props[0]}*$quantities{S$current_input});

print WRITE
$props[0]-""\t"_.Scontrolled_ei."\t".$out_prop."\t".$out_quant.'\t".$cont_prop."\t".$co
nt_quant."\t".$input_class{$props[0]}."\t".($input_class{$props[0]}*$quantities{S$Scurr
ent_input})."\n";

+
close(FILE);

foreach my $key (keys %input_class){
if(lexists($output_class{$key}) && S$input_class_raw{$key} >= $READ_MIN){
my $controlled_ei_num;
my $out_prop;
my $cont_prop;
my $out_quant;
my $cont_quant;
if(exists($controls{$classes{$class}[1]}{Skey})){
$controlled_ei_num =
((1/sexperimental_totals{$class})*$quantities{$classes{$class}[0]})-
(($controls{$classes{$class}[1]}{$key}/$control_totals{$classes{$class}[1]})*$quantit
ies{$classes{$classes{$class}[1]1}[01});
$out_prop = (1/%experimental_totals{$class});
$cont_prop =
($controls{$classes{$class}[1]}{$key}/$control_totals{$classes{$class}[1]});
$out_quant = $out _prop*$quantities{Sclasses{$class}[0]};
$cont_quant =
$cont_prop*$quantities{$classes{$Sclasses{$class}[1]}[01};
Yelse{
$controlled_ei_num =
((1/s%experimental_totals{$class})*$quantities{$classes{$class}[0]})-
((1/s$control_totals{$classes{$class}[1]})*$quantities{$classes{$classes{$class}[1]}[O
1:
$out_prop = (1/%experimental_totals{$class});
$cont_prop = (1/%control_totals{$classes{$class}[1]});
$out_quant = out_prop*quantities{Sclasses{$class}[0]};
$cont_quant =
$cont_prop*$quantities{Sclasses{$classes{Sclass}[1]1}[0]1};
}

my $controlled_ei =
$controlled_ei_num/($input_class{$key}*$quantities{$current_input});

print WRITE

$key."\t"_$controlled_ei."\t"_$out_prop."\t"._$out _quant.'\t"._$cont_prop."\t".$cont_qu
ant."\t".$input_class{$key}."\t".($input_class{$key}*$quantities{Scurrent_input}).'"\n

$pseudo++;
}
}
print $pseudo.'\n";
close(WRITE);

10

HHAHHH R HH AR AR A H AR AR AR AR

B

Molecule.pm

#

Molecule object containing essential parameters to define an exon molecule and
store

key properties

HHAHHH R H AR AR H A R R R H AR

HHHHHH

package Molecule;
sub new{

my $class = shift;

my $self = {
_serial => shift,
_hm => shift,
_mut_pos => shift,
_wt_bases => shift,
_mutated_bases => shift,
_seq => shift,
_El => shift,
_rel_EI => shift,
_PUP => shift,
_mut_type => shift,
_LEl => undef,
_PSI => undef,
_LEISC => undef,
_LEle =>undef,
_t_stat => undef,
_p_val => undef,
_protein_positions => {3},
_sig => undef,
_control => undef,
_proteins => {3},
_excess => undef,
_average => undef,
_motifs => [],
_clusters => [],
_max_wt_motifs => [],
_sig_motifs => [],
_insig_motifs => [],
_motif_scores => [],
_esr_scores_left => [],
_esr_scores_right => [],
_esr_sig_left => [],
_esr_sig_right => [],
_rbpss => [],
_rbpss_dis => [],

};

bless $self, $class;

return $self;

P

11

B R A R T A R R A S R A R R A AR
B

RegressionsFDR.pl

#

1. Uses heptamer Z-scores for RNA binding proteins (CISBP-RNA) and experimental
exon

inclusion data to perform regressions at each position along the mutated exon,
correlating

exon inclusion changes created by mutations at a 7mer focus along the exon with the
consequential estimated affinity change for a given protein

2. Controls for multiple comparisons by the BH procedure (alpha = 0.05) for a given
hexmut

set

HHHH A R
HH AR

use warnings;

use strict;

use Statistics::Regression;

use Statistics::Distributions;

use Molecule;

#GATHER Z SCORE AND RBP INFORMATION#

open(FILE, "Zscores.txt'") or die "ERROR: $!\n";
my @lines = <FILE>;

close(FILE);

chomp @lines;

my $id_row = shift(@lines);

my @ids = split(/\t/, $id _row);

shift @ids;

my %proteins = ();

my $id_index = O;

my @translator;

foreach my $id (@ids){
$translator[$id_index] = $id;
$proteins{$id} = {};
$id_index++;

}

my $n_protein_ids = scalar(@translator);

my $hept_counter = 0;

foreach my $line (@lines){
my @z_intensities = split(/\t/, $line);
my $motif = shift(@z_intensities);
$motif =~ s/U/T/qg;
my $n_proteins = scalar(@z_intensities);
$hept_counter++;
for(my $i = 0; $i < $n_proteins; $i++){

if(exists($proteins{$translator[$i]}{Smotif})){
die "ERROR: Repeated sequence\n";

$proteins{$translator[$i]}{$motif} = $z_intensities[$i];
}
}

my %protein_translator = ();
open(FILE, "RBP_Information.txt') or die "ERROR: $!\n";
my @Ins = <FILE>;

12

close(FILE);
shift @lIns;
chomp @Ins;
foreach my $In (@Ins){
my @props = split(/\t/, $In);
if(lexists($protein_ translator{$props[3]})){
$protein_translator{$props[3]} =

e

$protein_translator{$props[3]} = $protein_translator{$props[3]}-$props[6]-".,";
e
$protein_translator{""Cons"} = "Cons";

#INITIALIZE MOLECULES#H#

my %mol_secondary = ();
open(SECONDARY, "All_HM_Heptamer_Secondary_Structure'™);
while(<SECONDARY>){
chomp $_;
my @props = split(/\,/, $);
my $id = shift(@props);
my $seq_id = substr($id, 4);
$mol_secondary{$seq_id} = \@props;

}
close(SECONDARY) ;

open(FILE, "HM90summVNewLEISC'™);
my @molecules;
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
if($props[1] !'= 12){ #gets rid of an HM when needed
iT($props[2] == 0){
my $temp_mol = new Molecule($props[0], $props[1], $props[2], ', ",
$props[3], $props[4]., $props[5], $props[6], "WT™);
$temp_mol->{ LEISC} = S$props[7];
push(@molecules, $temp_mol);
Yelse{
my @sub_bases = split("'-", $props[10]);
my $sub_type = 1;
if(length($sub_bases[0]) == 1){
$sub_type = 0;

my $wt_bases = $sub_bases[0];
my $mut_bases = $sub_bases[1];

my $temp_mol = new Molecule($props[0], $props[1l], $props[2], $wt bases,

$mut_bases, $props[3], $props[4], $props[5], $props[6], $sub_type);
$temp_mol->{ LEISC} = $props[7];
for(my $i = 0; $i < 100; $i++){
push(@{$temp_mol->{ rbpss}}, [1);
}

push(@molecules, $temp_mol);

}
}

close(FILE);

for(my $hm = 1; $hm < 2; $hm++){
my $n_molecules_array = scalar(@molecules);
my %regressions = ();
my %all_heptamers_z =);

13

for(my $i = 20; $i < 69; $i++){
my $exon_position;
if(Si > 22){

$exon_position = $i-22;
}else{
$exon_position = $i-23;

}
my $wt_heptamer; my $wt_left; my $wt_right;
foreach my $molecule (@molecules){

if($molecule->{ hm} == $hm){
if($molecule->{ mut_type} eq "WT'"){
$wt_heptamer = substr($molecule->{ seq}, $i, 7);
$wt_left = substr($molecule->{ seq}, ($i-1), 1);
$wt_right = substr($molecule->{ seq}, ($i+7), 1);
foreach my $protein_key (sort keys Y%proteins){
if(exists($proteins{$protein_key}{$wt_heptamer})){
if(lexists($regressions{$protein_key})){
$regressions{$protein_key} = {};
}
if(lexists($regressions{$protein_key}{$exon_position})){
$regressions{$protein_key}{$exon_position} = [[1., [1. [1. [1.
1. 0. 0i;

bs

push(@{$regressions{$protein_key}{$exon_ position}[0]},
log2($molecule->{ EI}));

push(@{$regressions{$protein_key}{$exon_ position}[1]},
$molecule->{ serial});

push(@{$regressions{$protein_key}{$exon_ position}[2]},
$molecule->{ hm});

push(@{$regressions{$protein_key}H{$exon_position}[3]},
($mol_secondary{$molecule->{ serial}}[$i]/7));

push(@{$regressions{$protein_key}H{$exon_position}[4]},
$wt_heptamer);

push(@{$regressions{$protein_key}H{$exon_position}[5]},
$molecule->{ seq});

push(@{$regressions{$protein_key}H{$exon_position}[6]},
$proteins{$protein_key}H{$wt heptamer});

my $z = sprintf("'%.2f", $proteins{$Sprotein_key}H{$wt heptamer});

$all_heptamers_z{$z} = 1;

}

}
}else{
my $mut_heptamer = substr($molecule->{ seq}, $i, 7);
my $mut_left = substr($molecule->{ seq}, ($i-1), 1);
my $mut_right = substr($molecule->{ seq}, ($i+7), 1);
iT($mut_heptamer ne $wt_heptamer && $mut_left eq $wt_left &&
$mut_right eq $wt_right){
foreach my $protein_key (sort keys %proteins){
if(exists($proteins{$protein_key}{$mut_heptamer})){
if(lexists($regressions{$protein_key})){
$regressions{$protein_key} = {};

if(lexists($regressions{$protein_key}{$exon_position})){
$regressions{$protein_key}{$exon_position} = [[1, [1. [1.

. 0. 0. 0i:

}
push(@{$regressions{$protein_key}{$exon_position}[0]},
log2($molecule->{ EI1}));

14

push(@{$regressions{$protein_key}{$exon_position}[1]},
$molecule->{ serial});

push(@{$regressions{$protein_key}{$exon_position}[2]},
$molecule->{ hm});

push(@{$regressions{$protein_key}{$exon_position}[3]},
($mol_secondary{$molecule->{ serial}}[$i]1/7));

push(@{$regressions{$protein_key}{$exon_position}[4]},
$mut_heptamer);

push(@{$regressions{$protein_key}{$exon_position}[5]},
$molecule->{ seq});

push(@{$regressions{$protein_key}{$exon_position}[6]},
$proteins{$protein_key}{$mut_heptamer});

my $z = sprintf("%.2f",
$proteins{$protein_key}{$mut_heptamer});

$all_heptamers_z{$z} = 1;

}

}
}

my @z_cutoffs = sort {$a<=>$b} keys %all_heptamers_z;
my $n_cutoffs = scalar(@z_cutoffs);
my %significant regressions = ();
my $iteration = 0;
my @First _regressions;
my @sig_regressions;
my @insig_regressions;
open(WRITE,
">No_Cutoff_Regressions_FDR_5/Significant_Cutoff _LEI_Z Regressions_'.$hm);
open(WRITEZ2,
">No_Cutoff_Regressions_FDR_5/Significant_Cutoff_LElI_Z Regressions_"_.$hm." Values');
foreach my $protein (keys %regressions){
foreach my $exon_position (keys %{$regressions{$protein}}){
my $n_points = scalar(@{$regressions{$protein}{$exon_position}[0]});
my @leiscs; my @z_scores;
for(my $i = 0; $i < $n_points; $i++){
push(@leiscs, $regressions{$protein}{$exon_position}[0][$i]);
push(@z_scores, $regressions{$protein}{$exon_position}[6][$i]);

$n_points = scalar(@leiscs);
iT($n_points >= 4){
my $n_pass_cutoff = 0O;
my $reg = Statistics::Regression->new("""", ["y-int", "slope"]);
for(my $i = 0; $i < $n_points; S$i++){
$reg->include($leiscs[$i], [1, $z_scores[$il]);
print WRITE2
$protein."\t"_$protein_translator{$protein}."\t" _.$exon_position."\t".$z_scores[$i]."\
t"_$leiscs[$i]-"\n";
iT($z_scores[$i] >= .45){
$n_pass_cutoff++;
}
}
print WRITE2 "\n"';
my $r2 = $reg->rsq();

15

my @betas = $reg->theta();

my $rss = ($reg->sigmasq())*($n_points-2);

my $sst = $reg->sst();

my $seed_var = 2;

my $average z = average(\@z_scores);

my $median_z = median(\@z_scores);

my $f_for_model = (($sst-$rss)/($seed_var-1))/(($rss)/($n_points-
$seed_var));

my $p_for_model = Statistics::Distributions::fprob(($seed var-1),
($n_points-$seed_var), $f_for_model);

my @regression_props = ($protein, $protein_translator{$protein},
$exon_position, $betas[0], $betas[1l], $r2, $p_for_model, $f for_model, $average z,
$median_z, $n_pass_cutoff, $n_points);

push(@First_regressions, \@regression_props);

}
}
my $alpha = .05;
my $prev_p = -10;
my $rank = 0;
my $total_regs =
my $sig_regs = 0;
my $avg_r2 = 0;
my $m = scalar(@First_regressions);

0;

foreach my $regression (sort sortByP @First_regressions){
my @regression_arr = @{$regression};
if($regression_arr[6] '= $prev_p){
$rank++;
$prev_p = $regression_arr[6];

}
if($regression_arr[6] <= $alpha*($rank/$m)){
if(lexists($significant_regressions{$regression_arr[0]})){
$significant_regressions{$regression_arr[0]} = {};
}

if(lexists($significant_regressions{$regression_arr[0]}{$regression_arr[2]1})){
$significant_regressions{$regression_arr[0]}{$regression_arr[2]} = 1;
3

my $id = shift(@regression_arr);

my $name = shift(@regression_arr);

my $position = shift(@regression_arr);

print WRITE $id."\t"_$position."\t"_$name;

foreach my $element (@regression_arr){
print WRITE "\t".$element;

3
print WRITE '"\n"";

}

}
close(WRITE) ;

close(WRITE2);

sub average{
my @values = @{$_[0]};
my $length = scalar(@values);
my $total = O;

16

}

#function to calculate the standard deviation of a set of values in an array

foreach my $value (@values){
$total = $total + $value;

}

my $avg = $total/$length;

return $avg

#given that there exists an average function

sub

sub

sub

sub

staddev{
my @values = @{$_[0]1}:
my $avg = average(\@values);
my $total = O;
foreach my $value (@values){
$total = $total + (Bvalue-$avg)**2;

my $length = scalar(@values);
my $stdd = ($total/($length-1))**.5;
return $stdd;

sortByP{
my @a_arr = @{$a};
my @b_arr = @{$b};

$a_arr[6]<=>$b_arr[6];

log2{
my $n = shift;
return log($n)/log(2);

median{

my @values = @{$_[01};

@values = sort {$a<=>%$b} @values;
my $median = O;

my $n_values = scalar(@values);

if($n_values % 2 == 0){

my $m = ($n_values/2);

$median = ($values[$m-1]+$values[$m])/2;
Yelse{

my $m = int($n_values/2);

$median = $values[$m];

}

return $median;

17

B R A R T A R R A S R A R R A AR
B
Stepwise.pl

#
1) Performs stepwise regression (alpha = 0.01) using proteins that were significant
from RegressionsFDR.pl as a starting set

2) Used to build a multiple linear model that includes a combination of protein-
positions

which have been determined to be significant independent predictors of our exon
inclusion
data

3) Performs leave-one-out cross validation on models generated
HHHH A R
B

use warnings;
use strict;
use Molecule;
use Statistics::Distributions;
use Statistics::Regression;
my %protein_translator = ();
open(FILE, "RBP_Information.txt') or die "ERROR: $I\n";
my @Ins = <FILE>;
close(FILE);
shift @Ins;
chomp @Ins;
foreach my $In (@Ins){
my @props = split(/\t/, $In);
if(lexists($protein_ translator{$props[3]})){
$protein_translator{$props[3]} =
by

$protein_translator{$props[3]} = $protein_translator{$props[3]}-$Sprops[6]-",";

open(FILE, "Zscores.txt'") or die "ERROR: $!\n";
my @lines = <FILE>;

close(FILE);

chomp @lines;

my $id_row = shift(@lines);

my @ids = split(/\t/, $id _row);

shift Q@ids;

my %proteins =);

my $id_index = 0;

my @translator;

foreach my $id (@ids){
$translator[$id_index] = $id;
$proteins{$id} = ;
$id_index++;

}

my $n_protein_ids = scalar(@translator);

my $hept_counter = 0;

foreach my $line (@lines){
my @z_intensities = split(/\t/, $line);
my $motif = shift(@z_intensities);
$motif =~ s/U/T/q;
my $n_proteins = scalar(@z_intensities);
$hept_counter++;

18

for(my $i = 0; $i < $n_proteins; $i++){
if(exists($proteins{$translator[$i]}{Smotif})){
die "ERROR: Repeated sequence\n';

}
$proteins{$translator[$i]}{$motif} = $z_intensities[$i];
by

for(my $hm = 1; $hm < 11; $hm++){#loop can be eliminated when only interested in
performing stepwise on one set of proteins
my %sig_proteins = ();

open(FILE, "Significant Cutoff LElI Z Regressions_".$hm);#Ffile changes depending

on which hexmut is of interest
while(<FILE>){

chomp $_;

my @props = split(/\t/, $));

iF($props[0] ne "Cons™){
my @var_props = ($props[0], $props[1]);
if(lexists($sig _proteins{$var_props[1]1P){

$sig_proteins{$var_props[1]} = [1:;

s
push(@{$sig_proteins{$var_props[1]}}., $var_props[0]);

+
close(FILE);

foreach my $pos_key (keys %sig_proteins){
my @sorted_proteins = sort(@{$sig_proteins{$pos_key}});
$sig_proteins{$pos_key} = \@sorted proteins;

by

open(FILE, "HM90summVNewLEISC'™);
my @molecules;
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
if($props[1] == $hm){
iT($props[2] == 0){
my $temp_mol = new Molecule($props[0], $props[1l], $props[2], ", ",
$props[3], $props[4], $props[5], $props[6], "WT™);
$temp_mol->{ LEISC} = $props[7];
push(@molecules, $temp_mol);
Yelse{
my @sub_bases = split("-"", $props[10]);
my $sub_type = 1;
if(length($sub_bases[0]) == 1){
$sub_type = O;

my $wt_bases = $sub_bases[0];
my $mut_bases = $sub_bases[1];
my $temp_mol = new Molecule($props[0], $props[1l], $props[2], $wt bases,
$mut_bases, $props[3], $props[4], $props[5]., $props[6], $sub_type);
$temp_mol->{ LEISC} = $props[7];
for(my $i = 0; $i < 100; $i++){
push(@{$temp_mol->{ _rbpss}}, [1):

push(@molecules, $temp_mol);

19

}

}

close(FILE);

my @matrix_ids;

push(@matrix_ids, ""Cons™);

foreach my $position (sort {$a<=>$b} keys %sig_proteins){
foreach my $prot (@{$sig_proteins{$position}}){

push(@matrix_ids, ($prot.","_$position));

}

+
my @leisc_vector;
my @z_score_matrix;
my $forced_zero_counter = 0;
foreach my $molecule (@molecules){
my $leisc = log2($molecule->{ El});
my @z_scores;
push(@z_scores, 1);
foreach my $position (sort {$a<=>$b} keys %sig_proteins){
my $pos = 0;
if($position > 0){
$pos = $position+22;
Yelse{
$pos = $position+23;
+

foreach my $prot (@{$sig_proteins{$position}}){
my $heptamer = substr($molecule->{ seq}, $pos, 7);
if(exists($proteins{$prot}{$Sheptamer})){
push(@z_scores, $proteins{$prot}{$Sheptamer});
Yelse{
push(@z_scores, 0);
$forced_zero_counter++;

}
+
}
push(@leisc_vector, $leisc);
push(@z_score_matrix, \@z_scores);

}

my $start = time(Q);

my $n_ob = scalar(@leisc_vector);

my $n_params = 1;

my @Final_model;

my @Final_model_thetas;

my @Final_model stdes;

my @Final_model_ids;

for(my $i = 0; $i < $n_ob; $i++){
push(@fFinal_model, [1]);

push(@final_model ids, 'Cons'™);
my $min_p = O;

my $r2 = 0;
my $adj _r2 = 0;
my $rss = 0;

my $sst = 0;

my $f _for_model
my $p_fFor_model
my $added = O;
my $alpha = .01;

I
=

20

while($n_ob > $n_params && $min_p <= $alpha){

my $max_t = O;

my $max_t_index = -1;

my $max t p = 1;

for(my $p = 1; $p < scalar(@matrix_ids); $p++){
my @temp_model = @{copy_matrix(\@final_model)};
my @temp_model ids = @{copy_array(\@final_model ids)};
@temp_model = @{copy_column(\@temp_model, \@z_score_matrix, $p)};
push(@temp_model _ids, $matrix_ids[$p]);
my $reg = Statistics::Regression->new('"', \@temp_model_ids);
for(my $i = 0; $i < $n_ob; $i++){

$reg->include($leisc_vector[$i], $temp_model[$i]);

+

my @temp_model_thetas = $reg->theta();
my @temp_model_stdes = $reg->standarderrors();
my $t_stat = abs($temp_model_thetas[(scalar(@temp_model_thetas)-
1)]1/%temp_model_stdes[(scalar(@temp_model_thetas)-1)]);
my $p_val = Statistics::Distributions::tprob($n_ob-scalar(@temp_model ids),
$t_stat);
$p_val = $p_val*2;
if($t_stat > $max_t){
$max_t = $t_stat;
$max_t_index = $p;
$max_t p = $p_val;
+
e
$min_p = $max_t_p;
iIT($min_p <= $alpha){
@Final_model = @{copy_column(\@final_model, \@z_score_matrix,
$max_t_index)};
push(@final_model_ids, $matrix_ids[$max_t_index]);
@matrix_ids = @{delete_from array(\@matrix_ids, $max_t_index)};
@z_score_matrix = @{delete_column(\@z_score_matrix, $max_t_index)};
my $reg2 = Statistics::Regression->new("""", \@final_model_ids);
for(my $i = 0; $i < $n_ob; $i++){
$reg2->include($leisc_vector[$i], $Ffinal_model[$i]);
}
@final_model_thetas = $reg2->theta();
@final_model_stdes = $reg2->standarderrors();
$n_params = scalar(@final_model_ids);
my @now_insig_prots;
for(my $i = 1; $i < $n_params; $i++){
my $t_stat = abs($final_model thetas[$i]/$Final_model stdes[$i]);
my $p_val = Statistics::Distributions::tprob($n_ob-
scalar(@final_model ids), $t_stat);
$p_val = $p_val*2;
if($p_val > $alpha){
push(@now_insig_prots, $i);

= scalar(@now_insig_prots);
@{delete_columns(\@final_model, \@now_insig_prots)};
s = @{delete_many_from_array(\@final_model _ids,

@Final_model

@Final_model_id
\@now_insig_prots)};

$n_params = scalar(@final_model_ids);

$r2 = $reg2->rsqQ);

$adj _r2 = $reg2->adjrsqQ);

$rss = ($reg2->sigmasq())*(n_ob-n_params);

$sst = $reg2->sst();

my $eliminated
i

21

$f_for_model = (($sst-$rss)/($n_params-1))/($rss/($n_ob-$n_params));

$p_for_model = Statistics::Distributions::fprob(($n_params-1), ($n_ob-
$n_params), $f_for_model);

$added++;

print $added."\t"_$min_p."\n";

}
}

open(WRITE,
">Full_Exon_Models_Stepwise_Redone/Full_Exon_Model Sig_Only Variables LEl Stepwise .
$hm."_0.01");
for(my $i = 0; $i < $n_params; $i++){
my $t_stat = $Ffinal_model_thetas[$i]/$Final_model_stdes[$i];
my $abs_t_stat = abs($t_stat);
my $p_val = Statistics::Distributions::tprob($n_ob-scalar(@final_model_ids),
$abs_t_stat);
print WRITE
$final_model_ids[$i].""\t"_$Final_model_thetas[$i]."\t".$Final_model_stdes[$i].""\t".$t
_stat."\t".($p_val*2) ."\t".$r2."\t"_$adj_r2."\t".$p_for_model.""\n";

}

close(WRITE);

my $end = time();

my $elapsed = $end-$start;
print $elapsed.'\n";

my @predicted;
my @observed;
open(WRITE,
">Full_Exon_Models_Stepwise_Redone/Full_Exon_Model LEI_Sig_Only Variables_Added_'.$hm
" CV_ Vals _0.01");
for(my $0 = 0; $0 < $n_ob; $o++){
my @cv_matrix = @{copy_matrix(\@final_model)};
my @cv_leiscs = @{copy_array(\@leisc_vector)};
my $tp_leis = $cv_leiscs[$0];
my @tp_zs = @{$cv_matrix[$o]};
@cv_leiscs = @{delete_from_array(\@cv_leiscs, $0)};
@cv_matrix = @{delete_from_array(\@cv_matrix, $0)};
my $cv_reg = Statistics::Regression->new("""", \@Final_model_ids);
for(my $j = 0; $J < scalar(@cv_leiscs); $j++){
$cv_reg->include($cv_leiscs[$j], $cv_matrix[$j]);
}

my @thetas = $cv_reg->theta();

my $cv_predicted = O;

for(my $p = 0; $p < scalar(@final_model_ids); $p++){
$cv_predicted += $tp_zs[$p]*$thetas[$p];
3

print WRITE $tp_leis."\t"_$cv_predicted.'"\n";
push(@predicted, $cv_predicted);
push(@observed, $tp_leis);

}

close(WRITE);
22

sub

sub

sub

sub

sub

my $MSE = calc_mse(\@predicted, \@observed);
print $hm_.""\t"_$MSE.""\n";

delete_from_array{

my @array = @{$_[O0]};

my $index to_delete = $ [1];

my @new_array;

my $n = scalar(@array);

for(my $v = 0; $v < $n; $v++){
if($v = $index_to_delete){

push(@new_array, $array[$v]);

}

}

return \@new_array;

copy_array{

my @array = @{$_[0]}:;

my @new_array;

foreach my $value (@array){
push(@new_array, $value);

}

return \@new_array;

copy_matrix{

my @matrix = @{$_[01};

my @new_matrix;

my $n_rows = scalar(@matrix);

for(my $r = 0; $r < $n_rows; $r++){
my $n_columns = scalar(@{$matrix[$r]});
$new_matrix[$r] = [1:
for(my $c = 0; $c < $n_columns; $c++){

$new_matrix[$r][$c] = Smatrix[$r][$c];

}

}

return \@new_matrix;

copy_column{

my @to_matrix = @{$_[O0]};

my @From_matrix = @{$_[1]1};

my $From_index = $_[2];

for(my $r = 0; $r < scalar(@to_matrix); $r++){
push(@{$to_matrix[$r]}, $from_matrix[$r][$from_index]);

return \@to_matrix;

add_protein{

my @matrix = @{$_[0]};
my @column = @{$_[11}:
my $n_rows = scalar(@matrix);

for(my $r = 0; $r < $n_rows; $r++){
push(@{$matrix[$r]}, $column[$r]);

return \@matrix;

23

sub delete_column{

my @matrix = @{$_[0]1}:

my $column_to delete = $ [1];

my @new_matrix;

my $n_rows = scalar(@matrix);

my $n_columns= scalar(@{$matrix[0]});

for(my $r = 0; $r < $n_rows; $r++){
$new_matrix[$r] = [1;
for(my $c = 0; $c < $n_columns; $c++){

if($c '= $column_to_delete){
push(@{$new_matrix[$r]}, $matrix[$r][scl);

}

return \@new_matrix;

sub correl{

my @puppy_array = @{$_[0]};

my @d_cs_array = @{$_[11}:;

my $mean_1 = average(\@puppy_array);

my $mean_2 = average(\@d_cs_array);

my $stddev_1 = staddev(\@puppy_array);

my $stddev_2 = staddev(\@d_cs_array);

my $n = scalar(@puppy_array);

my @z_scores_1; my @z_scores 2;

for(my $1 = 0; $I1 < $n; $1++){
my $z_1 = ($puppy_array[$1]-$mean_1)/$stddev_1;
push(@z_scores_1, $z_1);
my $z_2 = ($d_cs_array[$l]-$mean_2)/$stddev_2;
push(@z_scores_2, $z_2);

my $product_sum = O;
for(my $1 = 0; $I < $n; $1++){
$product_sum = $product_sum + ($z_scores_1[$1]*$z_scores_2[$1]);

}
my $r = $product_sum/($n-1);
return $r;

}

#function to calculate the average of a set of values in an array
sub average{

my @values = @{$_[0]1}:

my $length = scalar(@values);

my $total = O;

foreach my $value (@values){

$total = $total + $value;

}

my $avg = $total/$length;

return $avg
by
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{

my @values = @{$_[01}:;

my $avg = average(\@values);

my $total = O;

foreach my $value (@values){

24

sub

sub

sub

sub

$total = $total + ($value-$avg)**2;

my $length = scalar(@values);
my $stdd = ($total/($length-1))**.5;
return $stdd;

calc_mse{

my @y_pred = @{$_[0]};

my @y = @{$_[11};

my $n = scalar(@y_pred);

my $ssd = O;

for(my $i = 0; $i < scalar(@y_pred); $i++){
$ssd += ((By_pred[$i]-Sy[$i])**2)

my $mse = $ssd/$n;
return $mse;

log2{
my $n = shift;
return log($n)/1og(2);

delete_many_ from_array{

my @array = @{$_[0]};

my @indeces_to_delete = @{$ [1]1};

my %to_delete = ();

foreach my $index (@indeces_to_delete){
$to_delete{$index} = 1;

by

my @new_array;

my $n = scalar(@array);

for(my $v = 0; $v < $n; $v++){
if(lexists($to_delete{$v})){

push(@new_array, $array[$v]);

}

}

return \@new_array;

delete_columns{

my @matrix = @{$_[0]1};

my @columns_to_delete = @{$_[1]};

my %to _delete = ();

foreach my $index (@columns_to_delete){
$to_delete{$index} = 1;

}

my @new_matrix;

my $n_rows = scalar(@matrix);

my $n_columns= scalar(@{$matrix[0]});

for(my $r = 0; $r < $n_rows; $r++){
$new_matrix[$r] = [1;
for(my $c = 0; $c < $n_columns; $c++){
if(lexists($to_delete{$c})){
push(@{$new_matrix[$r]}, Smatrix[$r1[$cl);

25

}

return \@new_matrix;

26

B R A R T A R R A S R A R R A AR
B
StepwiseCombined.pl
#
Performs the same task as Stepwise.pl but builds a single multiple linear model for
all
hexmuts combined, using only proteins that were found significant in each hexmut
multiple
linear model (as selected by prior stepwise procedure) as a starting set
B R A R R A R A R R R S R I R R A AR
R
use warnings;
use strict;
use Molecule;
use Statistics::Distributions;
use Statistics::Regression;
my %protein_translator = ();
open(FILE, "RBP_Information.txt'™) or die "ERROR: $I\n";
my @Ins = <FILE>;
close(FILE);
shift @lns;
chomp @Ins;
foreach my $In (@Ins){

my @props = split(/\t/, $In);

if(lexists($protein_translator{$props[3]1})){

$protein_translator{$props[3]} = "";
+

$protein_translator{$props[3]} = $protein_translator{$props[3]}-$props[6]-".,";
}

open(FILE, "Zscores.txt'") or die "ERROR: $I\n";
my @lines = <FILE>;

close(FILE);

chomp @lines;

my $id_row = shift(@lines);

my @ids = split(/\t/, $id_row);

shift Qids;

my %proteins = ();

my $id_index = O;

my @translator;

foreach my $id (@ids){
$translator[$id_index] = $id;
$proteins{$id} = Q;
$id_index++;

¥

my $n_protein_ids = scalar(@translator);

my $hept_counter = 0;

foreach my $line (@lines){
my @z_intensities = split(/\t/, $line);
my $motif = shift(@z_intensities);
$motif =~ s/U/T/q;
my $n_proteins = scalar(@z_intensities);
$hept_counter++;
for(my $i = 0; $i < $n_proteins; $i++){

if(exists($proteins{$translator[$i]}H{$motif})){
die "ERROR: Repeated sequence\n';

$proteins{$translator[$i]}{$motif} = $z_intensities[$i];
27

+
}
my %sig_proteins = ();
open(FILE, "All_HMs Proteins 0.01 no_3");
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
iT($props[0] ne "Cons™){
my @var_props = split(",", $props[0]);
if(lexists($sig_proteins{$var_props[1]1})){
$sig_proteins{$var_props[1]} = [1;

3
push(@{$sig_proteins{$var_props[1]}}, $var_props[0]);

}
close(FILE);

foreach my $pos_key (keys %sig_proteins){
my @sorted_proteins = sort(@{$sig_proteins{$pos_key}});
$sig_proteins{$pos_key} = \@sorted_proteins;

}

my @molecules;

open(FILE, "HM90summVNewLEISC'™);
while(<FILE>){
chomp $_;
my @props = split(/\t/, $_);
if($props[1] !'= 3){ #gets rid of HM3
if($props[2] == 0){
my $temp_mol = new Molecule($props[0], $props[1l], $props[2], "', """
$props[3], $props[4], $props[5], $props[6], "WT");
$temp_mol->{ LEISC} = $props[7];
push(@molecules, $temp_mol);
Yelse{
my @sub_bases = split(*"-", $props[10]);
my $sub_type = 1;
if(length($sub_bases[0]) == 1){
$sub_type = 0;

my $wt_bases = $sub_bases[0];
my $mut_bases = $sub_bases[1];
my $temp_mol = new Molecule($props[0], $props[1l], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], Sprops[6]., $sub_type);
$temp_mol->{ LEISC} = S$props[7];
for(my $i = 0; $i < 100; $i++){
push(@{$temp_mol->{ rbpss}}, [D:;

3
push(@molecules, $temp_mol);
3

3

}
close(FILE);

my @matrix_ids;

push(@matrix_ids, '"Cons'™);

foreach my $position (sort {$a<=>$b} keys %sig_proteins){
foreach my $prot (@{$sig_proteins{$position}}){

28

push(@matrix_ids, ($prot.",".$position));
}
}
my @leisc_vector;
my @z_score_matrix;
my $forced_zero_counter = 0;
foreach my $molecule (@molecules){
my $leisc = log2($molecule->{ El});
my @z_scores;
push(@z_scores, 1);
foreach my $position (sort {$a<=>$b} keys %sig_proteins){
my $pos = O;
if($position > 0){
$pos = $position+22;

Yelse{
$pos = $position+23;

by
foreach my $prot (@{$sig_proteins{$position}}){
my $heptamer = substr($molecule->{ seq}, $pos, 7);
if(exists($proteins{$prot}{Sheptamer})){
push(@z_scores, $proteins{$prot}{Sheptamer});
}else{
push(@z_scores, 0);
$forced_zero_counter++;
+
}
}

push(@leisc_vector, $leisc);
push(@z_score_matrix, \@z_scores);

print "Zero forced: ".$forced_zero_counter.'\n";
my $start = time();

my $n_ob = scalar(@leisc_vector);

my $n_params = 1;

my @Final_model;

my @Final_model_thetas;

my @Final_model stdes;

my @Final_model_ids;

for(my $i = 0; $i < $n_ob; $i++){
push(@Ffinal_model, [1]);

push(@fFinal_model_ids, 'Cons'™);
my $min_p = O;

my $r2 = 0;
my $adj _r2 = 0;
my $rss = 0;
my $sst = O;

my $f_for_model
my $p_for_model
my $added = 0;
my $alpha = 0.01;
while($n_ob > $n_params && $min_p <= $alpha){
my $max_t = 0;
my $max_t_index = -1;
my $max_t p = 1;

I
~ O

29

for(my $p = 1; $p < scalar(@matrix_ids); $p++){

my @temp_model = @{copy_matrix(\@final_model)};

my @temp_model _ids = @{copy_array(\@final_model _ids)};

@temp_model = @{copy_column(\@temp_model, \@z_score_matrix, $p)};

push(@temp_model _ids, $matrix_ids[$p]);

my $reg = Statistics::Regression->new('"', \@temp_model_ids);

for(my $i = 0; $i < $n_ob; $i++){
$reg->include($leisc_vector[$i], $temp_model[$i]);

}

my @temp_model_thetas = $reg->theta();
my @temp_model_stdes = $reg->standarderrors();
my $t_stat = abs($temp_model_thetas[(scalar(@temp_model_thetas)-
1)]/$temp_model_stdes[(scalar(@temp_model_thetas)-1)]);
my $p_val = Statistics::Distributions::tprob($n_ob-scalar(@temp_model ids),
$t_stat);
$p_val = $p_val*2;
if($t_stat > $max_t){
$max_t = $t_stat;
$max_t_index = $p;
$max_t_p = $p_val;
}
+
$min_p = $max_t_p;
iT($min_p <= $alpha){
@Ffinal_model = @{copy_column(\@final_model, \@z_score matrix, $max_t_index)};
push(@final_model_ids, $matrix_ids[$max_t_index]);
@matrix_ids = @{delete_from array(\@matrix_ids, $max_t_index)};
@z_score_matrix = @{delete_column(\@z_score_matrix, $max_t_index)};
my $reg2 = Statistics::Regression->new("""", \@final_model_ids);
for(my $i = 0; $i < $n_ob; $i++){
$reg2->include($leisc_vector[$i], $Ffinal_model[$i]);
}

@Final_model_thetas = $reg2->theta();
@final_model_stdes = $reg2->standarderrors();
$n_params = scalar(@final_model_ids);
my @now_insig_prots;
for(my $i = 1; $i < $n_params; Si++){
my $t_stat = abs($final_model thetas[$i]/$Final_model stdes[$i]);
my $p_val = Statistics::Distributions::tprob($n_ob-
scalar(@final_model_ids), $t _stat);
$p_val = $p_val*2;
if($p_val > $alpha){
push(@now_insig_prots, $i);
}
}
my $eliminated = scalar(@now_insig_prots);
= @{delete_columns(\@Final_model, \@now_insig_prots)};
ids = @{delete_many_ from_array(\@final_model _ids,

@Final_model

@Final_model id
\@now_insig_prots)};

$n_params = scalar(@final_model_ids);

$r2 = $reg2->rsqQ;

$adj _r2 = $reg2->adjrsqQ);

$rss = ($reg2->sigmasq())*(n_ob-n_params);

$sst = $reg2->sst();

$f_for_model = (($sst-$rss)/($n_params-1))/($rss/($n_ob-$n_params));

$p_for_model = Statistics::Distributions: :fprob(($n_params-1), ($n_ob-
$n_params), $f_for_model);

$added++;

print $added.'"\t"_.$min_p."\n";

30

}

open(WRITE,

">Full_Exon_Models_Stepwise_Redone/Full_Exon_Model LEl_Stepwise_0.01_no_3");

for(my $i = 0; $i < $n_params; $i++){

my $t_stat = $Ffinal_model_thetas[$i]/$final_model_stdes[$i];
my $abs t stat = abs($t_stat);

my $p_val = Statistics::Distributions: :tprob($n_ob-scalar(@final_model_ids),

$abs_t_stat);

print WRITE

$final_model _ids[$i].""\t"_$Final_model_thetas[$i].""\t".$Final_model_stdes[$i]."\t".$t
_stat."\t".($p_val*2) ."\t".$r2."\t"_$adj_r2."\t".$p_for_model.""\n";

3

close(WRITE) ;

my $end = time(Q);

my $elapsed = $end-$start;
print $elapsed.'\n";

my @predicted;
my @observed;
open(WRITE,

">Full_Exon_Models
for(my $o = 0; $o

}

$n_ob; $o++){

my @cv_matrix = @{copy_matrix(\@Final_model)};

my @cv_leiscs = @{copy_array(\@leisc_vector)};

my $tp_leis = $cv_leiscs[$0];

my @tp_zs = @{$cv_matrix[$o0]};

@cv_leiscs = @{delete_from_array(\@cv_leiscs, $0)};

@cv_matrix = @{delete_from_array(\@cv_matrix, $0)};

my $cv_reg = Statistics::Regression->new(""", \@Ffinal_model _ids);

for(my $j = 0; $j < scalar(@cv_leiscs); $j++){
$cv_reg->include($cv_leiscs[$j], $cv_matrix[$j]);

+

my @thetas = $cv_reg->theta();

I Al

my $cv_predicted = O;

for(my $p = 0; $p < scalar(@final_model_ids); $p++){
$cv_predicted += $tp_zs[$p]*$thetas[$p];
}

print WRITE $tp_leis."\t".$cv_predicted.'\n";
push(@predicted, $cv_predicted);
push(@observed, $tp_leis);

close(WRITE) ;
my $MSE = calc_mse(\@predicted,\@observed);
print $MSE.'"\n";

sub delete_from_array{

my @array = @{$_[0]1};
my $index_to_delete = $_[1];
my @new_array;

Stepwise_Redone/Full_Exon_Model LElI CV Vals 0.01 _no 3");

31

sub

sub

sub

sub

sub

my $n = scalar(@array);
for(my $v = 0; $v < $n; $v++){
if($v = $index_to_delete){
push(@new_array, $array[$v]);
}

}

return \@new_array;

copy_array{

my @array = @{$_[01}:

my @new_array;

foreach my $value (@array){
push(@new_array, $value);

return \@new_array;

copy_matrix{

my @matrix = @{$_[0]1};

my @new_matrix;

my $n_rows = scalar(@matrix);

for(my $r = 0; $r < $n_rows; $r++){
my $n_columns = scalar(@{$matrix[$rl});
$new_matrix[$r] = [1;
for(my $c = 0; $c < $n_columns; $c++){

$new_matrix[$r][$c] = Smatrix[$r][$c];

}

}

return \@new_matrix;

copy_column{

my @to_matrix = @{$_[01};

my @Ffrom_matrix = @{$ _[1]};

my $from_index = $ [2];

for(my $r = 0; $r < scalar(@to_matrix); $r++){
push(@{$to_matrix[$r]}, $from_matrix[$r][$Ffrom_index]);

return \@to _matrix;

add _protein{

my @matrix = @{$_[0]};

my @column = @{$_[11};

my $n_rows = scalar(@matrix);

for(my $r = 0; $r < $n_rows; $r++){
push(@{$matrix[$r]}, $column[$r]);

return \@matrix;

delete_column{

my @matrix = @{$_[0]1};

my $column_to delete = $ [1];

my @new_matrix;

my $n_rows = scalar(@matrix);

my $n_columns= scalar(@{$matrix[0]});
for(my $r = 0; $r < $n_rows; $r++){

32

$new_matrix[$r] = [1;
for(my $c = 0; $c < $n_columns; $c++){
if($c = $column_to_delete){
push(@{$new_matrix[$r]}, S$matrix[$r][$c]);

}
}

return \@new_matrix;

sub correl{

my @puppy_array = @{$_[01};

my @d_cs_array = @{$_[11};

my $mean_1 = average(\@puppy_array);

my $mean_2 = average(\@d_cs_array);

my $stddev_1 = staddev(\@puppy_array);

my $stddev_2 = staddev(\@d_cs_array);

my $n = scalar(@puppy_array);

my @z_scores_1; my @z_scores_2;

for(my $1 = 0; $1 < $n; $I++){
my $z_1 = ($puppy_array[$1]-$mean_1)/$stddev_1;
push(@z_scores_1, $z_1);
my $z_2 = ($d_cs_array[$1]-$mean_2)/$stddev_2;
push(@z_scores_2, $z_2);

my $product_sum = O;
for(my $1 = 0; $1 < $n; $I++){
$product_sum = $product_sum + ($z_scores_1[$1]*$z_scores_2[$1]);

}
my $r = $product_sum/($n-1);
return $r;

}

#function to calculate the average of a set of values in an array
sub average{
my @values = @{$_[0]1};
my $length = scalar(@values);
my $total = O;
foreach my $value (@values){
$total = $total + $value;
}
my $avg = $total/$length;
return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{
my @values = @{$_[0]1};
my $avg = average(\@values);
my $total = 0;
foreach my $value (@values){
$total = $total + (Bvalue-$avg)**2;

my $length = scalar(@values);
my $stdd = ($total/($length-1))**_5;
return $stdd;

}

sub calc_mse{

33

sub

sub

sub

my @y_pred = @{$_[0]};

my @y = @{$_[11};

my $n = scalar(@y_pred);

my $ssd = 0;

for(my $i1 = 0; $i < scalar(@y_pred); $i++){
$ssd += (($y_pred[$i]-Sy[$i])**2)

+

my $mse = $ssd/$n;

return $mse;

log2{
my $n = shift;
return log($n)/log(2);

delete_many_from_array{

my @array = @{$_[01};

my @indeces_to_delete = @{$_[11};

my %to _delete = ();

foreach my $index (@indeces_to_delete){
$to_delete{$index} = 1;

+

my @new_array;

my $n = scalar(@array);

for(my $v = 0; $v < $n; $v++){
if(lexists($to_delete{$v})){

push(@new_array, $array[$v]);

}

}

return \@new_array;

delete_columns{

my @matrix = @{$_[0]};

my @columns_to_delete = @{$ _[1]1};

my %to_delete = ;

foreach my $index (@columns_to_delete){
$to_delete{$index} = 1;

}

my @new_matrix;

my $n_rows = scalar(@matrix);

my $n_columns= scalar(@{$matrix[0]});

for(my $r = 0; $r < $n_rows; $r++){
$new_matrix[$r] = [1;
for(my $c = 0; $c < $n_columns; $c++){
if(lexists($to_delete{$c})){

push(@{$new_matrix[$r]}, Smatrix[$r][$c]);

}

return \@new_matrix;

34

HHAHHH R HH AR AR A H AR AR AR AR

B
TenFoldCV.pl
#

Performs a ten-fold cross validation on a multiple linear model as specified

HHAHHH R H AR A A H R R AR AR A AR

R

use warnings;

use strict;

use Molecule;

use Statistics::Distributions;

use Statistics::Regression;

use Math::Random::Secure gw(irand);

open(WRITE2, ">HM 10FCV_Selected Full _Result 0.01");
#for(my $hm = 1; $hm < 11; $hm++){
#for(my $count = 0; $count < 10; $count++){
open(FILE, "Full_Exon_Model LEIl_Stepwise _0.01");
my %sig_proteins = ();
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
iT($props[0] ne "Cons'){
my @var_props = split(",", $props[0]);
if(lexists($sig_proteins{$var_props[1]1})){
$sig_proteins{$var_props[1]} = [1;

3
push(@{$sig_proteins{$var_props[1]}}, $var_props[0]);

close(FILE);

foreach my $pos_key (keys %sig_proteins){

my @sorted_proteins = sort(@{$sig_proteins{$pos_key}});

$sig_proteins{$pos_key} = \@sorted_proteins;

open(FILE, "Zscores.txt'") or die "ERROR: $!\n"';
my @lines = <FILE>;

close(FILE);

chomp @lines;

my $id_row = shift(@lines);

my @ids = split(/\t/, $id _row);

shift @ids;

my %proteins = ();

my $id_index = O;

my @translator;

foreach my $id (@ids){
#print $id."\n"";
$translator[$id_index] = $id;
$proteins{$id} = Q;
$id_index++;

}

my $n_protein_ids = scalar(@translator);

my $hept_counter = O;

foreach my $line (@lines){
my @z_intensities = split(/\t/, $line);
my $motif = shift(@z_intensities);

35

$motif =~ s/U/T/qg;
my $n_proteins = scalar(@z_intensities);
$hept_counter++;
for(my $i = 0; $i < $n_proteins; $i++){
if(exists($proteins{$translator[$i]}{Smotif})){
die "ERROR: Repeated sequence\n';
b

$proteins{$translator[$i]}{$motif} = $z_intensities[$i];
}

open(FILE, "HM90summVNewLEISC'™);
my @molecules;
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
#if($props[1] == $hm){ #gets rid of HM3
iT($props[2] == 0){
my $temp_mol = new Molecule($props[0], $props[1l], $props[2], ", ",
$props[3], $props[4], $props[5], $props[6], "WT'™);
$temp_mol->{ LEISC} = $props[7];
push(@molecules, $temp_mol);
}else{
my @sub_bases = split(*”-", $props[10]);
my $sub_type = 1; #since most are DB subs, it"s the default
if(length($sub_bases[0]) == 1){
$sub_type = O;

my $wt_bases = $sub_bases[0];
my $mut_bases = $sub_bases[1];
my $temp_mol = new Molecule($props[0], $props[1l], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], Sprops[6], $sub_type);
$temp_mol->{ LEISC} = $props[7];
for(my $i = 0; $i < 100; $i++){
push(@{$temp_mol->{ rbpss}}, [1);

push(@molecules, $temp_mol);

}
#}

close(FILE);
my @model_ids;
push(@model_ids, 'Cons™);
foreach my $position (sort {$a<=>$b} keys %sig_proteins){
foreach my $prot (@{$sig_proteins{$position}}){
push(@model _ids, ($prot.","_$position));
}
¥
my @leisc_vector;
my @z_score_matrix;
my $Fforced_zero_counter = 0;
foreach my $molecule (@molecules){
my $leisc = $molecule->{ LEISC};
my @z_scores;
push(@z_scores, 1);
foreach my $position (sort {$a<=>$b} keys %sig_proteins){
my $pos = O;
if($position > 0){

$pos = $position+22;

Yelse{
$pos = $position+23;
by

foreach my $prot (@{$sig_proteins{$position}}){
my $heptamer = substr($molecule->{ seq}, $pos, 7);
if(exists($proteins{$prot}{$Sheptamer})){
push(@z_scores, $proteins{$prot}{Sheptamer});
Yelse{
push(@z_scores, 0);
$forced_zero_counter++;
}
}
}
push(@leisc_vector, $leisc);
push(@z_score_matrix, \@z_scores);

}

my $n_ob = scalar(@leisc_vector);

my $n_params = scalar(@model_ids);

print $n_params.'\n";

my $reg = Statistics::Regression->new('""', \@model_ids);

for(my $i = 0; $i < $n_ob; $i++){
$reg->include($leisc_vector[$i], $z_score_matrix[$i]);

}

my $r2 = $reg->rsq();

my $adj_r2 = $reg->adjrsq(Q);

my @model_thetas = $reg->theta();

my @model_stdes = $reg->standarderrors();

my $rss = ($reg->sigmasq())*(n_ob-n_params);

my $sst = $reg->sst();

my $Ff = (($sst-$rss)/($n_params-1))/($rss/($n_ob-$n_params));

my $p = Statistics::Distributions::fprob(($n_params-1), ($n_ob-$n_params), $f);

open(WRITE, ">Full_Exon_Model_Selected AlIl_0.01_CV_Vals™);
my @matrix_folds;
my @leisc_folds;
my $fold_size = ($n_ob/10);
my $current_size = $n_ob;
my $has _next = 1;
$fold_size = sprintf("%.0f", $fold size);
for(my $Ff = 0; $Ff < 10; $F++){
push(@matrix_folds, [1);
push(@leisc_folds, [1);
for(my $e = 0; $e < $fold_size && $has_next; $e++){
my $rand_index = irand($current_size);
push(@{$leisc_folds[$f]}, $leisc_vector[$rand_index]);
push(@{$matrix_folds[$f]}, $z_score_matrix[$rand_index]);
@leisc_vector = @{delete_from_array(\@leisc_vector, $rand_index)};
@z_score_matrix = @{delete_from array(\@z_score _matrix, $rand_index)};
$current_size = scalar(@leisc_vector);
if($current_size == 0){
$has _next = 0;
}

my @predicted;
my @observed;
my $g_cv_reg = Statistics::Regression->new("", ["b0","bl"]);
for(my $f = 0; $Ff < 10; $f++){
my @tp_leiscs;
my @tp_zs;
my @tu_leiscs;
my @tu_zs;
#leave one fold out, and merge the other nine
for(my $add_f = 0; $add_f < 10; $add_f++){
if($add_f == $){
@tp_leiscs = @{copy_array($leisc_folds[$add_T])};
@tp_zs = @{copy_matrix($matrix_folds[$add_f])};
Yelse{
for(my $0 = 0; $o0 < scalar(@{$leisc_folds[$add_F]}); $o++){
push(@tu_leiscs, $leisc_folds[$add_f][$0]);
push(@tu_zs, $matrix_folds[$add_F][$0o]);
+
}
+

#now use the nine folds to make a models

my $cv_reg = Statistics::Regression->new(""", \@model _ids);

for(my $j = 0; $j < scalar(@tu_leiscs); $j++){
$cv_reg->include($tu_leiscs[$j], $tu_zs[$i]);

}
my @thetas = $cv_reg->theta();

for(my $tp = 0; $tp < scalar(@tp_leiscs); $tp++){
my $cv_predicted = 0;
for(my $p = 0; $p < scalar(@model_ids); $p++){
$cv_predicted += $tp_zs[$tp][Sp]*$thetas[$p];
}

$g_cv_reg->include($tp_leiscs[$tp], [1, $cv_predicted]);
print WRITE $tp_leiscs[$tp].""\t".$cv_predicted.'"\n";
push(@predicted, $cv_predicted);
push(@observed, $tp_leiscs[$tp]);
}
}
my $r_2 = $g_cv_reg->rsqQ);
my @thetas = $g_cv_reg->theta();
my $MSE = calc_mse(\@predicted,\@observed);
print WRITE2 $thetas[0]."\t".$thetas[1]."\t".$r_2_"\t".$MSE.""\n"";
close(WRITE) ;

#}
#}
close(WRITE2);

sub delete_from_array{

my @array = @{$_[01};

my $index_to_delete = $ [1];

my @new_array;

my $n = scalar(@array);

for(my $v = 0; $v < $n; $v++){
if($v = $index_to_delete){

push(@new_array, $array[$v]);

}

}

return \@new_array;

}

sub

sub

sub

sub

sub

copy_array{

my @array = @{$_[01};

my @new_array;

foreach my $value (@array){
push(@new_array, $value);

}

return \@new_array;

copy_matrix{

my @matrix = @{$_[0]1};

my @new_matrix;

my $n_rows = scalar(@matrix);

for(my $r = 0; $r < $n_rows; $r++){
my $n_columns = scalar(@{$matrix[$r]l});
$new_matrix[$r] = [1;
for(my $c = 0; $c < $n_columns; $c++){

$new_matrix[$r][$c] = Smatrix[$r][$c];

}

}

return \@new_matrix;

copy_column{

my @to_matrix = @{$_[0]};

my @From_matrix = @{$_[1]1};

my $from_index = $ [2];

for(my $r = 0; $r < scalar(@to_matrix); $r++){
push(@{$to_matrix[$r]}, $from_matrix[$r][$Ffrom_index]);

return \@to_matrix;

add_protein{

my @matrix = @{$_[0]1};

my @column = @{$_[11};

my $n_rows = scalar(@matrix);

for(my $r = 0; $r < $n_rows; $r++){
push(@{$matrix[$r]}, $column[$r]);

return \@matrix;

delete_column{

my @matrix = @{$_[0]1};

my $column_to_delete = $ [1];

my @new_matrix;

my $n_rows = scalar(@matrix);

my $n_columns= scalar(@{$matrix[0]});

for(my $r = 0; $r < $n_rows; $r++){
$new_matrix[$r] = [1;
for(my $c = 0; $c < $n_columns; $c++){

iT($c = $column_to_delete){
push(@{$new_matrix[$r]}, $matrix[$r][$c]);

39

}

return \@new_matrix;

sub correl{

my @puppy_array = @{$_[0]};

my @d_cs_array = @{$_[11};

my $mean_1 average(\@puppy_array);

my $mean_2 = average(\@d_cs_array);

my $stddev_1 = staddev(\@puppy_array);

my $stddev_2 = staddev(\@d_cs_array);

my $n = scalar(@puppy_array);

my @z_scores_1; my @z_scores 2;

for(my $1 = 0; $1 < $n; $I++){
my $z_1 = ($puppy_array[$1]-$mean_1)/$stddev_1;
push(@z_scores_1, $z_1);
my $z_2 = ($d_cs_array[$1]-$mean_2)/$stddev_2;
push(@z_scores_2, $z_2);

my $product_sum = O;
for(my $1 = 0; $I < $n; $1++){
$product_sum = $product_sum + ($z_scores_1[$1]*$z_scores_2[$1]);

}
my $r = $product_sum/($n-1);
return $r;

}

#function to calculate the average of a set of values iIn an array
sub average{
my @values = @{$_[0]1};
my $length = scalar(@values);
my $total = O;
foreach my $value (@values){
$total = $total + $value;

by
my $avg = $total/$length;

return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{

my @values = @{$_[0]1};

my $avg = average(\@values);

my $total = O;

foreach my $value (@values){

$total = $total + ($value-$avg)**2;
}

my $length = scalar(@values);
my $stdd = ($total/($length-1))**.5;

return $stdd;

sub calc_mse{
my @y_pred = @{$_[01};

my @y = @{$_[11}:
my $n = scalar(@y_pred);

my $ssd = O;

for(my $i = 0; $i < scalar(@y_pred); $i++){
$ssd += (($y_pred[$i]-$y[$i])**2)

}

my $mse = $ssd/$n;

return $mse;

41

B R A R T A R R A S R A R R A AR
B

VarKmerContribution.pl

#

Takes a k-mer length as an argument and estimates the effect of all unique k-mers
of the

specified length in each hexmut set; A window of length k is started at the
beginnig of the

sequence potentially mutated, the LElI of all unique k-mers created at that position
along

the exon iIs averaged to estimate the net effect of mutating the sequence in that
space, and

this value is subtracted from the individual LEl of each k-mer at that position,
yielding

a net contribution of each unique k-mer to the LEl of the molecule i1t is in. The
window

1s then slid by one base, until the end of the exon. The contribution of any k-mers
that

occurs more than once along the exon/set of mutations is averaged at the end of the
procedure,

yielding the eLEl

B R R R S R S R R
HHHH

use warnings;
use strict;
use Statistics::Regression;
use Statistics::Distributions;
use Molecule;
open(FILE, "HM90summVNewLEISC'™);
my $WINDOW = $ARGV[O]:
my @molecules;
while(<FILE>){
chomp $_;
my @props = split(/\t/, $);
iT($props[1] '= 12){ #to exclude an HM as needed
iT($props[2] == 0){
my $temp_mol = new Molecule($props[0], $props[1], $props[2], ', ",
$props[3], $props[4]. $props[5]. $props[6], "WT™);
$temp_mol->{ LEISC} = $props[7];
push(@molecules, $temp_mol);
Yelse{
my @sub_bases = split(*”-", $props[10]);
my $sub_type = 1;
if(length($sub_bases[0]) == 1){
$sub_type = O;

my $wt_bases = $sub_bases[0];
my $mut_bases = $sub_bases[1];
my $temp_mol = new Molecule($props[0], $props[1l], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], $props[6], $sub_type);
$temp_mol->{ LEISC} = $props[7];
for(my $i = 0; $i < 100; $i++){
push(@{$temp_mol->{ _rbpss}}, [1):

}
push(@molecules, $temp_mol);

42

close(FILE)

my %motif_pos

O:;

my %hm_groups O;
for(my $hm = 1; $hm < 11; $hm++){
my $n_molecules_array = scalar(@molecules);
my %regressions = ();
for(my $i = 24; $i < (72-$WINDOW); Si++){
my $exon_position;

iF(Si

> 22){

$exon_position = $i-22;
}else{
$exon_position = $i-23;

}

my $wt_heptamer; my $wt_left; my $wt_right;
foreach my $molecule (@molecules){
if($molecule->{ hm} == $hm){

if($molecule->{ mut_type} eq "WT'){
$wt_heptamer = substr($molecule->{ seq}, $i, SWINDOW);
$wt_left = substr($molecule->{ seq}, ($i-1), 1);
$wt_right = substr($molecule->{ seq}, ($i+SWINDOW), 1);
if(lexists($regressions{$exon_position})){
$regressions{$exon_position} = [[1, [0, 1. 1. [1;
+
push(@{$regressions{$exon_position}[0]}, log2($molecule->{ El}));
push(@{$regressions{$exon_position}[1]}, $molecule->{ serial});
push(@{$regressions{$exon_position}[2]}, $molecule->{ hm});
push(@{$regressions{$exon_position}[3]}, $wt_heptamer);
push(@{$regressions{$exon_position}[4]}, Smolecule->{ seq});
}else{
my $mut_heptamer = substr($molecule->{ seq}, $i, SWINDOW);
my $mut_left = substr($molecule->{ seq}, ($i-1), 1);
my $mut_right = substr($molecule->{ seq}, ($i+SWINDOW), 1);
if($mut_heptamer ne $wt_heptamer && $mut_left eq $wt_left &&

$mut_right eq $wt_right){

}
}

if(lexists($regressions{$exon_position})){
$regressions{$exon_position} = [[1, [1. [1. [1. [11:
}

push(@{$regressions{$exon_position}[0]}, log2($molecule->{ EI}));
push(@{$regressions{$exon_position}[1]}, $molecule->{ serial});
push(@{$regressions{$exon_position}[2]}, $molecule->{ hm});
push(@{$regressions{$exon_position}[3]}, $mut_heptamer);
push(@{$regressions{$exon_position}[4]}, Smolecule->{ seq});

my %results = ();

foreach my $pos (sort {$a<=>$b} keys %regressions){
my $g_avg = average($regressions{$pos}[0]);

my $n
print

= scalar(@{$regressions{$pos}[0]1});
$n."\n"";

for(my $i = 0; $i < scalar(@{$regressions{$pos}[0]}); $i++){
if(lexists($results{$regressions{$pos}[3][$i1})){

}

$results{$regressions{$pos}H[31[$i]1} = {}:

43

$results{$regressions{$pos}[3][$i1]1}{$pos} = $regressions{$pos}[0][$i]-
$g_avg;
}

+
$hm_groups{$hm} = {3};
foreach my $key (sort keys %results){
my @base_pos;
for(my $pos = 1; $pos < 49; $pos++){
if(exists($results{Skey}H{$pos})){
push(@base_pos, $results{$key}{$pos});
+

}
$hm_groups{$hm}{$key} = average(\@base_pos);
$motif_pos{$key} = 1;

}

}
open(WRITE, "">ALl_HM_""_$WINDOW."'NT_Avg_Effects');
print WRITE "HM";
foreach my $m_key (sort keys %motif_pos){
print WRITE "\t'".$m_key;
}

print WRITE "\n"";
foreach my $hm_key (sort {$a<=>$b} keys %hm_groups){
print WRITE $hm_key;
foreach my $group (sort keys %motif_pos){
i F(exists($hm_groups{$hm_key}{$group})){
print WRITE "\t .$hm_groups{$hm_key}{$group};
}else{
print WRITE ""\t';
}

}
print WRITE '"\n"';

}
close(WRITE) ;
sub average{
my @values = @{$_[0]1}:
my $length scalar(@values);
my $total = O;
foreach my $value (@values){
$total = $total + $value;

}

my $avg = $total/$length;

return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{

my @values = @{$_[0]1}:

my $avg = average(\@values);

my $total = O;

foreach my $value (@values){

$total = $total + ($value-$avg)**2;

my $length = scalar(@values);
my $stdd = ($total/($length-1))**_5;
return $stdd;

44

sub

sub

sub

sortByP{
my @a_arr = @{$a};
my @b_arr = @{$b};

$a_arr[6]<=>%b_arr[6];

log2{
my $n = shift;
return log($n)/1og(2);

median{

my @values = @{$_[0]1};

@values = sort {$a<=>3%$b} @values;
my $median = 0;

my $n_values = scalar(@values);

if($n_values % 2 == 0){
my $m = ($n_values/2);

$median = ($values[$m-1]+$values[$m])/2;

Yelse{
my $m = int($n_values/2);
$median = $values[$m];

}

return $median;

45

B e T T e e e R e s e
BuildForest.py

Builds a random forest using all available RBPs and their
respective Z-score based affinities for heptamers and

the eLEl from our exon inclusion experiment

Uses random forest generated to predict the eLElsc of
heptamers not generated by our mutations

HHHH R

HHRHFHHFHHHR

from sklearn import ensemble

from sklearn import tree

from sklearn.externals.six import StringlO
import os

min_oobs = {}
min_oobs_split = {}

f = open(""HA7Esc_RF Vals™, "r')
lines = [line.strip() for line in f]
f.close()
leiscs = (lines.pop(0)).split("\t")
for 1 in range (0, len(leiscs)):

leiscs[i] = float(leiscs[i])
ids = (lines.pop(0)).split(°\t")
z_matrix = [line.split(°\t") for line in lines]
for 1 in range (0, len(z_matrix)):

for j in range (0, len(z_matrix[0])):

z matrix[i][j] = float(z_matrix[i1[JD

2 = open("'HA7Esc_RF _To Predict All™, ''r')
lines = [line.strip() for line in 2]
f2.close()
z_tp = [line.split("\t") for line in lines]
for 1 in range (0, len(z_tp)):
for j in range (0, len(z_tp[0])):
z_tplill] = float(z_tp[ilLiD

fw = open("'HA7Esc_Forest_OOBS mean'™, "‘w'")
oob_scores = []
params = []
fw3 = open("HA7Esc_RF_Predictions_All", "w"
for min_samp in range(10, 11):
clf = ensemble_.RandomForestRegressor(n_estimators=100,
min_samples_split=min_samp, oob_score=True)
clt = clIf_.fit(z_matrix, leiscs)
oob s = clf.oob_score
oob_score_ 2 = clf.score(z_matrix, leiscs)
params = clf.feature_importances_
predictions = clf._predict(z_tp)
for 1 in range(len(predictions)):
fw3.write(str(predictions[i])+"\n")

fw.write(str(min_samp)+"\t"+str(oob_s)+"\t"+str(oob_score_2)+"\n")
oob_scores.append(oob_s)

min_oobs_1 = 1000;

min_oobs _split I = -1;

fw3.close()
for iteration in range(0, 1):
iT(oob_scores[iteration] < min_oobs_1I):
min_oobs 1| = oob_scores[iteration]
min_oobs_split_I = iteration+2
min_oobs[0] = min_oobs_1
min_oobs_split[0] = min_oobs split 1|
fw.close()
minwrite = open("'HA7Esc_Random_Forest Min_OOBS_ AIl', "w')
for k in min_oobs.keys():
minwrite.write(str(k)+""\t"+str(min_oobs[k])+'"\t"+str(min_oobs_split[k])+'"\n")
minwrite.close()

	TABLE OF CONTENTS
	RBP Immunoprecipitation Experiment
	RBP 7mer Experiment
	# matched perfectly
	}else{

