
1

TABLE OF CONTENTS

RBP Immunoprecipitation Experiment

IpBarCodeParse.pl .. 2

IPSequenceParse.pl ... 4

CalculatePPD.pl .. 7

RBP 7mer Experiment

Molecule.pm ... 11

RegressionsFDR.pl ... 12

Stepwise.pl ... 18

StepwiseCombined.pl ... 27

TenFoldCV.pl .. 35

VarKmerContribution.pl .. 42

BuildForest.py .. 46

Supplemental Methods: Perl and Python scripts

Ke et al.
Saturation mutagenesis reveals manifold determinants of exon definition

 2

###
########
IpBarCodeParse.pl

Strictly screens sequencing data by demanding that bar code for protein of interest
is
matched perfectly
###
########
use warnings;
use strict;
my %bases = ();
$bases{"A"} = "T";
$bases{"C"} = "G";
$bases{"G"} = "C";
$bases{"T"} = "A";

my %bar_codes = ();
open(FILE, "exp_2_rna_quantities.csv");
while(<FILE>){
 chomp $_;
 my @props = split(/\,/, $_);
 $bar_codes{$props[2]} = $props[0];

}
close(FILE);

my %groups = ();
my %phreds = ();
my %ids = ();
my $total_sequences = 0;
for(my $number = 1; $number < 5; $number++){
 open(FILE, "20150410_S1_L00".$number."_R1_001.fastq");
 my $counter = 0;
 my $current_phred = "";
 my $current_id = "";
 my $is_good = 0;
 my $current_membership = "";
 while(<FILE>){
 chomp $_;
 if(($counter % 4) == 0){
 $current_id = $_;
 }elsif(($counter % 4) == 1){
 my $seq_bar = substr($_, 0, 8);
 if(exists($bar_codes{$seq_bar})){
 if(!exists($groups{$bar_codes{$seq_bar}})){
 $groups{$bar_codes{$seq_bar}} = [];
 $ids{$bar_codes{$seq_bar}} = [];
 $phreds{$bar_codes{$seq_bar}} = [];
 }
 push(@{$groups{$bar_codes{$seq_bar}}}, $_);
 push(@{$ids{$bar_codes{$seq_bar}}}, $current_id);
 $current_membership = $bar_codes{$seq_bar};
 $is_good = 1;
 }else{
 $is_good = 0;
 }
 $total_sequences++;
 }elsif(($counter % 4) == 3 && $is_good){

 3

 push(@{$phreds{$current_membership}}, $_);
 }
 $counter++;
 }
 close(FILE);
}
foreach my $group (sort keys %groups){
 open(WRITE, ">".$group."_Perfect");
 my $size = scalar(@{$groups{$group}});
 for(my $i = 0; $i < $size; $i++){
 print WRITE $ids{$group}[$i]."\n";
 print WRITE $groups{$group}[$i]."\n";
 print WRITE $phreds{$group}[$i]."\n";
 }
 close(WRITE);
 print $group."\t".$size."\t".$total_sequences."\t".($size/$total_sequences)."\n";
}

sub rc{
 my $seq = $_[0];
 my $reverse_seq = reverse($seq);
 my @seq_bases = split(//, $reverse_seq);
 my $rc_seq = "";
 foreach my $base (@seq_bases){
 $rc_seq = $rc_seq.$bases{$base};
 }
 return $rc_seq;
}

 4

###
########
IpSequenceParse.pl

1)Demands that read sequences already screened for perfect bar codes by
ParseData.pl contains
a perfect match to one of our known mutants at the expected nt distance from the
bar code
2) Calculates the read count and frequency for all sequences of interest
###
########
use warnings;
use strict;
my %real_seqs = ();
my %bases = ();
$bases{"A"} = "T";
$bases{"C"} = "G";
$bases{"G"} = "C";
$bases{"T"} = "A";
$bases{"N"} = "N";

open(FILE, "HM90summVNewLEISC");
while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 my $mut_area = substr($props[3], 24, 47);
 $real_seqs{$mut_area} = 1;
}
close(FILE);
my @classes;
open(FILE, "exp_2_rna_quantities2.csv");
while(<FILE>){
 chomp $_;
 my @props = split(/\,/, $_);
 push(@classes, $props[0]);
}
close(FILE);

open(WRITE0, ">UH_Normalized_Frequencies/summary_part_2");
foreach my $class (@classes){
 my $start = time();
 open(FILE, $class."_Perfect");
 my $total_good_reads = 0;
 my %read_count = ();
 my $is_kept = 0;
 my $kept_index = -1;
 my @seq_phreds;
 my $bad = 0;
 my $line_count = 0;
 while(<FILE>){
 chomp $_;
 my $l = length($_);
 if(($line_count % 3) == 1){
 if($l >= 47){
 my $seq = rc($_);
 my $already_in = 0;
 for(my $i = 0; $i < ($l-46) && !$already_in; $i++){
 my $sub_seq = substr($seq, $i, 47);
 if(exists($real_seqs{$sub_seq})){

 5

 if(!exists($read_count{$sub_seq})){
 $read_count{$sub_seq} = 0;
 }
 $read_count{$sub_seq} += 1;
 $total_good_reads++;
 $already_in = 1;
 $is_kept = 1;
 $kept_index = $i;
 }else{
 $is_kept = 0;
 }
 }
 }else{
 $is_kept = 0;
 }
 }elsif(($line_count % 3) == 2 && $is_kept){
 my $seq_quality = reverse($_);
 $seq_quality = substr($seq_quality, $kept_index, 47);
 my @scores;
 for(my $i = 0; $i < 47; $i++){
 push(@scores, ord(substr($seq_quality, $i, 1))-33);
 }
 my $avg_phred = average(\@scores);
 if($avg_phred < 21){
 $bad++;
 }
 push(@seq_phreds, $avg_phred);
 }
 $line_count++;
 }
 close(FILE);
 my @real_read_counts;
 my $real = 0;
 open(WRITE1, ">UH_Normalized_Frequencies/".$class."_Frequency");
 foreach my $key (sort {$read_count{$b}<=>$read_count{$a}} keys %read_count){
 push(@real_read_counts, $read_count{$key});
 print WRITE1
$key."\t".$read_count{$key}."\t".($read_count{$key}/$total_good_reads)."\n";
 $real++;
 }
 close(WRITE1);
 my $average_avg_phred = average(\@seq_phreds);
 my $staddev_avg_phred = staddev(\@seq_phreds);
 my $average_real = average(\@real_read_counts);
 my $staddev_real = staddev(\@real_read_counts);
 print WRITE0
$class."\t".$real."\t".$total_good_reads."\t".$average_real."\t".$staddev_real."\t".$
average_avg_phred."\t".$staddev_avg_phred."\t".$bad."\n";
 my $end = time();
 my $elapsed = $end-$start;
 print $class."\t".$elapsed."\n";
}
close(WRITE0);

sub average{
 my @values = @{$_[0]};
 my $length = scalar(@values);
 my $total = 0;
 foreach my $value (@values){

 6

 $total = $total + $value;
 }
 my $avg = $total/$length;
 return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{
 my @values = @{$_[0]};
 my $avg = average(\@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + ($value-$avg)**2;
 }
 my $length = scalar(@values);
 my $stdd = ($total/($length-1))**.5;
 return $stdd;
}

sub rc{
 my $seq = $_[0];
 my $reverse_seq = reverse($seq);
 my @seq_bases = split(//, $reverse_seq);
 my $rc_seq = "";
 foreach my $base (@seq_bases){
 if(exists($bases{$base})){
 $rc_seq = $rc_seq.$bases{$base};
 }else{
 die $base."\n";
 }
 }
 return $rc_seq;
}

 7

###
########
CalculatePPD.pl

For a given protein pull down, calculates a PPD by using the frequency of a
sequence in the
pull down library of interest and its frequency in the input library, controlling
for
the amount of RNA used and for artificial pull down per immunoglobulin used (mouse,
rabbit,
or goat)
###
########

use warnings;
use strict;

my $READ_MIN = $ARGV[0];
my %quantities = ();

my %classes = ();
my %label_to_class = ();
my @classes_array;
open(FILE, "bar_codes");
while(<FILE>){
 chomp $_;
 my @props = split(/\,/, $_);
 $classes{$props[0]} = [$props[0], $props[1], $props[3]];
 $label_to_class{$props[0]} = $props[0];
 $quantities{$props[0]} = $props[4];
 push(@classes_array, $props[0]);
}
close(FILE);

#find controls

my %controls = ();
my %control_totals = ();
my %experimental_totals = ();
foreach my $key (keys %classes){
 my @control_type = split("_", $classes{$key}[0]);
 if($control_type[0] eq "MOUSE" || $control_type[0] eq "RABBIT" ||
$control_type[0] eq "GOAT"){
 $controls{$key} = {};
 open(FILE, $key."_Frequency");
 while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 $controls{$key}{$props[0]} = $props[1];
 $control_totals{$key} += $props[1];
 }
 close(FILE);
 }else{
 $experimental_totals{$key} = 0;
 open(FILE, $key."_Frequency");
 while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 $experimental_totals{$key} += $props[1];

 8

 }
 print $key."\t".$experimental_totals{$key}."\n";
 close(FILE);
 }
}

for(my $exp = 1; $exp < 3; $exp++){
 my %input_class = ();
 my %input_class_raw = ();
 my $current_input = "I_".$exp;
 open(FILE, "I_".$exp."_Frequency");
 while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 $input_class{$props[0]} = $props[2];
 $input_class_raw{$props[0]} = $props[1];
 }
 close(FILE);
 foreach my $class (@classes_array){
 my @file_props = split("_", $class);
 my $control_label = $classes{$class}[0];
 my @control_props = split("_", $control_label);
 if($file_props[0] ne "I" && $control_props[0] ne "MOUSE" && $control_props[0]
ne "RABBIT" && $control_props[0] ne "GOAT" && $file_props[1] == $exp){
 print $control_props[0]."\n";
 my %output_class = ();
 open(FILE, $class."_Frequency");
 my $not_present = 0;
 my $not_present_freqs = "";
 my $total_seqs = 0;
 open(WRITE,
">Experiment_Controlled_Fractions_Modified_".$READ_MIN."/".$class."_Controlled_Fracti
ons");
 my $pseudo = 0;
 while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 $output_class{$props[0]} = $props[1];
 $total_seqs += $props[1];

 if(!exists($input_class{$props[0]})){
 $not_present++;
 $not_present_freqs = $not_present_freqs."\t".$props[1];
 }elsif($input_class_raw{$props[0]} >= $READ_MIN){
 my $controlled_ei_num;
 my $out_prop;
 my $cont_prop;
 my $out_quant;
 my $cont_quant;

 if(!exists($controls{$classes{$class}[1]}{$props[0]})){
 $controlled_ei_num =
(($output_class{$props[0]}/$experimental_totals{$class})*$quantities{$classes{$class}
[0]})-
((1/$control_totals{$classes{$class}[1]})*$quantities{$classes{$classes{$class}[1]}[0
]});
 $out_prop = ($output_class{$props[0]}/$experimental_totals{$class});
 $cont_prop = (1/$control_totals{$classes{$class}[1]});

 9

 $out_quant = out_prop*quantities{$classes{$class}[0]};
 $cont_quant =
$cont_prop*$quantities{$classes{$classes{$class}[1]}[0]};
 $pseudo++;
 }else{
 $controlled_ei_num =
(($output_class{$props[0]}/$experimental_totals{$class})*$quantities{$classes{$class}
[0]})-
(($controls{$classes{$class}[1]}{$props[0]}/$control_totals{$classes{$class}[1]})*$qu
antities{$classes{$classes{$class}[1]}[0]});
 $out_prop = ($output_class{$props[0]}/$experimental_totals{$class});
 $cont_prop =
($controls{$classes{$class}[1]}{$props[0]}/$control_totals{$classes{$class}[1]});
 $out_quant = out_prop*quantities{$classes{$class}[0]};
 $cont_quant =
$cont_prop*$quantities{$classes{$classes{$class}[1]}[0]};
 }
 my $controlled_ei =
$controlled_ei_num/($input_class{$props[0]}*$quantities{$current_input});
 print WRITE
$props[0]."\t".$controlled_ei."\t".$out_prop."\t".$out_quant."\t".$cont_prop."\t".$co
nt_quant."\t".$input_class{$props[0]}."\t".($input_class{$props[0]}*$quantities{$curr
ent_input})."\n";
 }
 }
 close(FILE);

 foreach my $key (keys %input_class){
 if(!exists($output_class{$key}) && $input_class_raw{$key} >= $READ_MIN){
 my $controlled_ei_num;
 my $out_prop;
 my $cont_prop;
 my $out_quant;
 my $cont_quant;
 if(exists($controls{$classes{$class}[1]}{$key})){
 $controlled_ei_num =
((1/$experimental_totals{$class})*$quantities{$classes{$class}[0]})-
(($controls{$classes{$class}[1]}{$key}/$control_totals{$classes{$class}[1]})*$quantit
ies{$classes{$classes{$class}[1]}[0]});
 $out_prop = (1/$experimental_totals{$class});
 $cont_prop =
($controls{$classes{$class}[1]}{$key}/$control_totals{$classes{$class}[1]});
 $out_quant = out_prop*quantities{$classes{$class}[0]};
 $cont_quant =
$cont_prop*$quantities{$classes{$classes{$class}[1]}[0]};
 }else{
 $controlled_ei_num =
((1/$experimental_totals{$class})*$quantities{$classes{$class}[0]})-
((1/$control_totals{$classes{$class}[1]})*$quantities{$classes{$classes{$class}[1]}[0
]});
 $out_prop = (1/$experimental_totals{$class});
 $cont_prop = (1/$control_totals{$classes{$class}[1]});
 $out_quant = out_prop*quantities{$classes{$class}[0]};
 $cont_quant =
$cont_prop*$quantities{$classes{$classes{$class}[1]}[0]};
 }
 my $controlled_ei =
$controlled_ei_num/($input_class{$key}*$quantities{$current_input});

 10

 print WRITE
$key."\t".$controlled_ei."\t".$out_prop."\t".$out_quant."\t".$cont_prop."\t".$cont_qu
ant."\t".$input_class{$key}."\t".($input_class{$key}*$quantities{$current_input})."\n
";
 $pseudo++;
 }
 }
 print $pseudo."\n";
 close(WRITE);
 }
 }
}

 11

###
########
Molecule.pm

Molecule object containing essential parameters to define an exon molecule and
store
key properties
###
########

package Molecule;
sub new{
 my $class = shift;
 my $self = {
 _serial => shift,
 _hm => shift,
 _mut_pos => shift,
 _wt_bases => shift,
 _mutated_bases => shift,
 _seq => shift,
 _EI => shift,
 _rel_EI => shift,
 _PUP => shift,
 _mut_type => shift,
 _LEI => undef,
 _PSI => undef,
 _LEISC => undef,
 _LEIe =>undef,
 _t_stat => undef,
 _p_val => undef,
 _protein_positions => {},
 _sig => undef,
 _control => undef,
 _proteins => {},
 _excess => undef,
 _average => undef,
 _motifs => [],
 _clusters => [],
 _max_wt_motifs => [],
 _sig_motifs => [],
 _insig_motifs => [],
 _motif_scores => [],
 _esr_scores_left => [],
 _esr_scores_right => [],
 _esr_sig_left => [],
 _esr_sig_right => [],
 _rbpss => [],
 _rbpss_dis => [],
 };
 bless $self, $class;
 return $self;
}
1;

 12

###
########
RegressionsFDR.pl

1. Uses heptamer Z-scores for RNA binding proteins (CISBP-RNA) and experimental
exon
inclusion data to perform regressions at each position along the mutated exon,
correlating
exon inclusion changes created by mutations at a 7mer focus along the exon with the
consequential estimated affinity change for a given protein
2. Controls for multiple comparisons by the BH procedure (alpha = 0.05) for a given
hexmut
set
###
########
use warnings;
use strict;
use Statistics::Regression;
use Statistics::Distributions;
use Molecule;

#GATHER Z SCORE AND RBP INFORMATION#
open(FILE, "Zscores.txt") or die "ERROR: $!\n";
my @lines = <FILE>;
close(FILE);
chomp @lines;
my $id_row = shift(@lines);
my @ids = split(/\t/, $id_row);

shift @ids;
my %proteins = ();
my $id_index = 0;
my @translator;
foreach my $id (@ids){
 $translator[$id_index] = $id;
 $proteins{$id} = {};
 $id_index++;
}

my $n_protein_ids = scalar(@translator);
my $hept_counter = 0;
foreach my $line (@lines){
 my @z_intensities = split(/\t/, $line);
 my $motif = shift(@z_intensities);
 $motif =~ s/U/T/g;
 my $n_proteins = scalar(@z_intensities);
 $hept_counter++;
 for(my $i = 0; $i < $n_proteins; $i++){
 if(exists($proteins{$translator[$i]}{$motif})){
 die "ERROR: Repeated sequence\n";
 }
 $proteins{$translator[$i]}{$motif} = $z_intensities[$i];
 }
}

my %protein_translator = ();
open(FILE, "RBP_Information.txt") or die "ERROR: $!\n";
my @lns = <FILE>;

 13

close(FILE);
shift @lns;
chomp @lns;
foreach my $ln (@lns){
 my @props = split(/\t/, $ln);
 if(!exists($protein_translator{$props[3]})){
 $protein_translator{$props[3]} = "";
 }
 $protein_translator{$props[3]} = $protein_translator{$props[3]}.$props[6].",";
}
$protein_translator{"Cons"} = "Cons";
#INITIALIZE MOLECULES##

my %mol_secondary = ();
open(SECONDARY, "All_HM_Heptamer_Secondary_Structure");
while(<SECONDARY>){
 chomp $_;
 my @props = split(/\,/, $_);
 my $id = shift(@props);
 my $seq_id = substr($id, 4);
 $mol_secondary{$seq_id} = \@props;
}
close(SECONDARY);

open(FILE, "HM90summVNewLEISC");
my @molecules;
while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 if($props[1] != 12){ #gets rid of an HM when needed
 if($props[2] == 0){
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], "", "",
$props[3], $props[4], $props[5], $props[6], "WT");
 $temp_mol->{_LEISC} = $props[7];
 push(@molecules, $temp_mol);
 }else{
 my @sub_bases = split("-", $props[10]);
 my $sub_type = 1;
 if(length($sub_bases[0]) == 1){
 $sub_type = 0;
 }
 my $wt_bases = $sub_bases[0];
 my $mut_bases = $sub_bases[1];
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], $props[6], $sub_type);
 $temp_mol->{_LEISC} = $props[7];
 for(my $i = 0; $i < 100; $i++){
 push(@{$temp_mol->{_rbpss}}, []);
 }
 push(@molecules, $temp_mol);
 }
 }
}
close(FILE);
for(my $hm = 1; $hm < 2; $hm++){
 my $n_molecules_array = scalar(@molecules);
 my %regressions = ();
 my %all_heptamers_z = ();

 14

 for(my $i = 20; $i < 69; $i++){
 my $exon_position;
 if($i > 22){
 $exon_position = $i-22;
 }else{
 $exon_position = $i-23;
 }
 my $wt_heptamer; my $wt_left; my $wt_right;
 foreach my $molecule (@molecules){

 if($molecule->{_hm} == $hm){
 if($molecule->{_mut_type} eq "WT"){
 $wt_heptamer = substr($molecule->{_seq}, $i, 7);
 $wt_left = substr($molecule->{_seq}, ($i-1), 1);
 $wt_right = substr($molecule->{_seq}, ($i+7), 1);
 foreach my $protein_key (sort keys %proteins){
 if(exists($proteins{$protein_key}{$wt_heptamer})){
 if(!exists($regressions{$protein_key})){
 $regressions{$protein_key} = {};
 }
 if(!exists($regressions{$protein_key}{$exon_position})){
 $regressions{$protein_key}{$exon_position} = [[], [], [], [],
[], [], []];
 }
 push(@{$regressions{$protein_key}{$exon_position}[0]},
log2($molecule->{_EI}));
 push(@{$regressions{$protein_key}{$exon_position}[1]},
$molecule->{_serial});
 push(@{$regressions{$protein_key}{$exon_position}[2]},
$molecule->{_hm});
 push(@{$regressions{$protein_key}{$exon_position}[3]},
($mol_secondary{$molecule->{_serial}}[$i]/7));
 push(@{$regressions{$protein_key}{$exon_position}[4]},
$wt_heptamer);
 push(@{$regressions{$protein_key}{$exon_position}[5]},
$molecule->{_seq});
 push(@{$regressions{$protein_key}{$exon_position}[6]},
$proteins{$protein_key}{$wt_heptamer});
 my $z = sprintf("%.2f", $proteins{$protein_key}{$wt_heptamer});
 $all_heptamers_z{$z} = 1;
 }
 }
 }else{
 my $mut_heptamer = substr($molecule->{_seq}, $i, 7);
 my $mut_left = substr($molecule->{_seq}, ($i-1), 1);
 my $mut_right = substr($molecule->{_seq}, ($i+7), 1);
 if($mut_heptamer ne $wt_heptamer && $mut_left eq $wt_left &&
$mut_right eq $wt_right){
 foreach my $protein_key (sort keys %proteins){
 if(exists($proteins{$protein_key}{$mut_heptamer})){
 if(!exists($regressions{$protein_key})){
 $regressions{$protein_key} = {};
 }
 if(!exists($regressions{$protein_key}{$exon_position})){
 $regressions{$protein_key}{$exon_position} = [[], [], [],
[], [], [], []];
 }
 push(@{$regressions{$protein_key}{$exon_position}[0]},
log2($molecule->{_EI}));

 15

 push(@{$regressions{$protein_key}{$exon_position}[1]},
$molecule->{_serial});
 push(@{$regressions{$protein_key}{$exon_position}[2]},
$molecule->{_hm});
 push(@{$regressions{$protein_key}{$exon_position}[3]},
($mol_secondary{$molecule->{_serial}}[$i]/7));
 push(@{$regressions{$protein_key}{$exon_position}[4]},
$mut_heptamer);
 push(@{$regressions{$protein_key}{$exon_position}[5]},
$molecule->{_seq});
 push(@{$regressions{$protein_key}{$exon_position}[6]},
$proteins{$protein_key}{$mut_heptamer});
 my $z = sprintf("%.2f",
$proteins{$protein_key}{$mut_heptamer});
 $all_heptamers_z{$z} = 1;
 }

 }
 }
 }
 }
 }
 }

 my @z_cutoffs = sort {$a<=>$b} keys %all_heptamers_z;
 my $n_cutoffs = scalar(@z_cutoffs);
 my %significant_regressions = ();
 my $iteration = 0;
 my @first_regressions;
 my @sig_regressions;
 my @insig_regressions;
 open(WRITE,
">No_Cutoff_Regressions_FDR_5/Significant_Cutoff_LEI_Z_Regressions_".$hm);
 open(WRITE2,
">No_Cutoff_Regressions_FDR_5/Significant_Cutoff_LEI_Z_Regressions_".$hm."_Values");
 foreach my $protein (keys %regressions){
 foreach my $exon_position (keys %{$regressions{$protein}}){
 my $n_points = scalar(@{$regressions{$protein}{$exon_position}[0]});
 my @leiscs; my @z_scores;
 for(my $i = 0; $i < $n_points; $i++){
 push(@leiscs, $regressions{$protein}{$exon_position}[0][$i]);
 push(@z_scores, $regressions{$protein}{$exon_position}[6][$i]);
 }

 $n_points = scalar(@leiscs);
 if($n_points >= 4){
 my $n_pass_cutoff = 0;
 my $reg = Statistics::Regression->new("", ["y-int", "slope"]);
 for(my $i = 0; $i < $n_points; $i++){
 $reg->include($leiscs[$i], [1, $z_scores[$i]]);
 print WRITE2
$protein."\t".$protein_translator{$protein}."\t".$exon_position."\t".$z_scores[$i]."\
t".$leiscs[$i]."\n";
 if($z_scores[$i] >= .45){
 $n_pass_cutoff++;
 }
 }
 print WRITE2 "\n";
 my $r2 = $reg->rsq();

 16

 my @betas = $reg->theta();
 my $rss = ($reg->sigmasq())*($n_points-2);
 my $sst = $reg->sst();
 my $seed_var = 2;
 my $average_z = average(\@z_scores);
 my $median_z = median(\@z_scores);
 my $f_for_model = (($sst-$rss)/($seed_var-1))/(($rss)/($n_points-
$seed_var));
 my $p_for_model = Statistics::Distributions::fprob(($seed_var-1),
($n_points-$seed_var), $f_for_model);
 my @regression_props = ($protein, $protein_translator{$protein},
$exon_position, $betas[0], $betas[1], $r2, $p_for_model, $f_for_model, $average_z,
$median_z, $n_pass_cutoff, $n_points);
 push(@first_regressions, \@regression_props);

 }
 }
 }
 my $alpha = .05;
 my $prev_p = -10;
 my $rank = 0;
 my $total_regs = 0;
 my $sig_regs = 0;
 my $avg_r2 = 0;
 my $m = scalar(@first_regressions);

 foreach my $regression (sort sortByP @first_regressions){
 my @regression_arr = @{$regression};
 if($regression_arr[6] != $prev_p){
 $rank++;
 $prev_p = $regression_arr[6];
 }
 if($regression_arr[6] <= $alpha*($rank/$m)){
 if(!exists($significant_regressions{$regression_arr[0]})){
 $significant_regressions{$regression_arr[0]} = {};
 }

if(!exists($significant_regressions{$regression_arr[0]}{$regression_arr[2]})){
 $significant_regressions{$regression_arr[0]}{$regression_arr[2]} = 1;
 }
 my $id = shift(@regression_arr);
 my $name = shift(@regression_arr);
 my $position = shift(@regression_arr);
 print WRITE $id."\t".$position."\t".$name;
 foreach my $element (@regression_arr){
 print WRITE "\t".$element;
 }
 print WRITE "\n";
 }
 }
 close(WRITE);
 close(WRITE2);
}

sub average{
 my @values = @{$_[0]};
 my $length = scalar(@values);
 my $total = 0;

 17

 foreach my $value (@values){
 $total = $total + $value;
 }
 my $avg = $total/$length;
 return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{
 my @values = @{$_[0]};
 my $avg = average(\@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + ($value-$avg)**2;
 }
 my $length = scalar(@values);
 my $stdd = ($total/($length-1))**.5;
 return $stdd;
}

sub sortByP{
 my @a_arr = @{$a};
 my @b_arr = @{$b};
 $a_arr[6]<=>$b_arr[6];
}

sub log2{
 my $n = shift;
 return log($n)/log(2);
}

sub median{
 my @values = @{$_[0]};
 @values = sort {$a<=>$b} @values;
 my $median = 0;
 my $n_values = scalar(@values);

 if($n_values % 2 == 0){
 my $m = ($n_values/2);
 $median = ($values[$m-1]+$values[$m])/2;
 }else{
 my $m = int($n_values/2);
 $median = $values[$m];
 }
 return $median;

}

 18

###
########
Stepwise.pl

1) Performs stepwise regression (alpha = 0.01) using proteins that were significant
from RegressionsFDR.pl as a starting set
2) Used to build a multiple linear model that includes a combination of protein-
positions
which have been determined to be significant independent predictors of our exon
inclusion
data
3) Performs leave-one-out cross validation on models generated
###
########

use warnings;
use strict;
use Molecule;
use Statistics::Distributions;
use Statistics::Regression;
my %protein_translator = ();
open(FILE, "RBP_Information.txt") or die "ERROR: $!\n";
my @lns = <FILE>;
close(FILE);
shift @lns;
chomp @lns;
foreach my $ln (@lns){
 my @props = split(/\t/, $ln);
 if(!exists($protein_translator{$props[3]})){
 $protein_translator{$props[3]} = "";
 }
 $protein_translator{$props[3]} = $protein_translator{$props[3]}.$props[6].",";
}

open(FILE, "Zscores.txt") or die "ERROR: $!\n";
my @lines = <FILE>;
close(FILE);
chomp @lines;
my $id_row = shift(@lines);
my @ids = split(/\t/, $id_row);

shift @ids;
my %proteins = ();
my $id_index = 0;
my @translator;
foreach my $id (@ids){
 $translator[$id_index] = $id;
 $proteins{$id} = ();
 $id_index++;
}
my $n_protein_ids = scalar(@translator);
my $hept_counter = 0;
foreach my $line (@lines){
 my @z_intensities = split(/\t/, $line);
 my $motif = shift(@z_intensities);
 $motif =~ s/U/T/g;
 my $n_proteins = scalar(@z_intensities);
 $hept_counter++;

 19

 for(my $i = 0; $i < $n_proteins; $i++){
 if(exists($proteins{$translator[$i]}{$motif})){
 die "ERROR: Repeated sequence\n";
 }
 $proteins{$translator[$i]}{$motif} = $z_intensities[$i];
 }
}

for(my $hm = 1; $hm < 11; $hm++){#loop can be eliminated when only interested in
performing stepwise on one set of proteins
 my %sig_proteins = ();
 open(FILE, "Significant_Cutoff_LEI_Z_Regressions_".$hm);#file changes depending
on which hexmut is of interest
 while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 if($props[0] ne "Cons"){
 my @var_props = ($props[0], $props[1]);
 if(!exists($sig_proteins{$var_props[1]})){
 $sig_proteins{$var_props[1]} = [];
 }
 push(@{$sig_proteins{$var_props[1]}}, $var_props[0]);
 }
 }
 close(FILE);

 foreach my $pos_key (keys %sig_proteins){
 my @sorted_proteins = sort(@{$sig_proteins{$pos_key}});
 $sig_proteins{$pos_key} = \@sorted_proteins;
 }

 open(FILE, "HM90summVNewLEISC");
 my @molecules;
 while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 if($props[1] == $hm){
 if($props[2] == 0){
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], "", "",
$props[3], $props[4], $props[5], $props[6], "WT");
 $temp_mol->{_LEISC} = $props[7];
 push(@molecules, $temp_mol);
 }else{
 my @sub_bases = split("-", $props[10]);
 my $sub_type = 1;
 if(length($sub_bases[0]) == 1){
 $sub_type = 0;
 }
 my $wt_bases = $sub_bases[0];
 my $mut_bases = $sub_bases[1];
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], $props[6], $sub_type);
 $temp_mol->{_LEISC} = $props[7];
 for(my $i = 0; $i < 100; $i++){
 push(@{$temp_mol->{_rbpss}}, []);
 }
 push(@molecules, $temp_mol);

 20

 }
 }
 }
 close(FILE);
 my @matrix_ids;
 push(@matrix_ids, "Cons");
 foreach my $position (sort {$a<=>$b} keys %sig_proteins){
 foreach my $prot (@{$sig_proteins{$position}}){
 push(@matrix_ids, ($prot.",".$position));
 }
 }
 my @leisc_vector;
 my @z_score_matrix;
 my $forced_zero_counter = 0;
 foreach my $molecule (@molecules){
 my $leisc = log2($molecule->{_EI});
 my @z_scores;
 push(@z_scores, 1);
 foreach my $position (sort {$a<=>$b} keys %sig_proteins){
 my $pos = 0;
 if($position > 0){
 $pos = $position+22;
 }else{
 $pos = $position+23;
 }
 foreach my $prot (@{$sig_proteins{$position}}){
 my $heptamer = substr($molecule->{_seq}, $pos, 7);
 if(exists($proteins{$prot}{$heptamer})){
 push(@z_scores, $proteins{$prot}{$heptamer});
 }else{
 push(@z_scores, 0);
 $forced_zero_counter++;
 }
 }
 }
 push(@leisc_vector, $leisc);
 push(@z_score_matrix, \@z_scores);
 }

 my $start = time();
 my $n_ob = scalar(@leisc_vector);
 my $n_params = 1;
 my @final_model;
 my @final_model_thetas;
 my @final_model_stdes;
 my @final_model_ids;
 for(my $i = 0; $i < $n_ob; $i++){
 push(@final_model, [1]);
 }
 push(@final_model_ids, "Cons");
 my $min_p = 0;
 my $r2 = 0;
 my $adj_r2 = 0;
 my $rss = 0;
 my $sst = 0;
 my $f_for_model = 0;
 my $p_for_model = 1;
 my $added = 0;
 my $alpha = .01;

 21

 while($n_ob > $n_params && $min_p <= $alpha){
 my $max_t = 0;
 my $max_t_index = -1;
 my $max_t_p = 1;
 for(my $p = 1; $p < scalar(@matrix_ids); $p++){
 my @temp_model = @{copy_matrix(\@final_model)};
 my @temp_model_ids = @{copy_array(\@final_model_ids)};
 @temp_model = @{copy_column(\@temp_model, \@z_score_matrix, $p)};
 push(@temp_model_ids, $matrix_ids[$p]);
 my $reg = Statistics::Regression->new("", \@temp_model_ids);
 for(my $i = 0; $i < $n_ob; $i++){
 $reg->include($leisc_vector[$i], $temp_model[$i]);
 }
 my @temp_model_thetas = $reg->theta();
 my @temp_model_stdes = $reg->standarderrors();
 my $t_stat = abs($temp_model_thetas[(scalar(@temp_model_thetas)-
1)]/$temp_model_stdes[(scalar(@temp_model_thetas)-1)]);
 my $p_val = Statistics::Distributions::tprob($n_ob-scalar(@temp_model_ids),
$t_stat);
 $p_val = $p_val*2;
 if($t_stat > $max_t){
 $max_t = $t_stat;
 $max_t_index = $p;
 $max_t_p = $p_val;
 }
 }
 $min_p = $max_t_p;
 if($min_p <= $alpha){
 @final_model = @{copy_column(\@final_model, \@z_score_matrix,
$max_t_index)};
 push(@final_model_ids, $matrix_ids[$max_t_index]);
 @matrix_ids = @{delete_from_array(\@matrix_ids, $max_t_index)};
 @z_score_matrix = @{delete_column(\@z_score_matrix, $max_t_index)};
 my $reg2 = Statistics::Regression->new("", \@final_model_ids);
 for(my $i = 0; $i < $n_ob; $i++){
 $reg2->include($leisc_vector[$i], $final_model[$i]);
 }
 @final_model_thetas = $reg2->theta();
 @final_model_stdes = $reg2->standarderrors();
 $n_params = scalar(@final_model_ids);
 my @now_insig_prots;
 for(my $i = 1; $i < $n_params; $i++){
 my $t_stat = abs($final_model_thetas[$i]/$final_model_stdes[$i]);
 my $p_val = Statistics::Distributions::tprob($n_ob-
scalar(@final_model_ids), $t_stat);
 $p_val = $p_val*2;
 if($p_val > $alpha){
 push(@now_insig_prots, $i);
 }
 }
 my $eliminated = scalar(@now_insig_prots);
 @final_model = @{delete_columns(\@final_model, \@now_insig_prots)};
 @final_model_ids = @{delete_many_from_array(\@final_model_ids,
\@now_insig_prots)};
 $n_params = scalar(@final_model_ids);
 $r2 = $reg2->rsq();
 $adj_r2 = $reg2->adjrsq();
 $rss = ($reg2->sigmasq())*(n_ob-n_params);
 $sst = $reg2->sst();

 22

 $f_for_model = (($sst-$rss)/($n_params-1))/($rss/($n_ob-$n_params));
 $p_for_model = Statistics::Distributions::fprob(($n_params-1), ($n_ob-
$n_params), $f_for_model);
 $added++;
 print $added."\t".$min_p."\n";

 }
 }

 open(WRITE,
">Full_Exon_Models_Stepwise_Redone/Full_Exon_Model_Sig_Only_Variables_LEI_Stepwise_".
$hm."_0.01");
 for(my $i = 0; $i < $n_params; $i++){
 my $t_stat = $final_model_thetas[$i]/$final_model_stdes[$i];
 my $abs_t_stat = abs($t_stat);
 my $p_val = Statistics::Distributions::tprob($n_ob-scalar(@final_model_ids),
$abs_t_stat);
 print WRITE
$final_model_ids[$i]."\t".$final_model_thetas[$i]."\t".$final_model_stdes[$i]."\t".$t
_stat."\t".($p_val*2)."\t".$r2."\t".$adj_r2."\t".$p_for_model."\n";
 }
 close(WRITE);
 my $end = time();
 my $elapsed = $end-$start;
 print $elapsed."\n";

 my @predicted;
 my @observed;
 open(WRITE,
">Full_Exon_Models_Stepwise_Redone/Full_Exon_Model_LEI_Sig_Only_Variables_Added_".$hm
."_CV_Vals_0.01");
 for(my $o = 0; $o < $n_ob; $o++){
 my @cv_matrix = @{copy_matrix(\@final_model)};
 my @cv_leiscs = @{copy_array(\@leisc_vector)};
 my $tp_leis = $cv_leiscs[$o];
 my @tp_zs = @{$cv_matrix[$o]};
 @cv_leiscs = @{delete_from_array(\@cv_leiscs, $o)};
 @cv_matrix = @{delete_from_array(\@cv_matrix, $o)};
 my $cv_reg = Statistics::Regression->new("", \@final_model_ids);
 for(my $j = 0; $j < scalar(@cv_leiscs); $j++){
 $cv_reg->include($cv_leiscs[$j], $cv_matrix[$j]);
 }

 my @thetas = $cv_reg->theta();

 my $cv_predicted = 0;

 for(my $p = 0; $p < scalar(@final_model_ids); $p++){
 $cv_predicted += $tp_zs[$p]*$thetas[$p];
 }

 print WRITE $tp_leis."\t".$cv_predicted."\n";
 push(@predicted, $cv_predicted);
 push(@observed, $tp_leis);

 }

 close(WRITE);

 23

 my $MSE = calc_mse(\@predicted,\@observed);
 print $hm."\t".$MSE."\n";
}

sub delete_from_array{
 my @array = @{$_[0]};
 my $index_to_delete = $_[1];
 my @new_array;
 my $n = scalar(@array);
 for(my $v = 0; $v < $n; $v++){
 if($v != $index_to_delete){
 push(@new_array, $array[$v]);
 }
 }
 return \@new_array;
}

sub copy_array{
 my @array = @{$_[0]};
 my @new_array;
 foreach my $value (@array){
 push(@new_array, $value);
 }
 return \@new_array;
}

sub copy_matrix{
 my @matrix = @{$_[0]};
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 for(my $r = 0; $r < $n_rows; $r++){
 my $n_columns = scalar(@{$matrix[$r]});
 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 $new_matrix[$r][$c] = $matrix[$r][$c];
 }
 }
 return \@new_matrix;
}

sub copy_column{
 my @to_matrix = @{$_[0]};
 my @from_matrix = @{$_[1]};
 my $from_index = $_[2];
 for(my $r = 0; $r < scalar(@to_matrix); $r++){
 push(@{$to_matrix[$r]}, $from_matrix[$r][$from_index]);
 }
 return \@to_matrix;
}

sub add_protein{
 my @matrix = @{$_[0]};
 my @column = @{$_[1]};
 my $n_rows = scalar(@matrix);
 for(my $r = 0; $r < $n_rows; $r++){
 push(@{$matrix[$r]}, $column[$r]);
 }
 return \@matrix;
}

 24

sub delete_column{
 my @matrix = @{$_[0]};
 my $column_to_delete = $_[1];
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 my $n_columns= scalar(@{$matrix[0]});
 for(my $r = 0; $r < $n_rows; $r++){
 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 if($c != $column_to_delete){
 push(@{$new_matrix[$r]}, $matrix[$r][$c]);
 }
 }
 }
 return \@new_matrix;
}

sub correl{
 my @puppy_array = @{$_[0]};
 my @d_cs_array = @{$_[1]};
 my $mean_1 = average(\@puppy_array);
 my $mean_2 = average(\@d_cs_array);
 my $stddev_1 = staddev(\@puppy_array);
 my $stddev_2 = staddev(\@d_cs_array);
 my $n = scalar(@puppy_array);
 my @z_scores_1; my @z_scores_2;
 for(my $l = 0; $l < $n; $l++){
 my $z_1 = ($puppy_array[$l]-$mean_1)/$stddev_1;
 push(@z_scores_1, $z_1);
 my $z_2 = ($d_cs_array[$l]-$mean_2)/$stddev_2;
 push(@z_scores_2, $z_2);
 }
 my $product_sum = 0;
 for(my $l = 0; $l < $n; $l++){
 $product_sum = $product_sum + ($z_scores_1[$l]*$z_scores_2[$l]);
 }
 my $r = $product_sum/($n-1);
 return $r;
}

#function to calculate the average of a set of values in an array
sub average{
 my @values = @{$_[0]};
 my $length = scalar(@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + $value;
 }
 my $avg = $total/$length;
 return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{
 my @values = @{$_[0]};
 my $avg = average(\@values);
 my $total = 0;
 foreach my $value (@values){

 25

 $total = $total + ($value-$avg)**2;
 }
 my $length = scalar(@values);
 my $stdd = ($total/($length-1))**.5;
 return $stdd;
}

sub calc_mse{
 my @y_pred = @{$_[0]};
 my @y = @{$_[1]};
 my $n = scalar(@y_pred);
 my $ssd = 0;
 for(my $i = 0; $i < scalar(@y_pred); $i++){
 $ssd += (($y_pred[$i]-$y[$i])**2)
 }
 my $mse = $ssd/$n;
 return $mse;
}

sub log2{
 my $n = shift;
 return log($n)/log(2);
}

sub delete_many_from_array{
 my @array = @{$_[0]};
 my @indeces_to_delete = @{$_[1]};
 my %to_delete = ();
 foreach my $index (@indeces_to_delete){
 $to_delete{$index} = 1;
 }
 my @new_array;
 my $n = scalar(@array);
 for(my $v = 0; $v < $n; $v++){
 if(!exists($to_delete{$v})){
 push(@new_array, $array[$v]);
 }
 }
 return \@new_array;
}

sub delete_columns{
 my @matrix = @{$_[0]};
 my @columns_to_delete = @{$_[1]};
 my %to_delete = ();
 foreach my $index (@columns_to_delete){
 $to_delete{$index} = 1;
 }
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 my $n_columns= scalar(@{$matrix[0]});

 for(my $r = 0; $r < $n_rows; $r++){
 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 if(!exists($to_delete{$c})){
 push(@{$new_matrix[$r]}, $matrix[$r][$c]);
 }
 }

 26

 }
 return \@new_matrix;
}

 27

###
########
StepwiseCombined.pl

Performs the same task as Stepwise.pl but builds a single multiple linear model for
all
hexmuts combined, using only proteins that were found significant in each hexmut
multiple
linear model (as selected by prior stepwise procedure) as a starting set
###
########
use warnings;
use strict;
use Molecule;
use Statistics::Distributions;
use Statistics::Regression;
my %protein_translator = ();
open(FILE, "RBP_Information.txt") or die "ERROR: $!\n";
my @lns = <FILE>;
close(FILE);
shift @lns;
chomp @lns;
foreach my $ln (@lns){
 my @props = split(/\t/, $ln);
 if(!exists($protein_translator{$props[3]})){
 $protein_translator{$props[3]} = "";
 }
 $protein_translator{$props[3]} = $protein_translator{$props[3]}.$props[6].",";
}

open(FILE, "Zscores.txt") or die "ERROR: $!\n";
my @lines = <FILE>;
close(FILE);
chomp @lines;
my $id_row = shift(@lines);
my @ids = split(/\t/, $id_row);

shift @ids;
my %proteins = ();
my $id_index = 0;
my @translator;
foreach my $id (@ids){
 $translator[$id_index] = $id;
 $proteins{$id} = ();
 $id_index++;
}
my $n_protein_ids = scalar(@translator);
my $hept_counter = 0;
foreach my $line (@lines){
 my @z_intensities = split(/\t/, $line);
 my $motif = shift(@z_intensities);
 $motif =~ s/U/T/g;
 my $n_proteins = scalar(@z_intensities);
 $hept_counter++;
 for(my $i = 0; $i < $n_proteins; $i++){
 if(exists($proteins{$translator[$i]}{$motif})){
 die "ERROR: Repeated sequence\n";
 }
 $proteins{$translator[$i]}{$motif} = $z_intensities[$i];

 28

 }
}
my %sig_proteins = ();
open(FILE, "All_HMs_Proteins_0.01_no_3");
while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 if($props[0] ne "Cons"){
 my @var_props = split(",", $props[0]);
 if(!exists($sig_proteins{$var_props[1]})){
 $sig_proteins{$var_props[1]} = [];
 }
 push(@{$sig_proteins{$var_props[1]}}, $var_props[0]);
 }
}
close(FILE);

foreach my $pos_key (keys %sig_proteins){
 my @sorted_proteins = sort(@{$sig_proteins{$pos_key}});
 $sig_proteins{$pos_key} = \@sorted_proteins;
}

my @molecules;

open(FILE, "HM90summVNewLEISC");
while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 if($props[1] != 3){ #gets rid of HM3
 if($props[2] == 0){
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], "", "",
$props[3], $props[4], $props[5], $props[6], "WT");
 $temp_mol->{_LEISC} = $props[7];
 push(@molecules, $temp_mol);
 }else{
 my @sub_bases = split("-", $props[10]);
 my $sub_type = 1;
 if(length($sub_bases[0]) == 1){
 $sub_type = 0;
 }
 my $wt_bases = $sub_bases[0];
 my $mut_bases = $sub_bases[1];
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], $props[6], $sub_type);
 $temp_mol->{_LEISC} = $props[7];
 for(my $i = 0; $i < 100; $i++){
 push(@{$temp_mol->{_rbpss}}, []);
 }
 push(@molecules, $temp_mol);
 }
 }
}
close(FILE);

my @matrix_ids;
push(@matrix_ids, "Cons");
foreach my $position (sort {$a<=>$b} keys %sig_proteins){
 foreach my $prot (@{$sig_proteins{$position}}){

 29

 push(@matrix_ids, ($prot.",".$position));
 }
}
my @leisc_vector;
my @z_score_matrix;
my $forced_zero_counter = 0;
foreach my $molecule (@molecules){
 my $leisc = log2($molecule->{_EI});
 my @z_scores;
 push(@z_scores, 1);
 foreach my $position (sort {$a<=>$b} keys %sig_proteins){
 my $pos = 0;
 if($position > 0){
 $pos = $position+22;
 }else{
 $pos = $position+23;
 }
 foreach my $prot (@{$sig_proteins{$position}}){
 my $heptamer = substr($molecule->{_seq}, $pos, 7);
 if(exists($proteins{$prot}{$heptamer})){
 push(@z_scores, $proteins{$prot}{$heptamer});
 }else{
 push(@z_scores, 0);
 $forced_zero_counter++;
 }
 }
 }
 push(@leisc_vector, $leisc);
 push(@z_score_matrix, \@z_scores);
}

print "Zero forced: ".$forced_zero_counter."\n";

my $start = time();

my $n_ob = scalar(@leisc_vector);
my $n_params = 1;
my @final_model;
my @final_model_thetas;
my @final_model_stdes;
my @final_model_ids;
for(my $i = 0; $i < $n_ob; $i++){
 push(@final_model, [1]);
}
push(@final_model_ids, "Cons");
my $min_p = 0;
my $r2 = 0;
my $adj_r2 = 0;
my $rss = 0;
my $sst = 0;
my $f_for_model = 0;
my $p_for_model = 1;
my $added = 0;
my $alpha = 0.01;
while($n_ob > $n_params && $min_p <= $alpha){
 my $max_t = 0;
 my $max_t_index = -1;
 my $max_t_p = 1;

 30

 for(my $p = 1; $p < scalar(@matrix_ids); $p++){
 my @temp_model = @{copy_matrix(\@final_model)};
 my @temp_model_ids = @{copy_array(\@final_model_ids)};
 @temp_model = @{copy_column(\@temp_model, \@z_score_matrix, $p)};
 push(@temp_model_ids, $matrix_ids[$p]);
 my $reg = Statistics::Regression->new("", \@temp_model_ids);
 for(my $i = 0; $i < $n_ob; $i++){
 $reg->include($leisc_vector[$i], $temp_model[$i]);
 }
 my @temp_model_thetas = $reg->theta();
 my @temp_model_stdes = $reg->standarderrors();
 my $t_stat = abs($temp_model_thetas[(scalar(@temp_model_thetas)-
1)]/$temp_model_stdes[(scalar(@temp_model_thetas)-1)]);
 my $p_val = Statistics::Distributions::tprob($n_ob-scalar(@temp_model_ids),
$t_stat);
 $p_val = $p_val*2;
 if($t_stat > $max_t){
 $max_t = $t_stat;
 $max_t_index = $p;
 $max_t_p = $p_val;
 }
 }
 $min_p = $max_t_p;
 if($min_p <= $alpha){
 @final_model = @{copy_column(\@final_model, \@z_score_matrix, $max_t_index)};
 push(@final_model_ids, $matrix_ids[$max_t_index]);
 @matrix_ids = @{delete_from_array(\@matrix_ids, $max_t_index)};
 @z_score_matrix = @{delete_column(\@z_score_matrix, $max_t_index)};
 my $reg2 = Statistics::Regression->new("", \@final_model_ids);
 for(my $i = 0; $i < $n_ob; $i++){
 $reg2->include($leisc_vector[$i], $final_model[$i]);
 }
 @final_model_thetas = $reg2->theta();
 @final_model_stdes = $reg2->standarderrors();
 $n_params = scalar(@final_model_ids);
 my @now_insig_prots;
 for(my $i = 1; $i < $n_params; $i++){
 my $t_stat = abs($final_model_thetas[$i]/$final_model_stdes[$i]);
 my $p_val = Statistics::Distributions::tprob($n_ob-
scalar(@final_model_ids), $t_stat);
 $p_val = $p_val*2;
 if($p_val > $alpha){
 push(@now_insig_prots, $i);
 }
 }
 my $eliminated = scalar(@now_insig_prots);
 @final_model = @{delete_columns(\@final_model, \@now_insig_prots)};
 @final_model_ids = @{delete_many_from_array(\@final_model_ids,
\@now_insig_prots)};
 $n_params = scalar(@final_model_ids);
 $r2 = $reg2->rsq();
 $adj_r2 = $reg2->adjrsq();
 $rss = ($reg2->sigmasq())*(n_ob-n_params);
 $sst = $reg2->sst();
 $f_for_model = (($sst-$rss)/($n_params-1))/($rss/($n_ob-$n_params));
 $p_for_model = Statistics::Distributions::fprob(($n_params-1), ($n_ob-
$n_params), $f_for_model);
 $added++;
 print $added."\t".$min_p."\n";

 31

 }
}

open(WRITE,
">Full_Exon_Models_Stepwise_Redone/Full_Exon_Model_LEI_Stepwise_0.01_no_3");
for(my $i = 0; $i < $n_params; $i++){
 my $t_stat = $final_model_thetas[$i]/$final_model_stdes[$i];
 my $abs_t_stat = abs($t_stat);
 my $p_val = Statistics::Distributions::tprob($n_ob-scalar(@final_model_ids),
$abs_t_stat);
 print WRITE
$final_model_ids[$i]."\t".$final_model_thetas[$i]."\t".$final_model_stdes[$i]."\t".$t
_stat."\t".($p_val*2)."\t".$r2."\t".$adj_r2."\t".$p_for_model."\n";
}
close(WRITE);
my $end = time();
my $elapsed = $end-$start;
print $elapsed."\n";

my @predicted;
my @observed;
open(WRITE,
">Full_Exon_Models_Stepwise_Redone/Full_Exon_Model_LEI_CV_Vals_0.01_no_3");
for(my $o = 0; $o < $n_ob; $o++){
 my @cv_matrix = @{copy_matrix(\@final_model)};
 my @cv_leiscs = @{copy_array(\@leisc_vector)};
 my $tp_leis = $cv_leiscs[$o];
 my @tp_zs = @{$cv_matrix[$o]};
 @cv_leiscs = @{delete_from_array(\@cv_leiscs, $o)};
 @cv_matrix = @{delete_from_array(\@cv_matrix, $o)};
 my $cv_reg = Statistics::Regression->new("", \@final_model_ids);
 for(my $j = 0; $j < scalar(@cv_leiscs); $j++){
 $cv_reg->include($cv_leiscs[$j], $cv_matrix[$j]);
 }

 my @thetas = $cv_reg->theta();

 my $cv_predicted = 0;

 for(my $p = 0; $p < scalar(@final_model_ids); $p++){
 $cv_predicted += $tp_zs[$p]*$thetas[$p];
 }

 print WRITE $tp_leis."\t".$cv_predicted."\n";
 push(@predicted, $cv_predicted);
 push(@observed, $tp_leis);

}

close(WRITE);
my $MSE = calc_mse(\@predicted,\@observed);
print $MSE."\n";

sub delete_from_array{
 my @array = @{$_[0]};
 my $index_to_delete = $_[1];
 my @new_array;

 32

 my $n = scalar(@array);
 for(my $v = 0; $v < $n; $v++){
 if($v != $index_to_delete){
 push(@new_array, $array[$v]);
 }
 }
 return \@new_array;
}

sub copy_array{
 my @array = @{$_[0]};
 my @new_array;
 foreach my $value (@array){
 push(@new_array, $value);
 }
 return \@new_array;
}

sub copy_matrix{
 my @matrix = @{$_[0]};
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 for(my $r = 0; $r < $n_rows; $r++){
 my $n_columns = scalar(@{$matrix[$r]});
 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 $new_matrix[$r][$c] = $matrix[$r][$c];
 }
 }
 return \@new_matrix;
}

sub copy_column{
 my @to_matrix = @{$_[0]};
 my @from_matrix = @{$_[1]};
 my $from_index = $_[2];
 for(my $r = 0; $r < scalar(@to_matrix); $r++){
 push(@{$to_matrix[$r]}, $from_matrix[$r][$from_index]);
 }
 return \@to_matrix;
}

sub add_protein{
 my @matrix = @{$_[0]};
 my @column = @{$_[1]};
 my $n_rows = scalar(@matrix);
 for(my $r = 0; $r < $n_rows; $r++){
 push(@{$matrix[$r]}, $column[$r]);
 }
 return \@matrix;
}

sub delete_column{
 my @matrix = @{$_[0]};
 my $column_to_delete = $_[1];
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 my $n_columns= scalar(@{$matrix[0]});
 for(my $r = 0; $r < $n_rows; $r++){

 33

 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 if($c != $column_to_delete){
 push(@{$new_matrix[$r]}, $matrix[$r][$c]);
 }
 }
 }
 return \@new_matrix;
}

sub correl{
 my @puppy_array = @{$_[0]};
 my @d_cs_array = @{$_[1]};
 my $mean_1 = average(\@puppy_array);
 my $mean_2 = average(\@d_cs_array);
 my $stddev_1 = staddev(\@puppy_array);
 my $stddev_2 = staddev(\@d_cs_array);
 my $n = scalar(@puppy_array);
 my @z_scores_1; my @z_scores_2;
 for(my $l = 0; $l < $n; $l++){
 my $z_1 = ($puppy_array[$l]-$mean_1)/$stddev_1;
 push(@z_scores_1, $z_1);
 my $z_2 = ($d_cs_array[$l]-$mean_2)/$stddev_2;
 push(@z_scores_2, $z_2);
 }
 my $product_sum = 0;
 for(my $l = 0; $l < $n; $l++){
 $product_sum = $product_sum + ($z_scores_1[$l]*$z_scores_2[$l]);
 }
 my $r = $product_sum/($n-1);
 return $r;
}

#function to calculate the average of a set of values in an array
sub average{
 my @values = @{$_[0]};
 my $length = scalar(@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + $value;
 }
 my $avg = $total/$length;
 return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{
 my @values = @{$_[0]};
 my $avg = average(\@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + ($value-$avg)**2;
 }
 my $length = scalar(@values);
 my $stdd = ($total/($length-1))**.5;
 return $stdd;
}

sub calc_mse{

 34

 my @y_pred = @{$_[0]};
 my @y = @{$_[1]};
 my $n = scalar(@y_pred);
 my $ssd = 0;
 for(my $i = 0; $i < scalar(@y_pred); $i++){
 $ssd += (($y_pred[$i]-$y[$i])**2)
 }
 my $mse = $ssd/$n;
 return $mse;
}

sub log2{
 my $n = shift;
 return log($n)/log(2);
}

sub delete_many_from_array{
 my @array = @{$_[0]};
 my @indeces_to_delete = @{$_[1]};
 my %to_delete = ();
 foreach my $index (@indeces_to_delete){
 $to_delete{$index} = 1;
 }
 my @new_array;
 my $n = scalar(@array);
 for(my $v = 0; $v < $n; $v++){
 if(!exists($to_delete{$v})){
 push(@new_array, $array[$v]);
 }
 }
 return \@new_array;
}

sub delete_columns{
 my @matrix = @{$_[0]};
 my @columns_to_delete = @{$_[1]};
 my %to_delete = ();
 foreach my $index (@columns_to_delete){
 $to_delete{$index} = 1;
 }
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 my $n_columns= scalar(@{$matrix[0]});

 for(my $r = 0; $r < $n_rows; $r++){
 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 if(!exists($to_delete{$c})){
 push(@{$new_matrix[$r]}, $matrix[$r][$c]);
 }
 }
 }
 return \@new_matrix;
}

 35

###
########
TenFoldCV.pl

Performs a ten-fold cross validation on a multiple linear model as specified
###
########
use warnings;
use strict;
use Molecule;
use Statistics::Distributions;
use Statistics::Regression;
use Math::Random::Secure qw(irand);

open(WRITE2, ">HM_10FCV_Selected_Full_Result_0.01");
#for(my $hm = 1; $hm < 11; $hm++){
#for(my $count = 0; $count < 10; $count++){
open(FILE, "Full_Exon_Model_LEI_Stepwise_0.01");
my %sig_proteins = ();
while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 if($props[0] ne "Cons"){
 my @var_props = split(",", $props[0]);
 if(!exists($sig_proteins{$var_props[1]})){
 $sig_proteins{$var_props[1]} = [];
 }
 push(@{$sig_proteins{$var_props[1]}}, $var_props[0]);
 }
}
close(FILE);

foreach my $pos_key (keys %sig_proteins){
 my @sorted_proteins = sort(@{$sig_proteins{$pos_key}});
 $sig_proteins{$pos_key} = \@sorted_proteins;
}
open(FILE, "Zscores.txt") or die "ERROR: $!\n";
my @lines = <FILE>;
close(FILE);
chomp @lines;
my $id_row = shift(@lines);
my @ids = split(/\t/, $id_row);

shift @ids;
my %proteins = ();
my $id_index = 0;
my @translator;
foreach my $id (@ids){
 #print $id."\n";
 $translator[$id_index] = $id;
 $proteins{$id} = ();
 $id_index++;
}
my $n_protein_ids = scalar(@translator);
my $hept_counter = 0;
foreach my $line (@lines){
 my @z_intensities = split(/\t/, $line);
 my $motif = shift(@z_intensities);

 36

 $motif =~ s/U/T/g;
 my $n_proteins = scalar(@z_intensities);
 $hept_counter++;
 for(my $i = 0; $i < $n_proteins; $i++){
 if(exists($proteins{$translator[$i]}{$motif})){
 die "ERROR: Repeated sequence\n";
 }
 $proteins{$translator[$i]}{$motif} = $z_intensities[$i];
 }
}

open(FILE, "HM90summVNewLEISC");
my @molecules;
while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 #if($props[1] == $hm){ #gets rid of HM3
 if($props[2] == 0){
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], "", "",
$props[3], $props[4], $props[5], $props[6], "WT");
 $temp_mol->{_LEISC} = $props[7];
 push(@molecules, $temp_mol);
 }else{
 my @sub_bases = split("-", $props[10]);
 my $sub_type = 1; #since most are DB subs, it's the default
 if(length($sub_bases[0]) == 1){
 $sub_type = 0;
 }
 my $wt_bases = $sub_bases[0];
 my $mut_bases = $sub_bases[1];
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], $props[6], $sub_type);
 $temp_mol->{_LEISC} = $props[7];
 for(my $i = 0; $i < 100; $i++){
 push(@{$temp_mol->{_rbpss}}, []);
 }
 push(@molecules, $temp_mol);
 }
 #}
}
close(FILE);
my @model_ids;
push(@model_ids, "Cons");
foreach my $position (sort {$a<=>$b} keys %sig_proteins){
 foreach my $prot (@{$sig_proteins{$position}}){
 push(@model_ids, ($prot.",".$position));
 }
}
my @leisc_vector;
my @z_score_matrix;
my $forced_zero_counter = 0;
foreach my $molecule (@molecules){
 my $leisc = $molecule->{_LEISC};
 my @z_scores;
 push(@z_scores, 1);
 foreach my $position (sort {$a<=>$b} keys %sig_proteins){
 my $pos = 0;
 if($position > 0){

 37

 $pos = $position+22;
 }else{
 $pos = $position+23;
 }
 foreach my $prot (@{$sig_proteins{$position}}){
 my $heptamer = substr($molecule->{_seq}, $pos, 7);
 if(exists($proteins{$prot}{$heptamer})){
 push(@z_scores, $proteins{$prot}{$heptamer});
 }else{
 push(@z_scores, 0);
 $forced_zero_counter++;
 }
 }
 }
 push(@leisc_vector, $leisc);
 push(@z_score_matrix, \@z_scores);
}

my $n_ob = scalar(@leisc_vector);
my $n_params = scalar(@model_ids);
print $n_params."\n";
my $reg = Statistics::Regression->new("", \@model_ids);
for(my $i = 0; $i < $n_ob; $i++){
 $reg->include($leisc_vector[$i], $z_score_matrix[$i]);
}
my $r2 = $reg->rsq();
my $adj_r2 = $reg->adjrsq();
my @model_thetas = $reg->theta();
my @model_stdes = $reg->standarderrors();
my $rss = ($reg->sigmasq())*(n_ob-n_params);
my $sst = $reg->sst();
my $f = (($sst-$rss)/($n_params-1))/($rss/($n_ob-$n_params));
my $p = Statistics::Distributions::fprob(($n_params-1), ($n_ob-$n_params), $f);

open(WRITE, ">Full_Exon_Model_Selected_All_0.01_CV_Vals");
my @matrix_folds;
my @leisc_folds;
my $fold_size = ($n_ob/10);
my $current_size = $n_ob;
my $has_next = 1;
$fold_size = sprintf("%.0f", $fold_size);
for(my $f = 0; $f < 10; $f++){
 push(@matrix_folds, []);
 push(@leisc_folds, []);
 for(my $e = 0; $e < $fold_size && $has_next; $e++){
 my $rand_index = irand($current_size);
 push(@{$leisc_folds[$f]}, $leisc_vector[$rand_index]);
 push(@{$matrix_folds[$f]}, $z_score_matrix[$rand_index]);
 @leisc_vector = @{delete_from_array(\@leisc_vector, $rand_index)};
 @z_score_matrix = @{delete_from_array(\@z_score_matrix, $rand_index)};
 $current_size = scalar(@leisc_vector);
 if($current_size == 0){
 $has_next = 0;
 }

 }
}

 38

my @predicted;
my @observed;
my $g_cv_reg = Statistics::Regression->new("", ["b0","b1"]);
for(my $f = 0; $f < 10; $f++){
 my @tp_leiscs;
 my @tp_zs;
 my @tu_leiscs;
 my @tu_zs;
 #leave one fold out, and merge the other nine
 for(my $add_f = 0; $add_f < 10; $add_f++){
 if($add_f == $f){
 @tp_leiscs = @{copy_array($leisc_folds[$add_f])};
 @tp_zs = @{copy_matrix($matrix_folds[$add_f])};
 }else{
 for(my $o = 0; $o < scalar(@{$leisc_folds[$add_f]}); $o++){
 push(@tu_leiscs, $leisc_folds[$add_f][$o]);
 push(@tu_zs, $matrix_folds[$add_f][$o]);
 }
 }
 }
 #now use the nine folds to make a models
 my $cv_reg = Statistics::Regression->new("", \@model_ids);
 for(my $j = 0; $j < scalar(@tu_leiscs); $j++){
 $cv_reg->include($tu_leiscs[$j], $tu_zs[$j]);
 }
 my @thetas = $cv_reg->theta();

 for(my $tp = 0; $tp < scalar(@tp_leiscs); $tp++){
 my $cv_predicted = 0;
 for(my $p = 0; $p < scalar(@model_ids); $p++){
 $cv_predicted += $tp_zs[$tp][$p]*$thetas[$p];
 }
 $g_cv_reg->include($tp_leiscs[$tp], [1, $cv_predicted]);
 print WRITE $tp_leiscs[$tp]."\t".$cv_predicted."\n";
 push(@predicted, $cv_predicted);
 push(@observed, $tp_leiscs[$tp]);
 }
}
my $r_2 = $g_cv_reg->rsq();
my @thetas = $g_cv_reg->theta();
my $MSE = calc_mse(\@predicted,\@observed);
print WRITE2 $thetas[0]."\t".$thetas[1]."\t".$r_2."\t".$MSE."\n";
close(WRITE);

#}
#}
close(WRITE2);

sub delete_from_array{
 my @array = @{$_[0]};
 my $index_to_delete = $_[1];
 my @new_array;
 my $n = scalar(@array);
 for(my $v = 0; $v < $n; $v++){
 if($v != $index_to_delete){
 push(@new_array, $array[$v]);
 }
 }
 return \@new_array;

 39

}

sub copy_array{
 my @array = @{$_[0]};
 my @new_array;
 foreach my $value (@array){
 push(@new_array, $value);
 }
 return \@new_array;
}

sub copy_matrix{
 my @matrix = @{$_[0]};
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 for(my $r = 0; $r < $n_rows; $r++){
 my $n_columns = scalar(@{$matrix[$r]});
 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 $new_matrix[$r][$c] = $matrix[$r][$c];
 }
 }
 return \@new_matrix;
}

sub copy_column{
 my @to_matrix = @{$_[0]};
 my @from_matrix = @{$_[1]};
 my $from_index = $_[2];
 for(my $r = 0; $r < scalar(@to_matrix); $r++){
 push(@{$to_matrix[$r]}, $from_matrix[$r][$from_index]);
 }
 return \@to_matrix;
}

sub add_protein{
 my @matrix = @{$_[0]};
 my @column = @{$_[1]};
 my $n_rows = scalar(@matrix);
 for(my $r = 0; $r < $n_rows; $r++){
 push(@{$matrix[$r]}, $column[$r]);
 }
 return \@matrix;
}

sub delete_column{
 my @matrix = @{$_[0]};
 my $column_to_delete = $_[1];
 my @new_matrix;
 my $n_rows = scalar(@matrix);
 my $n_columns= scalar(@{$matrix[0]});
 for(my $r = 0; $r < $n_rows; $r++){
 $new_matrix[$r] = [];
 for(my $c = 0; $c < $n_columns; $c++){
 if($c != $column_to_delete){
 push(@{$new_matrix[$r]}, $matrix[$r][$c]);
 }
 }

 40

 }
 return \@new_matrix;
}

sub correl{
 my @puppy_array = @{$_[0]};
 my @d_cs_array = @{$_[1]};
 my $mean_1 = average(\@puppy_array);
 my $mean_2 = average(\@d_cs_array);
 my $stddev_1 = staddev(\@puppy_array);
 my $stddev_2 = staddev(\@d_cs_array);
 my $n = scalar(@puppy_array);
 my @z_scores_1; my @z_scores_2;
 for(my $l = 0; $l < $n; $l++){
 my $z_1 = ($puppy_array[$l]-$mean_1)/$stddev_1;
 push(@z_scores_1, $z_1);
 my $z_2 = ($d_cs_array[$l]-$mean_2)/$stddev_2;
 push(@z_scores_2, $z_2);
 }
 my $product_sum = 0;
 for(my $l = 0; $l < $n; $l++){
 $product_sum = $product_sum + ($z_scores_1[$l]*$z_scores_2[$l]);
 }
 my $r = $product_sum/($n-1);
 return $r;
}

#function to calculate the average of a set of values in an array
sub average{
 my @values = @{$_[0]};
 my $length = scalar(@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + $value;
 }
 my $avg = $total/$length;

 return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{
 my @values = @{$_[0]};
 my $avg = average(\@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + ($value-$avg)**2;
 }

 my $length = scalar(@values);
 my $stdd = ($total/($length-1))**.5;

 return $stdd;
}

sub calc_mse{
 my @y_pred = @{$_[0]};
 my @y = @{$_[1]};
 my $n = scalar(@y_pred);

 41

 my $ssd = 0;
 for(my $i = 0; $i < scalar(@y_pred); $i++){
 $ssd += (($y_pred[$i]-$y[$i])**2)
 }
 my $mse = $ssd/$n;
 return $mse;
}

 42

###
########
VarKmerContribution.pl

Takes a k-mer length as an argument and estimates the effect of all unique k-mers
of the
specified length in each hexmut set; A window of length k is started at the
beginnig of the
sequence potentially mutated, the LEI of all unique k-mers created at that position
along
the exon is averaged to estimate the net effect of mutating the sequence in that
space, and
this value is subtracted from the individual LEI of each k-mer at that position,
yielding
a net contribution of each unique k-mer to the LEI of the molecule it is in. The
window
is then slid by one base, until the end of the exon. The contribution of any k-mers
that
occurs more than once along the exon/set of mutations is averaged at the end of the
procedure,
yielding the eLEI
###
########

use warnings;
use strict;
use Statistics::Regression;
use Statistics::Distributions;
use Molecule;
open(FILE, "HM90summVNewLEISC");
my $WINDOW = $ARGV[0];
my @molecules;
while(<FILE>){
 chomp $_;
 my @props = split(/\t/, $_);
 if($props[1] != 12){ #to exclude an HM as needed
 if($props[2] == 0){
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], "", "",
$props[3], $props[4], $props[5], $props[6], "WT");
 $temp_mol->{_LEISC} = $props[7];
 push(@molecules, $temp_mol);
 }else{
 my @sub_bases = split("-", $props[10]);
 my $sub_type = 1;
 if(length($sub_bases[0]) == 1){
 $sub_type = 0;
 }
 my $wt_bases = $sub_bases[0];
 my $mut_bases = $sub_bases[1];
 my $temp_mol = new Molecule($props[0], $props[1], $props[2], $wt_bases,
$mut_bases, $props[3], $props[4], $props[5], $props[6], $sub_type);
 $temp_mol->{_LEISC} = $props[7];
 for(my $i = 0; $i < 100; $i++){
 push(@{$temp_mol->{_rbpss}}, []);
 }
 push(@molecules, $temp_mol);
 }
 }
}

 43

close(FILE);

my %motif_pos = ();
my %hm_groups = ();
for(my $hm = 1; $hm < 11; $hm++){
 my $n_molecules_array = scalar(@molecules);
 my %regressions = ();
 for(my $i = 24; $i < (72-$WINDOW); $i++){
 my $exon_position;
 if($i > 22){
 $exon_position = $i-22;
 }else{
 $exon_position = $i-23;
 }
 my $wt_heptamer; my $wt_left; my $wt_right;
 foreach my $molecule (@molecules){
 if($molecule->{_hm} == $hm){
 if($molecule->{_mut_type} eq "WT"){
 $wt_heptamer = substr($molecule->{_seq}, $i, $WINDOW);
 $wt_left = substr($molecule->{_seq}, ($i-1), 1);
 $wt_right = substr($molecule->{_seq}, ($i+$WINDOW), 1);
 if(!exists($regressions{$exon_position})){
 $regressions{$exon_position} = [[], [], [], [], []];
 }
 push(@{$regressions{$exon_position}[0]}, log2($molecule->{_EI}));
 push(@{$regressions{$exon_position}[1]}, $molecule->{_serial});
 push(@{$regressions{$exon_position}[2]}, $molecule->{_hm});
 push(@{$regressions{$exon_position}[3]}, $wt_heptamer);
 push(@{$regressions{$exon_position}[4]}, $molecule->{_seq});
 }else{
 my $mut_heptamer = substr($molecule->{_seq}, $i, $WINDOW);
 my $mut_left = substr($molecule->{_seq}, ($i-1), 1);
 my $mut_right = substr($molecule->{_seq}, ($i+$WINDOW), 1);
 if($mut_heptamer ne $wt_heptamer && $mut_left eq $wt_left &&
$mut_right eq $wt_right){
 if(!exists($regressions{$exon_position})){
 $regressions{$exon_position} = [[], [], [], [], []];
 }
 push(@{$regressions{$exon_position}[0]}, log2($molecule->{_EI}));
 push(@{$regressions{$exon_position}[1]}, $molecule->{_serial});
 push(@{$regressions{$exon_position}[2]}, $molecule->{_hm});
 push(@{$regressions{$exon_position}[3]}, $mut_heptamer);
 push(@{$regressions{$exon_position}[4]}, $molecule->{_seq});

 }
 }
 }
 }
 }
 my %results = ();

 foreach my $pos (sort {$a<=>$b} keys %regressions){
 my $g_avg = average($regressions{$pos}[0]);
 my $n = scalar(@{$regressions{$pos}[0]});
 print $n."\n";
 for(my $i = 0; $i < scalar(@{$regressions{$pos}[0]}); $i++){
 if(!exists($results{$regressions{$pos}[3][$i]})){
 $results{$regressions{$pos}[3][$i]} = {};
 }

 44

 $results{$regressions{$pos}[3][$i]}{$pos} = $regressions{$pos}[0][$i]-
$g_avg;
 }
 }
 $hm_groups{$hm} = {};
 foreach my $key (sort keys %results){
 my @base_pos;
 for(my $pos = 1; $pos < 49; $pos++){
 if(exists($results{$key}{$pos})){
 push(@base_pos, $results{$key}{$pos});
 }
 }
 $hm_groups{$hm}{$key} = average(\@base_pos);
 $motif_pos{$key} = 1;

 }
}
open(WRITE, ">All_HM_".$WINDOW."NT_Avg_Effects");
print WRITE "HM";
foreach my $m_key (sort keys %motif_pos){
 print WRITE "\t".$m_key;
}
print WRITE "\n";
foreach my $hm_key (sort {$a<=>$b} keys %hm_groups){
 print WRITE $hm_key;
 foreach my $group (sort keys %motif_pos){
 if(exists($hm_groups{$hm_key}{$group})){
 print WRITE "\t".$hm_groups{$hm_key}{$group};
 }else{
 print WRITE "\t";
 }
 }
 print WRITE "\n";
}
close(WRITE);
sub average{
 my @values = @{$_[0]};
 my $length = scalar(@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + $value;
 }
 my $avg = $total/$length;
 return $avg
}
#function to calculate the standard deviation of a set of values in an array
#given that there exists an average function
sub staddev{
 my @values = @{$_[0]};
 my $avg = average(\@values);
 my $total = 0;
 foreach my $value (@values){
 $total = $total + ($value-$avg)**2;
 }
 my $length = scalar(@values);
 my $stdd = ($total/($length-1))**.5;
 return $stdd;
}

 45

sub sortByP{
 my @a_arr = @{$a};
 my @b_arr = @{$b};
 $a_arr[6]<=>$b_arr[6];
}

sub log2{
 my $n = shift;
 return log($n)/log(2);
}

sub median{
 my @values = @{$_[0]};
 @values = sort {$a<=>$b} @values;
 my $median = 0;
 my $n_values = scalar(@values);

 if($n_values % 2 == 0){
 my $m = ($n_values/2);
 $median = ($values[$m-1]+$values[$m])/2;
 }else{
 my $m = int($n_values/2);
 $median = $values[$m];
 }
 return $median;

}

 46

BuildForest.py

Builds a random forest using all available RBPs and their
respective Z-score based affinities for heptamers and
the eLEI from our exon inclusion experiment
Uses random forest generated to predict the eLEIsc of
heptamers not generated by our mutations

from sklearn import ensemble
from sklearn import tree
from sklearn.externals.six import StringIO
import os

min_oobs = {}
min_oobs_split = {}

f = open("HA7Esc_RF_Vals", "r")
lines = [line.strip() for line in f]
f.close()
leiscs = (lines.pop(0)).split('\t')
for i in range (0, len(leiscs)):
 leiscs[i] = float(leiscs[i])
ids = (lines.pop(0)).split('\t')
z_matrix = [line.split('\t') for line in lines]
for i in range (0, len(z_matrix)):
 for j in range (0, len(z_matrix[0])):
 z_matrix[i][j] = float(z_matrix[i][j])

f2 = open("HA7Esc_RF_To_Predict_All", "r")
lines = [line.strip() for line in f2]
f2.close()
z_tp = [line.split('\t') for line in lines]
for i in range (0, len(z_tp)):
 for j in range (0, len(z_tp[0])):
 z_tp[i][j] = float(z_tp[i][j])

fw = open("HA7Esc_Forest_OOBS_mean", "w")
oob_scores = []
params = []
fw3 = open("HA7Esc_RF_Predictions_All", "w")
for min_samp in range(10, 11):
 clf = ensemble.RandomForestRegressor(n_estimators=100,
min_samples_split=min_samp, oob_score=True)
 clf = clf.fit(z_matrix, leiscs)
 oob_s = clf.oob_score_
 oob_score_2 = clf.score(z_matrix, leiscs)
 params = clf.feature_importances_
 predictions = clf.predict(z_tp)
 for i in range(len(predictions)):
 fw3.write(str(predictions[i])+'\n')

 fw.write(str(min_samp)+'\t'+str(oob_s)+'\t'+str(oob_score_2)+'\n')
 oob_scores.append(oob_s)
min_oobs_l = 1000;
min_oobs_split_l = -1;

 47

fw3.close()
for iteration in range(0, 1):
 if(oob_scores[iteration] < min_oobs_l):
 min_oobs_l = oob_scores[iteration]
 min_oobs_split_l = iteration+2
min_oobs[0] = min_oobs_l
min_oobs_split[0] = min_oobs_split_l
fw.close()
minwrite = open("HA7Esc_Random_Forest_Min_OOBS_All", "w")
for k in min_oobs.keys():
 minwrite.write(str(k)+"\t"+str(min_oobs[k])+"\t"+str(min_oobs_split[k])+"\n")
minwrite.close()

	TABLE OF CONTENTS
	RBP Immunoprecipitation Experiment
	RBP 7mer Experiment
	# matched perfectly
	}else{

