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SUPPLEMENTAL METHODS

Profiling of inclusion levels of AS events across multiple RNA-seq samples
All AS profiles in VastDB have been generated using vast-tools (Irimia et al. 2014). This software (https://github.com/vastgroup/vast-tools) consists of multiple utilities to align and process raw RNA-seq reads to derive Percent Splice In (PSIs) for all types of AS in different species (Supplemental Fig. S1). The following utilities have been used in this study: 
- align: it uses raw RNA-seq reads in FASTQ or FASTA format. First, the first 50 nucleotides (nt) from each forward read are mapped to a library of representative transcripts (one per gene) to derive gene expression levels using the cRPKM metric, as described in (Barbosa-Morais et al. 2012; Labbe et al. 2012). Next, to increase the fraction of reads mapping to exon-exon junctions (EEJs), each read is split into 50-nt read groups using sliding windows of 25 nucleotides. In addition, in case of paired-end sequencing, both read mates are pooled together in a single read group. These 50-nt reads are then mapped to the corresponding genome assemblies using Bowtie (Langmead et al. 2009), with –m 1 –v 2 parameters (unique mapping with no more than two mismatches), which are the mapping conditions that will be in used in all subsequent steps. This step is used to obtain the subset of reads that do not map to the genome, as quantifications for AltEx, Alt3 and Alt5 are done solely based on EEJ counts (which do not exist in the raw genomic sequence, by definition). Non-mapping reads will then be mapped to the different EEJ libraries used to quantify AltEx events. To capture single exon skipping events, as well as more complex events involving tandem exons with correlated, independent or mutually exclusive AS, three complementary approaches from previous studies are integrated into vast-tools (Supplemental Fig. S1): (1) A “transcript-based module”, which includes a library with EEJs for single-exon AltEx events, and a library with multi-exon events that were defined based on alignments of ESTs and cDNAs to genomic sequence, and RNA-seq-based transcripts using cufflinks (Irimia et al. 2014); (2) a “microexon module”, specifically designed to quantify very short exons (3-15 nt), which uses regular EEJs as skipping-supporting junctions (joining upstream [C1] and downstream [C2] neighboring exons) and exon-microexon-exon junctions to quantify read support for microexon inclusion (Irimia et al. 2014); and (3) a “splice site-based module”, employing the joining of all hypothetically-possible forward splice junction combinations from annotated and novel splice sites (Han et al. 2013) (see (Curtis et al. 2012) for further information on the pipeline for novel splice site identification). For IR, align implements our previously described pipeline (Braunschweig et al. 2014), which employs, on the one hand, a comprehensive set of reference sequences comprising exon-intron junctions (EIJs) and EEJs, and, on the other hand, intron mid-point sequences. Only EIJs and EEJs counts are used to generate Percent Intron Retention (PIRs) for each annotated intron. 
Importantly, for quantifications in all mapping steps of align only one count per read group (i.e. all sub-reads coming from the same original read) is considered to avoid multiple counting of the same original molecule. Moreover, for all modules and AS types, measured read counts are corrected for the number mappable positions in each EEJ or EIJ (see (Barbosa-Morais et al. 2012; Han et al. 2013) for details). Altogether, align produces a set of intermediary files for each profiled RNA-seq sample that contain raw and corrected read counts for a complementary set of EEJs and EIJs for all types of AS events that is the input for combine (see below).
- merge: this module is optional and can be used to merge the align output files from multiple RNA-seq samples. It is equivalent to concatenate all individual RNA-seq files into a single FASTQ file and run vast-tools align using it as input.
- combine: provided a set of outputs from align, it creates a single, non-redundant table with all types of AS events, their inclusion levels in each of the samples and a series of quality scores (see vast-tools README for details). Quantification of Alt3 and Alt5 AS events is done at this step using the output from mapping RNA-seq reads to the EEJ library from the “splice site-based module” (Supplemental Fig. S1). For simplicity, we use the term PSI in this study to refer to the percentage of inclusion of the alternatively spliced sequence for all types of AS events. 
- plot: an independent module that produces plots of the PSIs across samples provided a combine output table with a subset of AS events (see https://github.com/kcha/psiplot for details).

Finally, it should be noted that, since vast-tools uses a fixed set of AS events for each species, any RNA-seq sample processed using this tool will provide a combine table that is directly comparable to the values provided in VastDB through the Event ID. Unlike other software, vast-tools assigns an Event ID to each exon and all its variations (e.g. different Alt3 and Alt5 in the alternative exon or different neighboring [C1/C2] exons; see more details in the next section).

Simulation of RNA-seq data for vast-tools benchmarking
We simulated RNA-seq data using a previously published Python pipeline (Liu et al. 2014), which internally relies on the Flux Simulator software (Griebel et al. 2012). This pipeline estimates gene expression profiles from true RNA-seq data, scales these profiles to a desired overall number of mRNA molecules (using a given mRNA count per gene), and simulates RNA-seq reads according to the mRNA count of each gene, distributing this count among all transcripts of that gene with an identical ratio for all isoforms and genes. For our purposes, we extended this pipeline in two directions, so that: (i) reads per gene will be distributed across the corresponding transcripts with a random ratio that is different for each gene, but constant across replicates; and (ii) in each replicate, white noise (Normal, SD=0.01) is added to the transcript ratio of each gene. The latter extension introduces minor variations in replicated samples where the ratio for each gene is initially the same.

To estimate gene expression profiles, we used available real RNA-seq data from human lymphoblastoid cells (GSE52834), done in triplicates for two conditions (control and SRSF3 knockdown). Read summary statistics and SRA accession numbers are available in Supplemental Table S1. We applied the extended read simulation pipeline to the three replicates of each condition, simulating three replicates of 50 or 150 million paired-end, 100-nt unstranded RNA-seq reads per condition, covering all 22,099 hg19 RefSeq genes (version: Feb 2009). The larger data sets (150M reads) were used for assessing the accuracy of PSI and ΔPSI predictions and for measuring run time and memory usage; the smaller data sets (50M reads) where used only for run time and memory comparisons.

Next, we annotated the different types of AS events (AltEx, Alt3, Alt5, IR) in the same hg19 RefSeq annotation using SUPPA (Alamancos et al. 2015). Since SUPPA follows a different definition of AS events to that of vast-tools, we extended the SUPPA-predicted events using a custom script. In brief, SUPPA – as most tools for AS event-based analysis – defines AltEx events by exactly one start and one end coordinate of the skipped exon, the end coordinate of the upstream exon, and the start coordinate of the downstream exon. Consequently, SUPPA predicts several AltEx events from transcripts containing several, overlapping skipped exons in between the same flanking exons. In contrast, as mentioned above, vast-tools merges all overlapping versions of a skipped exon into a single AltEx event. In addition, vast-tools accounts for different end coordinates of the upstream exon and start coordinates of the downstream exon, if available. Therefore, an AltEx event is defined by potentially many end/start coordinates of the upstream/downstream flanking exon and potentially many start/end coordinates of the skipped exon. The same applies for Alt3 and Alt5 events: the upstream and downstream exons, respectively, may have several end/start coordinates. Thus, to obtain AS events following the definitions of vast-tools, we took the SUPPA-predicted AS events and grouped them as described.

After extending events, we categorized them in two groups: (i) simple events, which follow the common definition with only one set of start/end coordinates; and (ii) complex events, which comprise more than one start and/or end coordinates for any of the involved exons. To obtain PSI values for each event, we then combined the information on inclusion and exclusion transcripts for each AS event and the information on the number of simulated mRNA molecules coming from each transcript. The ground truth PSI values for each event was defined as the ratio between the number of transcripts including the alternative sequence to the total number of transcripts whose genome coordinates fully overlap those of the alternatively spliced sequence. After RNA-seq data simulation and extending events, we obtained 4,432 AltEx, 3,331 Alt3, 3,160 Alt5, and 436 IR with ground truth PSI values (“ground truth AS event set”). Note that this set of IR events corresponds only to those annotated as retained, and thus excluded the vast majority of introns annotated in RefSeq.

Benchmarking vast-tools for detection sensitivity and quantification accuracy using simulated data
We compared the performance of vast-tools with three other widely used tools that use similar EEJ-based approaches (rMATS (Shen et al. 2014), MISO (Katz et al. 2010), MAJIQ (Vaquero-Garcia et al. 2016)). For a fair comparison under default conditions, we applied all tools using the same genome annotations and, if provided with the software, their standard annotation of AS events. rMATS and MISO report AltEx, Alt3, Alt5, IR events. Thus, for each AS event in our ground truth set based on simulated RNA-seq data, we searched for matching AS events in the rMATS and MISO outputs and used their PSI values as predicted by the software. If we found more than one matching event, we conservatively considered only the matching AS event whose PSI value was the closest to the ground truth PSI, in order not to disadvantage these tools. On the other hand, MAJIQ does not report standard AS types. Instead, it breaks down these commonly defined AS events into more atomic local splicing variations that correspond to alternative exon-exon or exon-intron junctions (Vaquero-Garcia et al. 2016). For each local splicing variation, MAJIQ reports a value similar to the PSI. For each ground truth event, we searched for all local splicing variations corresponding to the event and, again, used the PSI value that is closest to the ground truth PSI. It should therefore be noted that this approach to compare PSI accuracy among tools (Supplemental Fig. S3) only disadvantaged vast-tools. 

To derive a measure of AS event detection sensitivity (Supplemental Fig. S2), ground truth AS events for which we could not find any matching vast-tools/rMATS/MISO event or for which we did not find any corresponding local splicing variation in MAJIQ were counted as events not found by the specific tool.

Benchmarking vast-tools for quantification accuracy on real RNA-seq and RT-PCR data
[bookmark: _GoBack]To further compare quantification accuracy among vast-tools, MAJIQ, MISO and rMATS, we used two real RNA-seq data sets with PSI ground truth obtained from RT-PCR assays. One data set consisted of RNA-seq data (paired-end, 101 nt, three replicates) from mouse cerebellum (33, 52, 27 million read pairs) and liver (33, 46, 38 million read pairs)(Supplemental Table S1; (Vaquero-Garcia et al. 2016)), and contains PSI values for 50 AltEx obtained by RT-PCR. For the comparison, we reduced these to 44 AS events for which we had PSI estimates from all four tools. The second data set consisted of RNA-seq data (single-end, 76 nt, one replicate) from the human MDA-MB-231 cell line expressing ESRP1 ectopically (136 million reads) or an empty vector as control (121 million reads) (Supplemental Table S1; (Shen et al. 2012)), and PSI values from RT-PCR experiments for 164 AltEx events, from which 103 AltEx events were reported by the four tools.  For both data sets we compared the predicted PSI and ΔPSI values to those PSI and ΔPSI values of the ground truth. We computed ΔPSI values as the difference of PSI between the two conditions, except for MAJIQ, for which we took the ΔPSI values as reported by the software.  It should be noted that, for this comparison, we had to use rMATS v3.0.9 because version v3.2.1 and v3.2.0 did not run on these data due to an internal error of rMATS.

Comparison of detection of microexons regulated during neuronal differentiation
To evaluate the sensitivity of the different tools to detect and profile short exons (Supplemental Fig. S2), we used RNA-seq data (paired-end, 50 nt, one replicate) from mouse in vitro differentiated glutamatergic neurons (DIV 28, 120 million pairs) and embryonic stem cells (ESCs, DIV -8, 121 million pairs) (Hubbard et al. 2013). We then compared the number of exons of different length ranges (3-9 nt, 10-15 nt, 16-27 nt and longer than 27 nt) detected by the different tools and reported as being differentially spliced (|ΔPSI| ≥ 15%) between neurons and ESCs. To avoid multiple counting, we merged overlapping microexons (with potentially several start/end coordinates) for all tools before comparing their number. In such cases, we considered the shortest possible length for each exon, given all start and end coordinates.

Comparison of run time and memory usage by different tools
We used the simulated RNA-seq data (two groups, three replicates, each with 50 or 150 million read-pairs) to compare the computational requirements of vast-tools, rMATS, MISO and MAJIQ (Supplemental Fig. S2). For each tool, we reported the peak RAM usage and the user time that they consumed for all six data sets together, including the mapping step. It should be noted that newer versions of rMATS (from 3.2.2 onwards) use the STAR mapper instead of TopHat, which will reduce run time. However, as noted above, for these studies we had to use rMATS v3.2.1 and v3.0.9, as the newest rMATS version at the time of analysis (v3.2.2 beta) did not run successfully due to an internal error.

AS definition and minimum read coverage
To assess the impact of using different read coverage scores as provided by vast-tools (first quality score in the combine output; see vast-tools README online for details), we compared the concordance of PSI measures from replicates of the same GTEx tissues with different score types. Furthermore, to evaluate the replicability between different numbers of replicates, we also compared PSI measures obtained by averaging increasing numbers of replicates from the same GTEx tissues. Specifically, for each exon, we selected those PSIs between 10 and 90 for each score type and calculated the R2 when comparing pairs of single replicates, and pairs of averages of 2 to 5 replicates (Supplemental Fig. S23). This analysis shows that all scores but “N” provide good PSI estimates. For instance, comparison of pairs of averages of two replicates with VLOW showed an R2 = 0.77, and it reached R2 = 0.90 for OK and SOK, which are the most common type of coverage score for most samples. Therefore, we defined two possible thresholds for an AS event to be considered to have sufficient read coverage in a particular RNA-seq sample (corresponding to ≥VLOW and ≥LOW; red/orange lines in Supplemental Fig. S23, respectively):
- For AltEx (except for those quantified using the microexon pipeline): (i) ≥ 10/15 actual reads (i.e. before mappability correction) mapping to the sum of exclusion EEJs, OR (ii) ≥ 10/15 actual reads mapping to one of the two inclusion EEJs, and ≥ 5/10 to the other inclusion EEJ.
- For microexons: (i) ≥ 10/15 actual reads mapping to the sum of exclusion EEJs, OR (ii) ≥10/15 actual reads mapping to the sum of inclusion EEEJs.
- For IR: (i) ≥ 10/15 actual reads mapping to the sum of skipping EEJs, OR (ii) ≥ 10/15 actual reads mapping to one of the two inclusion EIJs, and ≥ 5/10 to the other inclusion EIJ.
- For Alt3 and Alt5: ≥ 10/15 actual reads mapping to the sum of all EEJs involved in the specific event.

Throughout the study, and unless otherwise specified, we used the same definition for a given sequence to be considered alternatively spliced (Irimia et al. 2014): 10 ≤ PSI ≤ 90 in at least 10% of the samples with sufficient read coverage (‘VLOW’ coverage score or higher) or a range of PSI ≥ 25 across all samples with sufficient read coverage.

To calculate the fraction of multi-exonic genes that contain at least one AS event with a ΔPSI > 50 between at least one pair of samples (equivalent to a PSI range > 50), we first obtained the number of multiexonic genes as those with at least one annotated intron or AS event in our data (19,092 in human, 18,943 in mouse and 15,680 in chicken). Then, for each AS event of all major types in each species, we obtained the minimum and maximum PSI for those samples with read coverage of LOW or higher and that had coverage in at least two samples (224,007 AS events in human, 245,476 in mouse, and 166,329 in chicken), and calculated those events with a difference between maximum and minimum of at least 50 and counted the number of unique genes to which these belonged (23,113 events in 9,131 genes [47.83% of all multi-exonic genes] in human, 19,444 events in 8,281 genes [43.72%] in mouse, and 9,027 events in 4,352 genes [27.76%] in chicken). Using VLOW or higher as read coverage cut-off, these fractions increased to: 29,808 events in 10,556 (55.29%) in humans, 26,165 events in 9,930 genes (52.42%) in mouse, and 12,087 events in 5,369 genes (34.24%) in chicken.

Quantification of annotated and novel AS events in VastDB
For those AS events in VastDB, we investigated the fraction of alternative sequences and/or splice sites that were present in current genome annotations. We used Ensembl version 88 for human (hg38) and mouse (mm10) and version 70 for chicken (galGal3). For AltEx events, we conservatively considered an alternative exon to be annotated if its donor and/or acceptor sites (or any of their variations) were annotated in any transcript from the gene. For Alt3/5 events, we scored the presence of each individual alternative splice site in the event. All IR events were annotated by definition (Braunschweig et al. 2014), and are therefore not shown in Supplemental Fig. S5.

Distribution of AS and identification of PanAS events
For the violin plots in Fig. 2A and Supplemental Fig. S10B-D, the PSIs for all samples with enough read coverage for each event are plotted in each corresponding bin. For Gene Ontology (GO) enrichment analysis, we used DAVID (http://david-d.ncifcrf.gov/). For each type of AS, all genes with events of that type that passed the same read coverage criteria were employed as background (e.g. 12,268 and 11,250 for human and mouse AltEx events, respectively). Using all human or mouse genes as background produced similar results, with even lower p-values.  Comparison of conservation between human and mouse (Fig. 2C), impact on the coding sequence upon inclusion/exclusion (Fig. 2D), and overlap with disorder regions (Supplemental Fig. S10H) and structured domains (Supplemental Fig. S10I) among different classes of AltEx events (PanAS, SwitchAS and low-frequency AS) was done as previously described (Irimia et al. 2014) and using the information provided in VastDB. Finally, PSI estimates from ribosome-engaged RNA-seq data from multiple cell lines was obtained from (Weatheritt et al. 2016).

Single-cell RNA-seq analysis of PanAS events
To investigate the extent to which the different classes of AS events (low-frequency AS, SwitchAS and PanAS) were alternatively spliced or showed either full inclusion or skipping in individual cells, we collected single-cell RNA-seq data from multiple sources (Supplemental Table S1; human: 8-cell stage embryos (Yan et al. 2013), ESCs (Yan et al. 2013), and lung cancer cells (Kim et al. 2015); mouse: 2-cell and 8-cell stage embryos (Deng et al. 2014), ESCs grown in 2i or serum media (Kolodziejczyk et al. 2015), bone marrow dendritic cells [BMDCs] (Shalek et al. 2013) and two neuronal subtypes [Cux2+ and Nr5a1+](Tasic et al. 2016); note that only experiments using full-transcript-based protocols for library preparation, mainly Smart-Seq2 (Picelli et al. 2013), are suitable for AS analyses). Since the read depth for most individual cells is usually very low, and thus insufficient to derive confident PSI estimates, we selected the twenty cells with the highest read coverage from each experiment (except for BMDCs and mouse 8-cell stage embryos, for which only 18 and 16 cells were available). Then, to minimize the impact of the amplification biases and stochasticity characteristic of single cell RNA-seq data, we required AltEx events to have sufficient read coverage in at least 10 individual cells using strict criteria (‘LOW’ or higher score from vast-tools) for a given experiment to be considered. For the AS events that passed this read coverage criteria, we plotted the PSI distributions in each cell with sufficient read coverage together as violin plots using the vioplot R package. To test the statistical significance of the differences between the PSI patterns in each AS class, we counted: (i) the number of values between 10 and 90 (i.e. the event is alternatively spliced, and thus both isoforms co-exist at significant levels), and (ii) those in with the PSI was lower than 10 or higher than 90 (i.e. only one isoform is present); and performed two-sided Fisher’s Exact tests between pairs of AS classes.

Inter- and intra-genic correlation analysis between AS types
Individual alternative exons were first split into single exon skipping events (SE) and those that are part of multi-exon skipping events (ME, array of tandem alternative exons). IR, Alt3 and Alt5 events were not split into subclasses. Then, to ensure meaningful correlations, we used only AS events with (i) enough read coverage in at least 60 samples (‘VLOW’ coverage score or higher), and (ii) a standard deviation of PSIs of at least 15 across all samples with enough read coverage. PSI was set to NA if read coverage was insufficient. For the AS events that met these criteria, we computed all pairwise correlations in R with the following options: method="spearman", use ="pairwise.complete.obs". Then, for each pair of AS event types (e.g. SE-SE or SE-IR), we separated those formed by two AS events in the same gene (intragenic) or in different genes (intergenic). Finally, for each intragenic pair we randomly selected 100 intergenic pairs of the same type and score the correlation coefficient of the intragenic pair based on the rank among the correlation coefficients of the intergenic pairs. If the correlation coefficient of the intragenic pair was the highest, it was assigned a score of 100; if the lowest, a score of 0 (note that these often correspond to the strongest negative correlation). Ten independent tests were done for each pair, and the average score was used to plot densities in Supplemental Fig. S6C and 6D. 

Analysis of genes containing multiple IR events
To define a set of genes containing multiple highly retained introns we first selected those IR events that had sufficient read coverage (‘VLOW’ coverage score or higher) and passed the binomial test for read imbalance in at least 10 samples. High retention was defined as having a PSI higher than 20 and lower than 80 in at least 10% of the samples and/or a range of PSI ≥ 50 across the samples with sufficient read coverage. Genes with multiple IR events were defined as those having at least 5 highly retained introns. For GO enrichment analysis, we employed DAVID, using all genes with at least one AS event with sufficient read coverage in at least 10 samples as background. Finally, to assess the evolutionary conservation of genes with multiple highly retained introns between human and mouse, we obtained the number of 1-to-1 orthologs identified as such in both species and performed a hypergeometric test using as background all 1-to-1 orthologs with at least 5 introns with sufficient read coverage in at least 10 samples in each species (22.3% and 37.6% overlap respect to the human and mouse sets, respectively, N = 175, background = 6,838 genes). Importantly, the majority (82.6% in human and 81.9% in mouse) of genes with multiple IR events also contained introns that were not subject to retention in any cell and tissue type, indicating that the observed patterns of co-regulation were not due to the presence of unspliced pre-mRNA or genomic contamination.

PCA and clustering
All PCAs were performed using the princomp function in R. To perform PCA of the samples by the PSI values of all types of AS events, we selected those events with: (i) sufficient read coverage (‘VLOW’ score or higher) in at least 40 samples; and (ii) a standard deviation greater than 20 in their PSI values. After this selection, samples with more than 50% of missing PSI values were removed. For the remaining samples, PSI values for events with read coverage below the threshold were imputed from the 10 most similar events satisfying this coverage filter using knn.impute from the impute Bioconductor package, with default parameters. Unsupervised hierarchical clustering for PSI values was performed with the same filters as described above, except that only samples with >80% missing values were removed. Distance matrixes between samples were calculated as 1 – the Spearman correlation coefficient of their PSI values across all events.

To generate Supplemental Fig. S19, scaled averaged PSIs across 15 matched tissue types for 455 highly alternatively spliced orthologs in human, mouse and chicken were clustered using 1- Spearman correlations  (computed with “na.or.complete”) as a distance matrix.

In the case of PCAs by gene expression values, we used genes whose expression was supported by at least 50 raw reads and a cRPKM ≥ 5 in at least one sample. Expression values were normalized using the normalizeBetweenArrays function from limma (Ritchie et al. 2015). To limit the analysis to differentially expressed genes, a minimum coefficient of variation of 3 was required. PCA was performed with the natural logarithms of the accepted normalized expression values. 

Tissue-specific analysis
To identify tissue-specific AS events we followed a similar procedure as the one described in (Ellis et al. 2012). First, we averaged PSI values of samples from similar tissues or cell types, as indicated in the column “Group” in Supplemental Table S1. Then, we defined an AS event to be specifically included or skipped in a given tissue if:
(i) the AS event has sufficient read coverage (‘LOW’ coverage score or higher) in at least two replicates of that tissue and in at least two replicates of at least 9 unrelated tissue types (in the case of IR, it must also pass the binomial test for read imbalance in the same tissues); and
(ii) the PSI of the AS event in that tissue is at least 25% higher or lower (i.e. |ΔPSI|>25) than in any other unrelated tissue. 
Note that, for certain tissue types, we excluded related cell or tissue types (e.g. muscle for heart, and viceversa) from the pairwise comparisons (column “Excluded” in Supplemental Table S1).

RT-PCR validations
RT-PCR validations were performed using primers spanning the two adjoining exons and the resulting bands quantified using Fiji, as previously described (Han et al. 2013). Primer sequences are provided in Supplemental Table S4. Primers for these, as well as all AS events in VastDB, were automatically designed using Primer3 through a custom script to optimize the expected sizes of the amplicons of both isoforms for visualization on an agarose gel, while minimizing the PCR amplification bias towards the short (exclusion) band. For this, we used the following rules based on the length of the alternative sequence (LE):
· If LE < 15 nt => optimal skipping band size = 100 nt.
· If 15 ≤ LE < 25 nt => optimal skipping band size = 110 nt.
· If 25 ≤ LE < 40 nt => optimal skipping band size = 120 nt.
· If 40 ≤ LE < 65 nt => optimal skipping band size = 140 nt.
· If 65 ≤ LE < 100 nt => optimal skipping band size = 175 nt.
· If 100 ≤ LE < 200 nt => optimal skipping band size = 250 nt.
· If 200 ≤ LE < 300 nt => optimal skipping band size = 300 nt.
· If 300 ≤ LE < 1000 nt => optimal skipping band size = 350 nt.
· If LE > 1000 nt => primers not designed. 

Protein structures and mapping
To obtain protein structures including AltEx events in VastDB, we developed a pipeline with three steps (Supplemental Fig. S22B). In the first step, we used the genomic coordinates of the alternative and flanking exons in each AS events to retrieve Ensembl protein isoforms including these exons. After that, we used BLASTP to align the Ensembl protein sequences to all protein structures in the PDB corresponding to the same gene, requiring 100% sequence identity in a window of 4 residues around an exon to consider it mapped to a PDB entry. Structurally uncharacterized regions were masked out in the PDB sequences to prioritize PDB entries including spatial coordinates for the exons of interest. For events described by more than one entry, we selected the longest one containing the alternative exon of the event, and, if possible, the flanking constitutive exons. We could map 2,733 AltEx events to experimentally determined PDB structures, 1,468 (53,7%) of which included the alternative exon sequence  (Supplemental Fig. S22C). These structures corresponded mainly to human AltEx events, as very few protein structures are available for the other species.

For events where no PDB structure was found, structural models for the longest isoform from Ensembl containing the alternative exon and, if possible, the flanking constitutive exons were produced using Phyre2 (Kelley et al. 2015) in batch mode. To discard low-quality structures from the model dataset, models were filtered using ProSA 2003 (Sippl 1993) using the data set and regression line in the user manual as a reference for pair energy Z-scores. Only models with a pair energy Z-score within 2.5 units of the fitted Z-score value were accepted. Additionally, to ensure model quality in the region of the protein mapping to alternative exons, models with any positive pair Z-score in the residues corresponding to A exons were discarded. Z-scores for each given residue were calculated as the average of the scores over a sliding window of 40 residues, centered in the residue of interest. The representative model selected for each event was the longest one from the set of accepted models covering the alternative exon and, where possible, the reference C1 and C2 exons. In total, we could obtain protein structures for 7,936, 5,512 and 4,854 AltEx events from human, mouse and chicken, respectively, with different degrees of coverage (Supplemental Fig. S22C).

VastDB website, database and data sources
MySQL, installed in a LAMP environment, was used as central DataBase Management System (DBMS), while MediaWiki was deployed as Content Management System (CMS) platform. The latter was chosen, in conjunction with several Semantic MediaWiki associated extensions (Krötzsch et al. 2006), because it provided a flexible system to accommodate different kinds of input data (generated either within our project or by third parties) and providing different types of visualization inside the same framework. A MediaWiki custom extension was created for importing basic data classes such as genes, events and tissues. For each class, a template was designed for controlling the visualization of these elements in the website and providing entry points for other data, such as event conservation or gene expression per tissue. MediaWiki BioDB extension, a custom modification of a pre-existing extension named External Data, was installed for reusing data in a convenient way directly from MySQL tables. Data were previously imported into these tables from raw text or CSV files thanks to default MySQL import functions or custom Python scripts.

Gene information (genomic coordinates and associated features) was obtained from GTF files retrieved from the Ensembl Archive FTP. It is worth noting that the most recent annotation versions derived from the working assemblies were always chosen. Homology gene mappings between organisms were retrieved from the Ensembl BioMart archive. PSI and gene expression values were taken from vast-tools, as described above. Genome assembly versions (e.g. hg19) were taken as primary reference keys for linking the different datasets. When more than one assembly was provided for an organism (e.g. hg19 and hg38 for human), a link between them was ensured and the view template was tuned so users could easily switch between assembly versions. Genomic coordinates of genes and AS events were mapped into the UCSC genome browser (Hung and Weng 2016), and a screenshot of the region was embedded in the page. Track hubs of the events are kept in the server as text files, enabling users to go back and forth from VastDB to UCSC Genome Browser by clicking on the embedded genome browser image in VastDB, or the drawn events in the UCSC website.

Gene expression and PSI data were represented using Rickshaw, a D3.js-based JavaScript library [http://code.shutterstock.com/rickshaw/]. By using this JavaScript library instead of pre-computed plots, users can choose which data they are shown, from a range of read stringency thresholds and biological samples.

ORF impact of AS events was predicted as previously described (Irimia et al. 2014). Protein domains and disordered regions displayed on VastDB were predicted for the longest Ensembl isoforms including the alternative exon of each AltEx event. We used PfamScan (version 2.3.4) (Li et al. 2015) for Pfam domains and ScanProsite (de Castro et al. 2006) for PROSITE domains. High frequency PROSITE motifs (those with identifiers starting with P0) were omitted. Intrinsically disordered regions were predicted using Disopred2 (Ward et al. 2004), with default parameters, and protein domain architectures and disordered regions were displayed using the PROSITE MyDomains Image Creator (Hulo et al. 2008). Data for degree and betweenness of each gene in protein-protein interaction networks is from (Ellis et al. 2012). Protein structures from the PDB and structural models were kept in the server file system and made accessible to the web service. Structures are shown in the website using a JSmol JavaScript widget [http://wiki.jmol.org/index.php/JSmol], which allows users to interact with the structure using the mouse or the integrated Jmol console.

At the time of writing, default MediaWiki MySQL search was not fast enough neither for full-text content (such as text of gene descriptions) nor for allowing browsing by genomic coordinates. To address this problem, selected search fields were mapped into document structures, which were imported into a CouchDB (a NoSQL document DBMS) server instance. Predefined indexes were created for gene descriptions (taking advantage of CouchDB Lucene extension) and for coordinates (including chromosome, start, end and strand fields). After that, a custom MediaWiki extension and some JavaScript functions were created in order to enable forms in the website to take advantage of these capabilities. Coordinate search results were also coupled to a embedded genome browser view. In that way, users can directly access a genome region simply by typing their desired genomic coordinates using UCSC syntax.
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