
Short template switch events explain mutation clusters in the human genome

Ari Löytynoja1 and Nick Goldman2

1 Institute of Biotechnology, University of Helsinki, Helsinki, Finland;
2European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),

Wellcome Genome Campus, Hinxton, UK

Supplemental Algorithm S1: Dynamic programming algorithm to find
optimal template-switch solution under the four-point model

The algorithm defines the dynamic programming recursions to find the optimal alignment
solution under the four-point mutation model. See also Supplemental Fig. S2.

Let sequences x and y consist of bases x1, x2, . . . , xn and y1, y2, . . . , ym. Function c(xi)

gives the complement of base xi, function s(xi, yj) gives the score of matching bases xi and yj ,
and d is the indel penalty. In our implementation, the match score is 1 for two identical bases,
otherwise −1, and the indel penalty is −2.

The algorithm for the template switch alignment differs from the standard linear-cost
alignment of Sankoff1 in two aspects. First, the algorithm consists of Recursions 1–3 that
define three matrices, V1, V2 and V3, and the alignment path must go via these matrices in
order, starting with sequence fragment F1 in V1 and ending with F3 in V3. Second, in matrix
V2 the alignment proceeds backwards in respect to sequence y (generation of fragment F2 is in
reverse direction; see Supplemental Fig. S2). Similarly to standard alignment, pointer matrices
recording the move chosen at each cell (i, j), including the jumps between the matrices, need
to be stored. Once the recursions have been completed, V3(n,m) holds the optimal score; the
actual alignment solution is traced back using the pointer matrices.

Two variants of the algorithm allow for computing control statistics: with minor changes in
Recursion 2, one can replace the search of a reverse-complement match in V2 with a search for
a reverse match (denoted variant 2r) or a complement match (2c):

2r: reverse: within the ‘max’ term for V2(i, j), s(xi, c(yj)) is replaced by s(xi, yj)

2c: complement: within the second loop, j = m, ..., 1 is replaced by j = 1, ...,m,

and V2(i− 1, j + 1) is replaced by V2(i− 1, j − 1)

In our analyses, we used variant 2r to compute control statistics.
We note that some event types can be reverted. While the direction of mutation could

be determined using an outgroup, our approach considers just two sequences and finds only
solutions consistent with the defined reference sequence.

1D Sankoff. Matching sequences under deletion-insertion constraints. Proc. Natl. Acad. Sci. U. S. A., 69:4–6, 1972

1



Supplemental Algorithm S1 Optimal template-switch solution under the four-point model

Initialisation:

V1(0, 0) is set to 0 . Alignment path must start from V1(0, 0)
V2(•,m+ 1) and V2(0, •) are set to −∞ . Optimal path in V2 must come from V1

V3(•, 0) and V3(0, •) are set to −∞ . Optimal path in V3 must come from V2

Recursion 1: . Find optimal path for V1

for i = 0, ..., n do . Loop over sequence x
for j = 0, ...,m do . Loop over sequence y

. Select best move (match or indel).V1(i, j) = max


V1(i− 1, j − 1) + s(xi, yj)
V1(i− 1, j) + d
V1(i, j − 1) + d

end for
end for

Recursion 2: . Find optimal path for V2

for i = 1, ..., n do . Loop over sequence x

c = max (V1(i− 1, •)); . Best score for a jump from V1

for j = m, ..., 1 do . Backwards loop over sequence y

. Select best move (jump or match)V2(i, j) = max

{
c+ s(xi, c(yj))
V2(i− 1, j + 1) + s(xi, c(yj))

end for
end for

Recursion 3: . Find optimal path for V3

for i = 1, ..., n do . Loop over sequence x

c = max (V2(i− 1, •)); . Best score for a jump from V2

for j = 1, ...,m do . Loop over sequence y

. Select best move (jump, match or indel)V3(i, j) = max


c+ s(xi, yj)
V3(i− 1, j − 1) + s(xi, yj)
V3(i− 1, j) + d
V3(i, j − 1) + d

end for
end for

2


