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SUPPLEMENTARY RESULTS

Supplementary Results 1

Classes A and B were discarded from subsequenysasakince they showed low
complexity recruitment patterns (Fig.1C and S4Agsemtially lacked chromatin features
associated with active CRM (Fig.1D-F) and were pobnked to gene regulation (Fig.1G-
H). Class A, despite comparable NR1H4 peak callsogpres (Fig.S4B), also lacked
enrichment for the canonical NR1H4 DNA binding seoee (Fig.S4C) and phylogenic
conservation (Fig.S4D) and therefore most probatgynprised unfiltered false positive
regions. Non-functional genomic recruitment revedby class B may stem from spurious
binding reflecting genome scanning or non-functiealving CRM (Lickwar et al. 2012;
Spivakov 2014). Class C behaved as an intermediatenost of the analyzed criteria
(Fig.1C-D and G-H), but was overall poorly marketimH3K9ac and H3K27ac (Fig.1E-F).
We found that these CRM mostly bound CTCF and mesnbethe cohesin complex such as
RAD21 (Fig.S5), which characterize regions involvedhe three-dimensional organization
of the chromatin (Dixon et al. 2012; Rao et al0142). Although of potential interest, we
focused further analyses on CRM defining fully aettranscriptional regulatory elements

from classes D to G.

Supplementary Results 2

The distribution of the number of TR co-localizing individual CRM revealed a
bimodal distribution, which was modelled assumingiature of an exponential and a normal
distribution (Fig.S10A). Estimating the parameteo$ these distributions using an
Expectation-Maximization algorithm allowed to pretdihat 75% of CRM are under the

exponential distribution while the remaining 25% M Rwre under the normal distribution.



Using the 3rd quartile of the number of TR (19)aasut-off (Fig.S10A), we found that the
subset of CRM under the normal distribution wadipalarly enriched in CRM from classes

E and G (Fig.S10B).

Supplementary Results 3

Genes linked to CRNIF comprised recently identified NR1H4 target gememived
in ubiquitous processes such as autophagy (Leé. e2@14; Seok et al. 2014). This is
illustrated in Fig.S13A-C which show NR1H4, ¥R and TR® ChIP-seq profiles at the
Bnip3 Mapllc3b(Lc3b) andSesnyenes. Other examples include Erel1lb gene which can
regulate susceptibility to endoplasmic reticulumess$ (Khoo et al. 2011) arigtg2 which
encodes a cell-cycle regulator whose expressiorinised to liver regeneration and
hepatocarcinogenesis (Zhang et al. 2009) (Fig.&83ihd Fig.S13K). Converselgenes
linked to CRM™© comprised NR1H4 target genes involved in BA meliabo such as
Slc10alandNrOb2 (Shp (Lefebvre et al. 2009) (Fig.13F-G), the drug-abetiizing enzyme
encoding gen&mo3(Bennett et al. 2013) (Fig.S13H), tiéarsp (Spot14 gene involved in
control of lipid metabolism (Duran-Sandoval et aR005) (Fig.S131) and th&gg gene

encoding the blood clotting protein Fibrinogen gaachain (Fig. S13J).

Supplementary Results 4

As an example of cross-talk between NR1H4 and aam&yzed in our study, we
compared hepatic gene regulations induced by NRamt1 PPARA selective agonists. We
found that while genes associated to CRMend to be similarly regulated by these NR, all
combinations exist for genes associated to CRIfFig.S23). This is consistent with recent
large-scale studies of TR activities which indicat®ntext-dependent functions is a common

feature (Stampfel et al. 2015). Hence, focusedyaesa of a limited number of well-defined



genes such as described in (Tong et al. 2016) nedy better understand the context-

dependent functional relationship between TR.

Supplementary Results 5
Analyses of the entire landscape of liver CRM indicatesthe hierarchical combinations of
TRM isageneral organizational feature

In order to define whether the logical TRM orgati@a discovered applies beyond
NR1H4-bound CRM, we prepared a SOM using all mdivee CRM, i.e. genomic regions
bound at least by 2 out of the 48 analyzed TR. Agaie built on this analysis by further
grouping the CRM into 6 classes using hierarchotagtering. This allowed to retrieve CRM
corresponding to promoters, enhancers as well aSHREDhesin recruiting sites and non-
functional/false-positives regions (Fig.S24A-G).this context, NR1H4 binding was spread
over most nodes comprising promoters and a limitadtion of nodes comprising active
enhancers (Fig.S24H). Next, in order to monitor tibgvcore, liver-specific functions control,
promoter and circadian TRM identified in our stddgusing on NR1H4-bound CRM were
distributed over the entire CRM landscape, we d@igi@éach node into 4 equal compartments
which we filled according to the proportion of CRémprising at least 75% of the TR of a
given TRM. We observed that the core TRM was foumd majority of nodes comprising
active promoters and enhancers while the promofeM Twas restricted to promoters
(Fig.S241). The liver-specific functions control WRwas found in a large fraction of nodes
corresponding to enhancers and in a subset of nodagssponding to promoters. The
circadian TRM was found in a subset of nodes cpmeding to both active promoters and
enhancers (Fig.S24l). Therefore, these data irglidhdfat organization of CRM into

hierarchical combinations of TREKktend to the entire mouse liver CRM landscape.



SUPPLEMENTARY DISCUSSION

In addition to their well-recognized metabolic amhfunctions, NR5A2, PPARA and
CEBP have also been ascribed with roles in pratectrom stress or liver regeneration
(Anderson et al. 2002; Jakobsen et al. 2013;&kiad. 2014; Kersten 2014; Mamrosh et al.
2014). These findings indicate that a specific #eTR is instrumental in regulating both
genes involved in widespread and liver-specifievates. In this context, recent findings have
indicated that NR1D1 binds to conserved CRM to l@gucommon genes across tissues
while it cooperates with ONECUT1 to regulate gemaslved in metabolism in the liver
(Zhang et al. 2015). Hence, a subset of NR inalgiddR1H4 and NR1D1 may coordinately
serve as nexus for concerted regulation of hougpehkgteellular maintenance genes and liver-
specific metabolic functions. Intertwining of NR14déntrolled biological outputs such as
involvement of autophagy in the control of hepdimd homeostasis through autophagic
lipolysis (Cingolani and Czaja 2016) contributesother layer of coordinated regulation

between housekeeping and liver-specific functions.



SUPPLEMENTARY METHODS

Public functional genomics data recovery

Public functional genomics data used in this stugye downloaded from the Gene
Expression Omnibus (GEO), ArrayExpress, ENCODE (¥ual. 2014), the UCSC Genome
Browser (Raney et al. 2011) or from BioGPS (GNFAflas) (Wu et al. 2009) and are listed
in Table S1. All data were obtained using the ligeadult C57BL/6 mice and we only used
samples corresponding to untreated mice. Hepato@peroximately constitute 70% of all
cells in the liver and are mostly polyploid cellgp(to 85% in C57BL/6 mice with mainly
tetraploid hepatocytes) (Duncan et al. 2010). Moee, we have focused on binding sites for
the liver-specific transcription factor NR1H4. Henthe chromatin signals analyzed largely
stem from hepatocytes.

Coordinates for CpG islands (CGI) and gene trapgson start sites (TSS) from
GENCODE VM4 basic as well as 60-way-placental PRytmnservation scores for mm10
were downloaded from the UCSC Genome Browser (Rahal 2011). Genomic coordinate

conversions were performed using the liftOver fomin the UCSC Genome Browser.

TR ChlP-seq data processing

Initial pre-processing was performed using a cuseth local instance of Galaxy
(Afgan et al. 2016). The FastQC package was usedsure sufficient quality of the FASTQ
files included in our analyses (Andrews S. 2010st®&: a quality control tool for high
throughput sequence data. Available online at:

http://www.bioinformatics.babraham.ac.uk/projecstf|g. All raw data were then mapped to

the mm10 version of the mouse genome using Bowéesion 1.0.0) with default parameters

(Langmead et al. 2009). Peak calling was perforosiadg model-based analysis of ChIP-seq



version 2 (MACS2) (Zhang et al. 2008). Input DNAasvused as control when available,
duplicate tags were removed and parameters recodeddar analysis of transcription factor
ChIP-seq data were applied (Feng et al. 2011kel&tively relaxed cut-off set @< 0.001
was used to initially include most real bindingesit When replicates were available, they
were compared using Irreproducibility Discovery &E@DR) (Li et al. 2011) to identify any
replicate which should be discarded and to seleuditg sites consistently called among
replicates. This was performed according to IDR  dglines

(https://sites.google.com/site/anshulkundaje/ptejedr) using the “optimal” number of

consistent binding sites. When ChiP-seq experimienta given factor had been performed at
several times of the day, all peaks were used agrdjed into a single file. For all datasets,
binding sites from the mitochondrial DNA (chr M) meediscarded together with false positive
calls identified from inputs and IgG ChlP-seq. Thegere defined as the 0.01% regions with
the highest tag counts in a pooled dataset of \allable inputs and IgG ChIP-seq data
(Pickrell et al. 2011).

Identified TR binding sites were then visually iesfed using bigWig signal files and
the Integrated Genome Browser (IGB) (Nicol et #2009) to check they were genuine
enrichments. BigWig signal files were prepared ibst discarding reads mapping to the false-
positive regions identified earlier. Then, readsenextended at their 3' end according to read
length predictions made by MACS2, counted within 2% windows genome-wide and
normalized to the total number of uniquely mappedugnced reads. Reads from replicates
used for peak calling were merged and processatksibed. Average ChIP-seq profiles
were also obtained using these bigWig files.

Finally, to define genomic regions of interest feelf-organizing maps (SOM)
analyses, all TR binding sites identified (exten@&@® base pairs on each side of the peak

center) were intersected using Bedtools (Quinlath ldall 2010) in order to identifgis-



regulatory modules (CRM) characterized by the codoence of at least 2 different TR.

Self-Organizing Maps (SOM) analyses

The SOM were generated using the R package “kot&in@kehrens and Buydens
2007). The input vectors from CRM, optimal numbémodes and parameters to train the
SOM were defined according to (Xie et al. 2013jiiling was performed using random
initialization of the toroid with hexagonal nodé verify the defined optimal number of
nodes was appropriate, we performed SOM trainimggusicreasing numbers of nodes (200
to 5000) and evaluated the clustering quality usgjugntization error (Kohonen 2001),
gM1(Lavra et al. 2003) and organization score (Flexer 200e SOM training using 100
iterations was sufficient to obtain a convergermeards a low and stable quantization error.
Finally, the maps selected for further analysesewtbe best of 100 trials based on lowest
guantization error, highest organization score highest percentage of non-empty nodes
having a significant enrichment of co-localizatipattern. This last parameter consisted of a
binomial test used to define whether the TR contlmnarepresentative of a given node is
specifically enriched at CRM comprised within thisde compared to all other CRM (Xie et
al. 2013). The seeds for the selected maps we(8GB” of FXR-bound CRM) and 20 (SOM
of all CRM). Empty nodes were displayed in greyha final maps.

Nodes were further grouped into classes based enarbhical clustering performed
using the hclust function of the R package “Sté&'Core Team 2015). We used the Ward
agglomeration method and the best representativecdibination (prototype) for each
individual node. The number of clusters was chosecording to homogeneity analyses

(http://lastresortsoftware.blogspot.fr/2010/08/hamoeity-analysis-of-

hierarchical.htmBedward et al. 1992) and biological significangeplanar projection of

the toroidal map was used for data visualization.



Multidimensional scaling (MDS) analyses

TR co-occurence at CRM from classes D, E, F or G used to calculate tanimoto
distance matrices of dimension 48 TR x 48 TRmutli-dimensionnal scaling was then
performed for each class using the cmdscale fumatidhe R package “Stats” (R Core Team

2015) and the tanimoto distance matrices as ifihé.two first dimensions were plotted.

Hierarchical clustering analyses of TR co-occurrence
Hierarchical clusterings of TR co-occurrence ansbemted heatmaps were obtained
using their tanimoto distance matrices calculatadtifie MDS analyses and the heatmap.2

function of the R package “gplots” (Warnes et2016).

Gene ontology (GO) and mouse phenotype (M P) enrichment analyses

GO enrichment analyses were performed using thealddae for Annotation,
Visualization and Integrated Discovery (DAVID 6(Huang et al. 2009). Panther biological
processes with Bonferroni-corrected p-value < O0wWére considered and GO terms
comprising gene lists that were more than 90% idahtvere merged into a single class.
ToppCluster was used to link TR to MP (Kaimal et 2010). MP with Bonferroni-corrected

p-values < 0.05 were considered and similar MP&wesrged.

Gene set enrichment analyses (GSEA)
GSEA was performed using the GSEA software develogiethe Broad Institute
(Subramanian et al. 2005). We used 1000 geneesetypations and the following settings:

“weighted” as the enrichment statistic and “Sighdse” as the metric for ranking genes.



CRM target gene assignment

CRM localized within 2.5 kb of a GENCODE gene TS&revassigned to this gene.
Target gene assignment for distal CRM was perforas#dg a model correlating cross-tissue
CRM activities based on histone acetylation to geaescriptional expression (O'Connor and
Bailey 2014). Transcriptomic data from BioGPS ad@K27ac enriched regions from
ENCODE (lifted to mm10) (Table S1) for 13 tissubsr{ie marrow, brown fat, cerebellum,
cortex, heart, kidney, liver, olfactory bulb, plat@ small intestine, spleen, testis and thymus)

were used.

Transcriptomic data analyses

Raw transcriptomic data from Affymetrix microarraygere normalized using the
Partek Genomics Suite or the R package “oligo” Y@kwo and Irizarry 2010) using
background correction by Robust Multi-array AvergdgMA), quantile normalization and
summarization via median-polish. The normalized egexpression values fdPer2 KO
transcriptomic data from Agilent microarrays wergedtly downloaded from the GEO
database. Principal component analyses (PCA) wsad for quality control of the data. The
average normalized expression of genes (averageGdme Symbol) were then used to
perform the differential expression analyses usimgna (Ritchie et al. 2015; Smyth 2004).
Dysregulated genes were defined using a Benjaidothberg correcteg-value cut-off set at
0.15 for all data except for thénfla (0.05) andPer2 (0.01) KO transcriptomic data. This
allowed us to define dysregulated genes which werthe same range (between 1200 and
2700) for all datasets and numerous enough forstalbownstream analyses.

To determine dysregulated genes in the liveNdth4 KO mice, genes analyzed in
both E-MTAB-1722 and GSE54557 were retrieved basedheir Gene Symbol. Then a

meta-analysis was performed using the average hiaedaexpression of these genes using
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the metaMA package (Marot et al. 2009). The pvalmmation function was used together
with the following parameters: moderated set asrita” and BHth set at 0.15.
All data were used throughout the study to monégpression of genes assigned to

NR1H4-bound CRM as described above.

Intragenomic replicates (I GR)

The functional impact of SNV on TR binding was poted using the IGR tool as
previously described (Cowper-Sal-lari et al. 20l3R compares the average ChlIP-seq
signal intensity of TR across the genomic loci tt@attains the underlying sequence (7-mers)
of the reference or the variant allele of each SN¥.do so, IGR uses a sliding window of
size 7 bp such that it contains the reference @wtriant allele and finds all occurrences of
these 7-mers. The average intensity of the TRtefést is then computed for all 7-mers with
the reference and variant allele separately. Teei7-with the highest average intensity
matching the reference allele is tested against#mer with the highest average intensity that
matches the variant allele. The genomic locatidnallor-mers were filtered to include only
sites corresponding to accessible chromatin ang thiel SNVs within 50 bp of transcription
factor binding peak center, which co-localized witaccessible chromatin were tested. This
made use of mouse liver DHS sites which were ddfinem the ENCODE data (Table S1)
using MACS2 and IDR as previously described. Sigaift modulations of transcription
factor binding were considered using a p-valueatitset at 0.05 (Benjamini-Hochberg
corrected values). PCA and hierarchical clustemveye performed using the R packages

“FactoMineR” (Le et al. 2008) and “Stats” (R Cdream 2015), respectively.

Transcription factor recognition motif enrichment analyses

NR1H4 binding motif enrichments were determinechgsSCENTDIST (Zhang et al.
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2011). Differential transcription factor motif edniments between 2 sets of CRM were
determined using AME (Analysis of Motif Enrichmen8ing “Total matches” as the scoring
method sequence and a motif match threshold séix®0* while motif scanning was
performed with FIMO using default parameters (Himdividual Motif Occurences) (Grant et
al. 1017-1018), both from the MEME suite (McLeaydaailey 2010). The HOCOMOCO

Mouse (v10) motif database was used for all theséyses.

Rapid immunopr ecipitation mass spectrometry of endogenous proteins (RIME)

Livers from wild-type mice were minced and pasdegugh a 70 um filter before
double cross-linking with 2 mM disuccinimidyl gluéde (30 minutes at room temperature)
and 1% v/v formaldehyde (10 minutes at room tentpeza Samples were then processed for
RIME as described in (Mohammed et al. 2016). Expents were performed in duplicates
using both an antibody directed against NR1H4 am@timmune control 1gG (sc13063 and
sc2027 from Santa-Cruz biotechnology, respectivéligss spectrometry was performiey
the proteomic core facility at Cancer Research UR.detected in any of the IgG samples were

discarded.

Broad H3K4me3 domain identification

H3K4me3 ChiP-seq data from the ENCODE consortiunrewanalyzed to call
H3K4me3 enriched regions using MACS2 as defing(Cimen et al. 2015). Broad H3K4me3
domains were defined as those spanning more thane3 the median size of all H3K4me3

enriched regions in a given tissue.

Animal experimentations
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Mice were housed in a temperature-controlled ro@8-24°C) with a relative
humidity of 36%—80%, and 12-hour light/12-hour daskcles.Nrlh4 and Ppara KO mice
have been described previously (Berrabah et al4;2Pawlak et al. 2015; Porez et al. 2013).
Animal studies were performed in compliance withrdpean Community specifications
regarding the use of laboratory animals and apprdwe the Nord-Pas de Calais Ethical

Committee for animal use.

Real-time PCR analysis of gene expression

RNA extraction, reverser transcription (RT) andl#teae quantitative PCR (gPCR)
were performed as previously described (Dubois-Glevet al. 2014). Gene expression
levels were normalized using tiRplp0 housekeeping gene expression level as an internal

control. All primers used for RT-gPCR are listedlable S4.

Gene expression microarrays

RNA extracted from primary hepatocytes (n=3) Rpara KO and wild-type mice
(n=6) was checked for quantity and quality using #hgilent 2100 Bioanalyzer (Agilent
Biotechnologies) before being processed for amnalysing MoGene-2_0-st Affymetrix arrays

according to the manufacturer’s instructions. De¢ge analyzed as described hereabove.

Mouse primary hepatocyteisolation and treatment
Mouse primary hepatocytes (n=3) were prepared asritbed in(Bantubungi et al.
2014) Hepatocytes were grown in serum free William's mediand treated for 4h with

GW4064 (214M) or DSMO.
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LEGENDSTO SUPPLEMENTARY FIGURES

Figure S1. The mouse liver REST and NR1H4 cistromes are unrelated

A) The Integrated Genome Browser (IGB) was used tovdargely inconsistent ChiP-seq
profiles for REST and NR1H4 over a large regiontted mouse liver genom&) Genomic
Regions Enrichment of Annotations Tool (GREAT) weed to associate REST and NR1H4 binding
sites to genes (default parameters) and subseyumlghtify gene set over-representatif®].
Benjamini-Hochberg correcteg-values (-logo) of the top 5 GO terms are shown. GO terms

comprising gene lists that were more than 90% idalhterged into a single class.

Figure S2. Basic features of the CRM and quality assessment of the SOM analysis.

A) The map issued from Fig.1B was used to indicate nimber of independent CRM
comprised within each individual node) Bar graph showing the size distribution of all
CRM used for the SOM analysiS) Bar graph showing the distribution of the numbeTB
co-occurring at individual CRMD) The map issued from Fig.1B was used to indica¢e th
average distance between a given node and itsbuigh obtained after pairwise comparison
of the most representative TR combination of trddvidual nodes. Bold black lines indicate

the borders of the clusters.

Figure S3. Preferential co-localization of TR from the same dataset can beruled out asa
major confounding effect in the SOM analysis.

A) The map issued from Fig.1B was used to indicagentiimber of independent studies (see
Table S1 for details), which are represented irheadividual node. At least 1 TR from a
given study had to be found in more than 50% of @M of an individual node to be

consideredB) The map issued from Fig.1B was used to indicageatrerage percent of TR

14



from a given study, which co-localize to single CRMm each individual node. All studies

contributing 3 TR or more are shown.

Figure $4. Additional data showing differential activity of the NR1H4-bound CRM
clusters

A) The map issued from Fig.1B was used to show tkeeage distance between CRM from a
given node obtained from pairwise comparisons of cibinations at all CRM. Higher
average distance correlates with higher numbeirafitig TR shown in Fig.1C and points to
a greater number of combinations with subtle defifees.B) Box plot displaying —log p-
values provided by the MACS2 peak calling algoritfion NR1H4-bound CRM from the
different clustersC) Presence of the canonical NR1H4 binding motif émed repeat 1 or
IR1) within NR1H4 binding sites from CRM of classésG was defined using CENTDIST
(Zzhang et al. 2011)D) The map issued from Fig.1B was used to show therage
phylogenetic conservation score of CRM from indiatinodes. Bold black lines indicate the

borders of the clusters.

Figure S5. Cluster C comprises CRM with strong CTCF and cohesin binding
The map issued from Fig.1B was used to show theepéaige of CRM bound by CTCF or
RAD21 in each node (top) as well as the averagefcdnd RAD21 ChlP-seq levels at CRM

from each individual node (bottom).

Figure S6. MDS analysisof TR co-occurrence at CRM from classD.
MDS was performed as described in the Materials Miethods section using CRM from
class D. The framed area, which contains TR whieltla most strongly interconnected with

NR1H4 (Tanimoto index > 0.7), is shown in details=ig.2.
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Figure S7. MDS analysisof TR co-occurrence at CRM from classE.
MDS was performed as described in the Materials Miethods section using CRM from
class E. The framed area, which contains TR whieltle&e most strongly interconnected with

NR1H4 (Tanimoto index > 0.7), is shown in details=ig.2.

Figure S8. MDS analysisof TR co-occurrence at CRM from classF.
MDS was performed as described in the Materials Miethods section using CRM from
class F. The framed area, which contains TR whieltfee most strongly interconnected with

NR1H4 (Tanimoto index > 0.7), is shown in details=ig.2.

Figure S9. MDS analysisof TR co-occurrence at CRM from class G.
MDS was performed as described in the Materials Miethods section using CRM from
class G. The framed area, which contains TR whiehttee most strongly interconnected with

NR1H4 (Tanimoto index > 0.7), is shown in details=ig.2.

Figure S10. Bimodal distribution of the number of co-recruited TR at CRM

A) Plot showing the fitting of the modelled exponenfrad) and normal (green) distributions

on the TR density distribution at CRM. The equatidrich was used together with estimated
parameters are provided on top of the pBY.The map issued from Fig.1B was used to
indicate the percentage of CRM from each individuade which is co-bound by at least 19

different TR.

16



Figure S11. Examples of TR showing differential occurrence at NR1H4-bound CRM.
The map issued from Fig.1B was used to show theep&ige of CRM bound by the indicated

TR (identified in Fig.2) in each individual node.

Figure S12. CRM from classes D and E on one hand and from classes F and G on the
other hand were associated with genes showing identical GO term enrichments and
expression profiles across mouse tissues

Analyses were performed as in Fig.2l and J usimggeassociated with CRM from classes D,

E, F or G as indicated.

Figure S13. TR ChlP-seq profiles at example genes linked to CRM from classes D-E or

F-G

The Integrated Genome Browser (IGB) was used toalime ChiP-seq profiles for NR1H4,
TRPE and TR© at the indicated genes associated with CRNpanelsA-E) or CRM ©
(panlesF-J), which are highlighted into boxes. DHS, H4K4meld 8 as well as H3K9ac
ChliP-seq levels are also shown at the botidinErollb andBtg2 expression is altered in the
liver of Nrlh4 KO mice.RT-gPCR analyses were performed using the liventoble-body
Nrih4 KO mice (left; n=5) or liver-specifilNrlh4 KO mice (right; n=3). An equivalent
number of wild-type littermates were used as cdatrStudent's t-test for unpaired data was
used to define statistically significant differeadgetween control andrih4 KO mice, *p <

0.05 and *p < 0.01.
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Figure S14. Expression changes of genes linked to CRMPF or CRM™€ in the liver of
Nr1h4 KO mice.

Box plot showing absolute fold changes of gendeelinto CRM ™ or CRM € in the liver of
liver-specificNr1h4 KO mice. A Mann-Whitney test was used to defiragistical differences

between the 2 groups, * < 0.001.

Figure S15. Characteristics of geneslinked to both CRMPFand CRMFC.

A) Gene ontology (GO) enrichment analyses were peddrusing DAVID (Huang et al.
2009) and genes associated uniquely with GRKCRMPE only) or CRM© (CRM™© only)

or associated with both CRM classes (CRM CRM ). Bonferroni-corrected p-value (-
logip) are shown.B) Average normalized mRNA expression levels of geassociated
uniquely with CRME (CRMPE only) or CRM™® (CRM™© only) or associated with both
CRM classes (CRMIF + CRM™®) across indicated mouse tissues were obtainedy usin

BioGPS data (Wu et al. 2009). Results are meanS.E/M.

Figure S16. Comparison of TR occurrence at CRMPFand CRM™© promoters.
Plots showing the occurrence of each TR at GRlshd CRM® promoters. TR were colored

according to Fig.4A.

Figure S17. Additional features discriminating CRMPF promoters from CRMF®
promotersand enhancers.

A) DNA binding motifs enriched in CRKFand CRM ©promoters and in CRM® enhancers
(defined using regions from class A as control) ardicated using the name of the
recognizing transcription factor. Moreover, < andwere used to indicate significant

differential enrichment within distinct sets of CRBI) ChIP-seq signals were recovered from
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the indicated CRM by restricting the analyses t® $pecific original peak of a given TR
within each CRM. Unbound CR¥ and CRM ®were used as a control. Results are means
+/- S.E.M.C) Plot showing the percentage of the genomic regim®mpassed by CRWV

or CRM© promoters which overlaps with CpG islands (CGlI).

Figure S18. Fraction of NR1H4 target genes associated with CRM from class D, E, F or
G dysregulated in theliver of TR KO mice.

Genes exclusively associated with CRM from clasg& [F; or G and whose expression
is modified in the liver of liver-specifiblrlh4 KO mice were used for these analyses. Genes
which are not linked to NR1H4-bound CRM and whospression is not altered in the liver
of Nr1lh4 KO mice (NR1H4 non-target genes) served as thereete (arbitrarily set to 1).
Fisher's exact test with Benjamitochberg correction was used to define statisticall
significant differences with NR1H4 non-target gelfep < 0.05, ** p < 0.01 and ***p <

0.001).

Figure S19. Hierarchical clustering of TR co-occurrence at CRM from classE.
Heatmap showing TR co-occurrence at CRM from claskefined using a Tanimoto index.
The hierarchical clustering tree is shown on ttievigth bars corresponding to circadian TR

highlighted in green. Clusters of circadian TR faaened using green lines.

FigS20. Comparison of motif occurrence at CRM® promoters and enhancers +/-
circadian TRM.

Plots showing the percentage of CRM harbouringastl one copy of a given DNA binding
motif is reported. All motifs from the HOCOMOCO Msel (v10) database were used (427

motifs). Motifs outside the area delimited by threyglines show more than 2 fold differences
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in their occurrence within the 2 sets of CRM betagnpared. Below are indicated the actual

motifs highlighted by the transcription factor naame the plots.

Figure S21. Hierarchical clustering of the impact of SNV on TR binding to CRM®
inferred from IGR analyses.

The IGR tool was used to predict the impact of Skdtalized within CRM on chromatin
binding of the indicated TR which were grouped base hierarchical clustering. In order to
restrict our analyses to a manageable number of, SiM\selected those modulating NR1H4
binding. The hierarchical clustering tree is shawnthe left. Fold change was set to 0 when
the modulatory effect of a SNV did not reach statad significance (BenjamirHochberg
corrected p-value > 0.05) or when it relates tokw&R binding (i.e. binding not called by

MACS?2 in our previous analyses).

Figure S22. Broad H3K4me3 labelling of genes encoding the indicated TR in the liver
and 10 other mouse tissues.

Broad H3K4me3 domains were defined for the mouser lor for the 10 other tissues also
analyzed in Fig.2J as defined in the SupplemenMaygerial. Stars indicate TR whose
encoding gene is marked with a broad H3K4me3 dommaihe liver and in less than 25% of

other analyzed tissues.

Figure S23. Comparison of NR1H4 and PPARA agonist-induced transcriptional
regulation of geneslinked to CRMPFand CRM™ .

Comparison of the hepatic transcriptomic modulaionduced by the PPARA agonist
Wy14643 (Rakhshandehroo et al. 2007) and the NR&Agdnist GW4064 (see the

Supplementary Material). We used data obtained afthort time treatment (4-6h) in order
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to mainly capture primary regulatory events induded NR1H4 and PPARA. Genes
significantly regulated by Wy14643 were definedngsa BenjamirtHochberg correcteg-
value cut-off set at 0.05. Gene set enrichmentyaral (GSEA) (Subramanian et al. 2005)
showed a trend towards similar regulation of gdim®d to CRM™F, which was significant
for down-regulated geneg#\). On the other hand, GSEA did not reveal any §icamt bias
for genes linked to CRFM® and indicated that both similar and opposite tepsonal
regulations by NR1H4 and PPARA occ®&)(The maximal positive and negative enrichment
score values were retrieved and the greatest i thas divided by the other (Max ES ratio).
When the negative maximal ES value was greatengti@ was indicated as a negative value.

FDR is the false discovery rate provided by the &SEftware.

Figure S24. Hierarchical combinations of TRM extends beyond NR1H4-bound CRM

A) All CRM from the mouse liver genome were classifissing a self-organizing map (SOM)
based on their pattern of TR recruitment. Hierar@hclustering was subsequently used to
identify 6 main classes of CRM which are indicatedthe planar view of the toroidal map
using different colors. Functional identificatioh ©RM comprised within these classes was
based on results from panels B-G and is indicatethe top.B-E) The map issued from A
was used to indicate the average DB$ H3K4mel C) H3K4me3 D) and H3K27ackK)
levels at CRM contained in each node. Bold blaskdiindicate the borders of the clustérs.
H) The map issued from A was used to show the pagentf CRM bound by CTCH],
RAD21 (G) or NR1H4 {) in each node. Bold black lines indicate the bosae the clusters.

) Each node was divided into 4 equal compartmentshwivere filled according to the
proportion of CRM within that node recruiting there (black), promoter (blue), liver-specific
functions control (violet) and circadian (green) MROnly part of the SOM comprising

active CRM is shown here.
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