Supplemental Material S1

4-Lineage Insertion Likelihood test

1. Mathematical model
Considering neutral insertions of retroelements in generation ¢ (¢ = time measured in generations),
we take into account ten different events for four lineages: w;; (1 =/=<j <4):

w;; — a retroelement in the orthologous locus is absent in lineage 4; and present in the
other three lineages;

w;; — a retroelement in the orthologous locus is absent in lineage 4; and A4; (i =), and
present in the other two lineages.

We denote p;j(¢) as the probability of these events; w;;(f) describes the numbers of events
and v(¢) the number of all insertions of retroelements in generation .

Taking into account that the probability of new insertions for each individual of a

population ((z)) is small, we assume that v(7) is a Poisson distributed random variable with a
mean no = no(t) proportional to the effective population size at time ¢, with N(¢): n, =N, (¢)- a(t).

Then, considering independent fixation probabilities for each retrotransposon insertion, we
can denote that u;;(f) is a Poisson distributed random variable with parameters:
b, =b,,()=n,()p, ,(0).

Now we consider all possible generations with potential retrotransposon insertions that
later become phylogenetically informative. The set of corresponding values of time ¢ we have
denoted by 7. Then the total number of retrotransposon insertions with properties w;; equal to the

sums:
g,',j = ; Y ; (t) >
are independent random Poisson distributed variables with parameters:

a,; = gbi,‘, (1) = ; ny () p, (1) (1)

We first distinguish two simple speciation variants (tree topologies) excluding
hybridization.

If we consider # as a first branching point (common for all following tree topologies), then
in Tree topology 1 the two generated branches split at time points t, =# + 7} and ©, =ty + T2,
respectively, forming together the four branches 4, — 44 (Figure 1). Tree topology 2 represents
successive divisions of the ancestral branch at time points ¢, = ¢ + T} and £, = tp + T1+715, forming

four branches 4| — A4 (Figure 2).



Fig. 1. Tree topology 1 Fig. 2. Tree topology 2

For these topologies we denote the special cases of partial and full polytomies (Figures 3-

5).
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Fig. 3. Partial polytomy 1 Fig. 4. Partial polytomy 2 Fig. 5. Full polytomy
Now we introduce three models of tree topologies involving hybridization events (Fig. 6-
8).
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Fig. 6. Hybridization model 1  Fig. 7. Hybridization model 2  Fig. 8. Hybridization model 3

The proportions of the two fused sub-populations forming a new population are denoted by
yrandys (y1 +y2=1).

It should be noted, that for each hybridization-affected tree topology we can have 24
rearrangements of the four species A4;, A2, A3, As. However, for the tree topology in Figure 6, due
to symmetry of branches A3 and 44 against time point 3, the number of different rearrangements is
reduced to 12. The same holds for the symmetry between species A, and 44 against the time point

t1in Figure 8, with an additional exchange of (yi, y2) and (7%, 73).
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In the case of a tree topology including hybridization, we denote the frequency of some
neutral insertions of retroelements at time ¢ as X(#). Then, using the standard Wright-Fisher
coalescent model (Fisher 1922, Wright 1931) we can consider X(7) as a Markov process with the
transition function u(s, p,t,x), reflecting the conditional probability density of X(#) for the
condition X(s) = p. Under diffusion approximation, this transition function follows the
Kolmogorov’s equation:

w1 0*
9 AN () ox’

o lx0=ul,

with the initial condition u(s, p,s,x) =d(x - p), where 6 (x — p) is a Dirac delta function, and

N,(t) denotes the effective population size at time ¢ (Kimura 1955a).

Let us introduce a neutral mutation with a frequency in a finite population p at time #=s.
Then, as it follows from the neutral theory of molecular evolution (Kimura 1955a, Kimura 1955b),
the conditional probability that this mutation will be fixed in the population at time ¢ — o tends
to p (whereby the probability of loosing the mutation tends to /-p).

For retrotransposon insertions that take place at ¢ < 1), their frequencies in the respective

lineages Xy, X1, Xz, X3 follow the probability densities of the random vector X = (X, X, X,,X,).
Then, introducing the vector x = (x,,x,,x,,x;), where x; is a random Poisson distributed variable
we can write:

S (X, X0, %5, %3) = g (8, P, 1o, X0) uy (£, X 1y, X)) Uy (£, Xy, By, X)) 15 (X, X, Xy, X3) (2)
where p = (2N, (¢))”', and the index of the function u indicates the number of the tree branches.

Using the full probability formula, we obtain:
)2 J(t) P( ) 1} j‘P ( |X x) ( )dxodxldxzdx3. 3)
0000
By then replacing the summation by the integration in (1) we obtain:
a;, = tf p., (0. (4)

Taking into account Equation 3 and all possible tree topology rearrangements exposed to

Hybridization model 1 (see Figure 6), the conditional probabilities are:
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For Hybridization model 2 (see Figure 7) we obtain the conditional probabilities:

P(a)l’1 ‘X = x) = (1 - X )x2x3 (x13’1 +x3y2)

1-x, )xa (xlyl X0, )
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Then, following Kuritzin et al. (2016), taking into account that N _(¢) >>1 (this assumption

provides the basis for the use of a diffusion model), and ignoring the terms with order p* and

higher, by expanding Equation 4 we obtain the parameters for Hybridization model 1:
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For Hybridization model 3:
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where 7, = f (2N, (t)"'dt =(2N,)"'T, is the “drift time”, according to Waxman (2011), and A

ly

denotes the average effective population size for the j-th branch.

If retrotransposon insertions occur in branch 7 (#%<t< t;), we have the following
estimations:

For Hybridization model 1 (Figure 6) and Hybridization model 2 (Figure 7) we expect that all

probabilities P(w;;), except P(ws4), are equal to 0. For P(a)3’4‘X =x)= ylxlz , using the full
1

probability formula we obtain: p, ,(f) =P (a)3’ 4) =, f xu, (¢, p,t, X, )dx, .
0

Similar to the previous formulation (4) we can denote:

fo+1

ayl,,4 = f p3’4(l‘)dl‘ = nlqu)(rl): (5)



where 7, 1s the average number of retrotransposon insertions in branch 71, and ®(7)=7-1+¢"

For Hybridization model 3 (Figure 8) in branch 7} we obtain:
P(o,| X =x)=x,x, (%0, +x,7,)
(a)12|X x) lxz)x3(x2yl+x3y2)
P(o;| X =x)=x,x, (1-x,9, - x,7,)
P(o, | X =x)=x,(1-x,) (3 +x7,)

and all other P(w; ) are equal to 0. Using a full probability formula, we obtain:

11

I
P, = P(a)l,j ) =f uy (2, Pty x) )y (8, %0, 15, X, Juy (8, %, 1, X, )dx,dx, dx; .
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Than, similar to (4), we can write a},/ = f p, ;(t)dt, and after expansion we get:

all,1 = n@(rl)—%e_rz (l—e_T1 )2 (2+e_T1 )yl —%e_rf’ (l—e_r1 )2 (2+e_T1 )y2
all,z = %e_TZ (1 _e_Tl )2 (2+e—T1 )yl +n, (l—e_TI )(1_%(6‘271 +e_Tl '1‘4-)6_‘[3 )Vz
a, = Aeh (1 —e )2 (2+e_T1 )71 +%e_r3 (1 —e )2 (2+e_T‘ )yz

=, (1 —eh )(1 —é(e'”l +eh +4)e_T3 )V] +%e'r3 (1 —e )2 (2+e‘T1 )yz.

We then estimate parameters for retrotransposon insertions taking place in branch 75 (¢#,<t < 1,).

For Hybridization model 1 (Figure 6) we have:
P(ouL1 ‘X = x) = x2x32y2
P(ooL2 ‘X = x) = x32 (1 —xzyz)
P(a)l’3 ‘X = x) = P(a)l’4 ‘X = x) =X, (1 - X, )x3y2
and all other P(w; ) are equal to 0. Using a full probability formula, we obtain:

11
p;(0) = P(wu)=ff“z(tap»tzaxz)u3(tzaxzat39x3)dxzdx3-
0%

to+T,

Then, similar to above we get afj = f p; ;(t)dt, and expand this to:

a;, = n, (@(Tﬂ—ééa (l—e_T2 )2 (2+e_tz ))Vz

T



For Hybridization model 2 (Figure 7) we obtain:
P(a)l’l X = x) = 362)632)/2
— — 2
w,|X = x) = (1 —xz)x3y2

P(

P(col’3 X = x) =x,(1-x,)x,7,

P, | X =x)=xx(1-x,)

and all other P(a;) are equal to 0. Similar to above we get:
al, =n, (q)(rz) - (1= ) (2+e%)e® )y2
aly=n,(1-¢™ )(1—%(4+e'% +em)e );/2

aﬁ3 = n_62(1 el )2 (2 +e b )-e'r-’)/Z

- 2 - -
a,, = nz(q)(rz);/1 +%(1—e TZ) (2+e & )e Z'3;/2)
For Hybridization model 3 (Figure 8) all probabilities P(w;,), except P(w34), are equal to 0. For
P(a)3,4 ‘X = x) = j/lxlz, similar to above, we obtain: a;, =n,y,®(z,).

If retrotransposon insertions occur in branch 73 (#; <t < t3), then for Hybridization model 1
H+T;

(Figure 6) we have: g;, = f P, (O)dt = n;®(7;) . Similary, for the Hybridization models 2 and 3
3

we obtain: a;, = n,y,®(z;).
The final result for each of the hybridization models is obtained by summarizing:
_ 0 1 2 3
a,;=a  +a, +a  +a;; (6)

according to the type of hybridization.

2. Special cases

The binary tree topologies can be derived from hybridization models using specific parameter
values. For example, in Hybridization models 1 and 2 (Figures 6 and 7, respectively), setting
7, =0 (and, respectively y, =1) results in Tree topology 1 (Figure 1), while setting y, =1 in these
two hybridization models results in Tree topology 2 (Figure 2). In Hybridization model 3 (Figure
8), setting y, =0 or y, =1 both result in Tree topology 2 (Figure 2).

Partial polytomy 1 (Figure 3) can be derived from all three hybridization models with the
following parameter settings: y, =0, 7, =0. Partial polytomy 2 (Figure 4) can be derived from

Hybridization models 1 and 2 (Figures 6 and 7, respectively) by the settings y, =0, 7, =0. In all

8



the described models, the settings 7, =0, 7, =0, and 7, =0

lead to Full polytomy (Figure 5), where the value of y is
indefinite. In Hybridization models 1 and 2, the settings

O<y, <1, 7, =0 lead to an additional mixed hybridization-

polytomy configuration (Figure 9).

Fig. 9. Mixed hybridization-polytomy

3. Likelihood approach

To estimate the tree topology for real presence/absence patterns obtained from genomic
screenings, we denote the number of markers 7;; with condition w;; detected in the screening. For
these informative markers we denote the probability B that they were detected. Then n;; is a
Poisson distributed random variable with parameters a;;, defined earlier (6), where no, ni, ns, n3
are replaced by Bno, fni, Pna, Pns.

Denoting n = {’% 1}1 oY= {yi j}l o where y;; are arbitrary non-negative values, we can
D sisj= > sisj<

write:

a ',Vi,/
Ply=y)= — —e

lsisj<4 yi,./'
Estimates of the parameters for the corresponding model are derived by maximizing the

log-likelihood function:

L(y,0) = E (yi,_j ) 1n(ai,j) -4, )’ (7

I=i<j=<4
where 0= {no, ni, n2, n3, T, T, 73, Y} 1s the model parameters vector, and functions a;; = a;(6) are

defined earlier (6) (here y;=y,andy,=1-y).

Note, that for Full polytomy (Figure 5) (1 =nn=w=0)all ¢, =a= %, and the log-

likelihood function L (y,a)= E Vi, -ln(a)— 10a. Equating to zero the derivative of Ly(y,a) of a:

Isisj=<4

1 y.;,—10=0, provides an estimation of maximum likelihood & L y,,- Thus the

a lsi=j=4 1sisj<4

maximum value of log-likelihood function in case of Full polytomy is equal to:

L,(y,4) =104(In(a) - 1).



4. Testing laurasiatherian data

According to the requirements of our mathematical diffusion model, we included all
phylogenetically informative markers, with those that were unfixed in the common ancestor of the
four investigated laurasiatherian lineages (Chiroptera, Perissodactyla, Cetartiodactyla, Carnivora)
or differently represented in the investigated orders (see Table 1). Due to the increasing
complexity involved in including additional lineages we did not consider the fifth lineage
Eulipotyphla that is clearly located outside the remaining laurasiatherians. Under our model
conditions the moment of fixation of retroelements rather than the moment of their insertion is
relevant. Our diffusion model is tolerant to any "outside of the focused lineages" conflicts.
Therefore, the dataset for the 4-Lineage Insertion Likelihood test consists of 102 diagnostic
markers (with no conflicts in the Eulipotyphla and Pholidota groups) plus 60 markers where
Eulipotyphla sequence information was absent or Eulipotyphla or Pholidota showed conflicts (the

additional 60 markers see in the Supplemental Table S1d, e and Supplemental Material S2b, c).
Here E y;; =162, and accordingly G =16.2, hence max L(y,6) = L,(y,a) = 289,1718.
. Hy

Isisj=4

Table 1. Distribution of presence/absence patterns for different combinations of the four

investigated laurasiatherian branches used in the 4-Lineage Insertion Likelihood test.

Dog Cow Horse Bat Yij
+ + - - 17
+ - + - 18
+ - - + 12
- + + - 11
- + - + 7
- - + + 21
+ + + - 24
+ + - + 16
+ - + + 14
- + + + 22

Pluses and minuses denote presence and absence of individual retrotransposon insertions,

respectively, and (y;;) indicates the total number of insertions for each pattern.

We obtained maximum likelithood values for all presented hybridization models (taking
rearrangements into account) using the FindMaximum function of the software package Wolfram
Mathematica 10 (Version Number 10.4.0.0). For simplification we took ny = n; = ny = n3. Our
model conditions are additionally restricted to 7, =0; 7, =0; 7, =0; 0 <y <1. The maximum log-
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likelihood ratio was calculated as d(y) = 2(max L(y,0)-L,(y, &)). According to Waddell et al.
4

(2001), we approximated this difference by a y-square distribution with two degrees of freedom.

The best results for different hybridization models are presented in Table 2.

Table 2. Maximum log-likelihood ratios for different hybridization models.

log-
Model Resultin ikeli
. g . llkeh%lood 7, 7 7 Y p-value
configurations Tree topologies ratios (y=71)
(*significant)
Bat
Hvbridizati y
ybridization by Horse 6.986% | 0.498 | 0.145 0| 0236| p<0.031
model 1 Vo
To ‘73 Dog
Cow
/Bat
Tq Y1
) I 7.057% | 0424 | 0.144 | 0.027 | 0284 | p<0.029
5 2 Dog
Hybridization Cow
model 2 Bat
T1 Y1 H
orse 6.986%* 0.498 0.145 0 0.236 | p<0.031
Yo D
To rs 9
Cow
Bat
Cow
Hybridizati
yoricization 3.630 | 0.063| 0.065| 0.078 0 p>0.1
model 3 4 43 Dog
”

Horse

Hybridization model 1 assigns a maximum log-likelihood value for a hybridization-polytomy

topology (Figure 9), where the horse is a result of fusion of the dog-cow and the bat ancestors with

a somehow stronger connection to the dog-cow ancestor (here y = y,, hence y, =1-y =0.76).

Hybridization model 2 represents two significant tree topologies. The first shows the

maximum log-likelihood value representing hybridization by fusion between the dog and bat

ancestors resulting in the horse lineage. This case shows a very short branch of dog ancestor

before fusion, indicated by 7, =0.027 and other parameters are similar to the hybridization-




polytomy topology. The second tree topology is identical to the resulting Tree topology shown for
Hybridization model 1.

The maximum log-likelihood ratio for Hybridization model 3 was not significant, but does
indicate a resulting Tree topology without hybridization and a very short branch of the common

ancester of dog, cow, and horse (7, =0.063; 7,,, =0.143), identical to the tree topology we

received with Dollop in Phylip (see Figure 2 here, also Figure 2 in the main text).
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