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4-Lineage Insertion Likelihood test 

 

 

1. Mathematical model 

Considering neutral insertions of retroelements in generation t (t = time measured in generations), 

we take into account ten different events for four lineages: ωi,j (1 ≤ I ≤ j ≤ 4): 

ωi,i  – a retroelement in the orthologous locus is absent in lineage Аi, and present in the 

other three lineages; 

ωi,j  – a retroelement in the orthologous locus is absent in lineage Аi and Аj (i ≠ j), and 

present in the other two lineages. 

We denote pi,j(t) as the probability of these events; µi,j(t) describes the numbers of events 

and ν(t) the number of all insertions of retroelements in generation t. 

Taking into account that the probability of new insertions for each individual of a 

population ( ( )tα ) is small, we assume that ν(t) is a Poisson distributed random variable with a 

mean n0 = n0(t) proportional to the effective population size at time t, with Ne(t): 0 ( ) ( )en  = N t t .α⋅   

Then, considering independent fixation probabilities for each retrotransposon insertion, we 

can denote that µi,j(t) is a Poisson distributed random variable with parameters: 

, , 0 ,( ) ( ) ( )i j i j i jb b t n t p t= = . 

Now we consider all possible generations with potential retrotransposon insertions that 

later become phylogenetically informative. The set of corresponding values of time t we have 

denoted by T. Then the total number of retrotransposon insertions with properties ωi,j equal to the 

sums: 

, , ( )i j i j
t T

tξ µ
∈

=∑ , 

are independent random Poisson distributed variables with parameters: 

, , 0 ,( ) ( ) ( )i j i j i j
t T t T

a b t n t p t
∈ ∈

= =∑ ∑ .    (1) 

 We first distinguish two simple speciation variants (tree topologies) excluding 

hybridization. 

If we consider t0 as a first branching point (common for all following tree topologies), then 

in Tree topology 1 the two generated branches split at time points t1 = t0 + T1 and t2 = t0 + T2, 

respectively, forming together the four branches А1 – А4 (Figure 1). Tree topology 2 represents 

successive divisions of the ancestral branch at time points t1 = t0 + T1 and t2 = t0 + T1+T2, forming 

four branches А1 – А4 (Figure 2).   
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Fig. 1.  Tree topology 1 Fig. 2.  Tree topology 2 

 

For these topologies we denote the special cases of partial and full polytomies (Figures 3-

5). 

   
Fig. 3.  Partial polytomy 1 Fig. 4.  Partial polytomy 2 Fig. 5.  Full polytomy 

 

Now we introduce three models of tree topologies involving hybridization events (Fig. 6-

8). 

   

Fig. 6.  Hybridization model 1 Fig. 7.  Hybridization model 2 Fig. 8.  Hybridization model 3 

 

The proportions of the two fused sub-populations forming a new population are denoted by 

γ1 and γ2 (γ1 + γ2 = 1). 

It should be noted, that for each hybridization-affected tree topology we can have 24 

rearrangements of the four species А1, А2, А3, А4. However, for the tree topology in Figure 6, due 

to symmetry of branches A3 and A4 against time point t3, the number of different rearrangements is 

reduced to 12. The same holds for the symmetry between species A2 and A4 against the time point 

t1 in Figure 8, with an additional exchange of (γ1, γ2) and (Т2, Т3). 
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In the case of a tree topology including hybridization, we denote the frequency of some 

neutral insertions of retroelements at time t as Х(t). Then, using the standard Wright-Fisher 

coalescent model (Fisher 1922, Wright 1931) we can consider Х(t) as a Markov process with the 

transition function ( , , , )u s p t x , reflecting the conditional probability density of X(t) for the 

condition X(s) = p. Under diffusion approximation, this transition function follows the 

Kolmogorov’s equation: 

[ ]
2

2

1 (1 ) ,
4 ( )e

u x x u
t N t x
∂ ∂

= −
∂ ∂

     

with the initial condition ( , , , ) ( )u s p s x x pδ= − , where δ (x – p) is a Dirac delta function, and 

Ne(t) denotes the effective population size at time t (Kimura 1955a). 

Let us introduce a neutral mutation with a frequency in a finite population p at time t=s. 

Then, as it follows from the neutral theory of molecular evolution (Kimura 1955a, Kimura 1955b), 

the conditional probability that this mutation will be fixed in the population at time t→∞  tends 

to p (whereby the probability of loosing the mutation tends to 1-p). 

For retrotransposon insertions that take place at t < t0, their frequencies in the respective 

lineages X0, X1, X2, X3 follow the probability densities of the random vector 0 1 2 3( , , , )X X X X X= . 

Then, introducing the vector 0 1 2 3( , , , )x x x x x= , where xi is a random Poisson distributed variable 

we can write: 

0 1 2 3 0 0 0 1 0 0 1 1 2 2 2 3 3 3 0 1 2 3( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , )f x x x x u t p t x u t x t x u t x t x u x x x x= ⋅ ⋅ ⋅  ,  (2) 

where 1(2 ( ))ep N t −= , and the index of the function u indicates the number of the tree branches.  

Using the full probability formula, we obtain:  

( ) ( ) ( )
1 1 1 1

, , , 0 1 2 3
0 0 0 0

( ) .i j i j i jp t X x f x dx dx dx dxω ω= = =∫ ∫ ∫ ∫Ρ Ρ    (3) 

By then replacing the summation by the integration in (1) we obtain:  

 
0

0
, , ( ) .

t

i j i ja p t dt
−∞

= ∫       (4) 

Taking into account Equation 3 and all possible tree topology rearrangements exposed to 

Hybridization model 1 (see Figure 6), the conditional probabilities are: 
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( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )( )

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( )

2
1,1 1 1 1 2 2 3

2
1,2 1 1 1 2 2 3

1,3 1,4 1 1 1 2 2 3 3

2
2,2 1 1 1 2 2 3

2,3 2,4 1 1 1 2 2 3 3

3,3 4,4 1 1 1 2 2 3 3

3,4 1 1

P 1

P 1 1

P P 1 1

P 1

P P 1 1

P P 1

P

ω X = x = x γ x + γ x x

ω X = x = x γ x γ x x

ω X = x = ω X = x = x γ x + γ x x x

ω X = x = x γ x γ x x

ω X = x = ω X = x = x γ x γ x x x

ω X = x = ω X = x = x γ x + γ x x x

ω X = x = x γ x

−

− − −

− −

− −

− − −

−

( )( )21 2 2 31+ γ x x−

 

 

For Hybridization model 2 (see Figure 7) we obtain the conditional probabilities: 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )( )

( ) ( ) ( )

( )

1,1 1 2 3 1 1 3 2

1,2 1 2 3 1 1 3 2

1,3 1 2 3 1 1 3 2

1,4 1 2 3 1 1 3 2

2,2 1 2 3 1 1 3 2

2,3 1 2 3 1 1 3 2

2,4 1 2 3 1 1 3 2

3,3

P 1

P 1 1

P 1 1

P 1 1

P 1

P 1 1

P 1 1

P

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ x γ

ω X = x

−

− −

− −

− − −

−

− −

− − −

( )( )

( ) ( )( )

( ) ( )

1 2 3 1 1 3 2

3,4 1 2 3 1 1 3 2

4,4 1 2 3 1 1 3 2

1

P 1 1

P 1

= x x x x γ + x γ

ω X = x = x x x x γ x γ

ω X = x = x x x x γ x γ

−

− − −

− −

 

For Hybridization model 3 (see Figure 8) the conditional probabilities are: 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )

( )

1,1 0 2 3 2 1 3 2

1,2 0 2 3 2 1 3 2

1,3 0 2 3 2 1 3 2

1,4 0 2 3 2 1 3 2

2,2 0 2 3 2 1 3 2

4,4 0 2 3 2 1 3 2

2,3 0 2 3 2 1 3 2

2,4

P 1

P 1 1

P 1 1

P 1 1

P 1

P 1

P 1 1

P

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ + x γ

ω X = x = x x x x γ x γ

ω X = x = x

−

− −

− − −

− −

−

−

− − −

( )( )( )

( ) ( )

( ) ( )

0 2 3 2 1 3 2

3,3 0 2 3 2 1 3 2

3,4 0 2 3

1 1

P 1

P 1 .

x x x γ + x γ

ω X = x = x x x x γ x γ

ω X = x = x x x

− −

− −

−
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Then, following Kuritzin et al. (2016), taking into account that ( ) 1eN t >>  (this assumption 

provides the basis for the use of a diffusion model), and ignoring the terms with order р2 and 

higher, by expanding Equation 4 we obtain the parameters for Hybridization model 1: 

1 2 30 1 2 3 2 3 2 3
1,1 0 1 0 2

1 2 30 2 3 1 2 3 2 3 2 3
1,2 0 1 0 2

0 0 1 2 3
1,3 1,4 0 1 0

1 2e 1 11
3 6 3 6 3

2 1 2e 1 11
3 3 6 3 6 3

1 1
6 6

τ τe τ τ τ τ τ τ τa = n e γ +n + e e γ

τ τe τ τ τ τ τ τ τ τ τa = n e + e γ +n e e γ

τ τ τa = a = n e γ +n

− −
− − −

− −
− − − −

−

⎛ ⎞ ⎛ ⎞− − − −
− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− − − − −
− − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

−− − 3 2 3 2 3
2

1 2
0 1 2 3 2 3
2,2 0 1 0 2

0 0 1 2 3 2 3
2,3 2,4 0 1 0 2

0 0 2 3 1 2 3 2 3
3,3 4,4 0 1 0 2

0
3,4 0

1
3

1 1
3 6 3 6

1 1
6 6
1 1 1
3 6 6

1

τ τ τ τe + e γ

τ τe eτ τ τ τ τa = n e γ +n e γ

τ τ τ τ τa = a = n e γ +n e γ

τ τ τ τ τ τ τa = a = n e e γ +n e γ

a = n

− −

− −
− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− − −
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
− − −

− − − −⎛ ⎞−⎜ ⎟
⎝ ⎠

−
1 2

2 3 1 2 3 2 3
1 0 2

2e 1 1 1
3 3 6 3 6

ττ eτ τ τ τ τ τ τe + e γ +n e γ
− −

− − −⎛ ⎞ ⎛ ⎞− − − −
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

Similarly, for Hybridization model 2 we have: 

1 30 1 2 2 2
1,1 0 1 0 2

1 30 2 1 2 2 2
1,2 0 1 0 2

30 0 1 2 2 2
1,3 1,4 0 1 0 2

1
0 1 2
2,2 0

1 11
3 6 6

2 1 1 11
3 3 6 3 6

1 1 1
6 3 6

1
3 6

τe τ τ τ τa = n e γ +n e + e γ

τe τ τ τ τ τa = n e + e γ +n e e γ

τ τ τ τa = a = n e γ +n e e γ

τe τ τa = n e

−
− − −

−
− − − −

− − −

−
−

⎛ ⎞− ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

− ⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ −
−

⎝

2
1 0 2

0 0 1 2 2
2,3 2,4 0 1 0 2

0 0 2 1 2 2
3,3 4,4 0 1 0 2

1
0 2 1 2 2
3,4 0 1 0 2

1
6

1 1
6 6
1 1 1
3 6 6

2 e 1 1 11
3 3 6 6

τγ +n e γ

τ τ τa = a = n e γ +n e γ

τ τ τ τa = a = n e e γ +n e γ

τ τ τ τ τa = n e + e γ +n e γ

−

− −

− − −

−
− − −

⎞
⎜ ⎟⎜ ⎟

⎠
−

−⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞⋅ −
− −⎜ ⎟⎜ ⎟

⎝ ⎠
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For Hybridization model 3: 

1 2 30 2 3 2 31 2
1,1 0 1 0 2

2 30 0 2 3 2 31 2
1,2 1 0 2

30 0 2 3 2 31 2
1,3 1 0 2

1
0
1,4 0

1 2 e 1 11
3 6 3 6 3

2 e 1 1
6 3 6 3

1 1
6 3 6

1
3

τ τe τ τ τ ττ τa = n e γ +n + e e γ

τn τ τ τ ττ τa = e γ +n e e γ

n τ τ τ ττ τa = e γ +n e e γ

τea = n +

− −
− −−

−
− −−

− −−

−

⎛ ⎞ ⎛ ⎞⋅ − −−
− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⋅ − −−
− −⎜ ⎟⎜ ⎟

⎝ ⎠

− −− ⎛ ⎞−⎜ ⎟
⎝ ⎠

−
2 32 3 2 31 2

1 0 2

2 2
0 2 31 2
2,2 0 1 0 2

1 2
0 0 2 31 2
2,3 0 1 2

0 0 01 2
2,4 1

1 2 1 1
6 3 3 6

1 1
3 6 3 6

2 11
3 6 3 6

6 6

τ

τ

e τ τ τ ττ τe γ +n e e γ

τ τe e τ ττ τa = n e γ +n e γ

τ ne e τ ττ τa = n + e γ + e γ

n n ττ τa = e γ + e

−
− −−

− −
−−

− −
−−

−−

⎛ ⎞⋅ − −− ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞−−
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⋅ −−
− −⎜ ⎟⎜ ⎟

⎝ ⎠

− 2 3
2

2
0 0 2 31 2
3,3 0 1 2

2
0 0 2 31 2
3,4 1 0 2

1
0 0 2 31 2
4,4 0 1 2

1
3 6 6

1
6 3 6

1
3 6 6

τ γ

τ ne τ ττ τa = n e γ + e γ

τn e τ ττ τa = e γ +n e γ

τ ne τ ττ τa = n e γ + e γ

−
−−

−
−−

−
−−

−

⎛ ⎞ −−
−⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞−−
−⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞ −−
−⎜ ⎟⎜ ⎟

⎝ ⎠

 

 

where 
0

0

1 1(2 ( ) (2 )
jt T

j j j j
t

N t dt N Tτ
+

− −= =∫   is the “drift time”, according to Waxman (2011), and Nj  

denotes the average effective population size for the j-th branch. 

If retrotransposon insertions occur in branch T1 (t0<t< t1), we have the following 

estimations: 

For Hybridization model 1 (Figure 6) and Hybridization model 2 (Figure 7) we expect that all 

probabilities P(ωi,j), except P(ω3,4), are equal to 0. For ( ) 2
3,4 1 1X x xω γΡ = = , using the full 

probability formula we obtain: ( )
1

2
3,4 3,4 1 1 1 1 1 1

0

( ) ( , , , )p t x u t p t x dxω γ= = ∫Ρ .  

Similar to the previous formulation (4) we can denote:  

 
0 1

0

1
3,4 3,4 1 1 1( ) ( )

t T

t

a p t dt n γ τ
+

= = Φ∫ , (5) 
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where n1 is the average number of retrotransposon insertions in branch T1, and ( ) 1 e ττ τ −Φ = − + .  

For Hybridization model 3 (Figure 8) in branch T1 we obtain:  

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )( )

1,1 2 3 2 1 3 2

1,2 2 3 2 1 3 2

1,3 2 3 2 1 3 2

1,4 2 3 2 1 3 2

P

P 1

P 1

P 1

ω X = x = x x x γ + x γ

ω X = x = x x x γ + x γ

ω X = x = x x x γ x γ

ω X = x = x x x γ + x γ

−

− −

−

 

and all other P(ωi,j) are equal to 0. Using a full probability formula, we obtain: 

( )
1 1 1

1, 1, 1 1 1 2 1 1 2 2 3 1 1 3 3 1 2 3
0 0 0

( ) ( , , , ) ( , , , ) ( , , , )j jp t u t p t x u t x t x u t x t x dx dx dxω= = ∫ ∫ ∫Ρ . 

Than, similar to (4), we can write 
0 1

0

1
, , ( )

t T

i j i j
t

a p t dt
+

= ∫ , and after expansion we get: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2
1 1 1 32 1 1 1 1
1,1 1 1 1 2

2 21 1 32 1 1 1 1 1
1,2 1 1 2

2 2
1 1 1 32 1 1 1 1
1,3 1 2

21 1 1
1,4 1

1 2 1 2
6 6

11 2 1 1 4
6 6

1 2 1 2
6 6

11 1
6

n n ττ τ τ τ τa = nΦ τ e e +e γ e e +e γ

n ττ τ τ τ τ τa = e e +e γ +n e e +e + e γ

n n ττ τ τ τ τa = e e +e γ + e e +e γ

τ τ τa = n e e +e

−− − − − −

−− − − − − −

−− − − − −

− − −

− − − −

⎛ ⎞− − −⎜ ⎟
⎝ ⎠

− −

− − ( ) ( ) ( )
2

13 31 1 1
1 24 1 2 .
6
nτ τ τ τ+ e γ + e e +e γ− − − −⎛ ⎞ −⎜ ⎟

⎝ ⎠

 

We then estimate parameters for retrotransposon insertions taking place in branch T2 (t1<t < t2).  

For Hybridization model 1 (Figure 6) we have: 

  

( )
( ) ( )

( ) ( ) ( )

2
1,1 2 3 2

2
1,2 3 2 2

1,3 1,4 2 3 3 2

P

P 1

P P 1

ω X = x = x x γ

ω X = x = x x γ

ω X = x = ω X = x = x x x γ

−

−

 

and all other P(ωi,j) are equal to 0. Using a full probability formula, we obtain:  

( )
1 1

1, 1, 2 2 2 3 2 2 3 3 2 3
0 0

( ) ( , , , ) ( , , , )j jp t u t p t x u t x t x dx dxω= = ∫ ∫Ρ .  

Then, similar to above we get 
0 2

0

2
, , ( )

t T

i j i j
t

a p t dt
+

= ∫ , and expand this to: 

( ) ( ) ( )2
2 3 2 2
1,1 2 2 2

1 τ1 2
6
τ τa = n Φ τ e e +e γ− − −⎛ ⎞− −⎜ ⎟

⎝ ⎠
 

( ) ( )( )( ) ( ) ( )22 3 32 2 2 2
1,2 2 2 1 2

11 1 1 1 4
6

τ ττ τ τ τa = n Φ τ + e e γ + e e +e + e γ− −− − − −⎛ ⎞⎛ ⎞− − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

( ) ( )
2

2 2 3 2 2
1,3 1,4 2 2

1 1 2
6
τ τ τa = a = n e e +e γ− − −

− . 
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For Hybridization model 2 (Figure 7) we obtain: 

  

( )
( ) ( )

( ) ( )

( ) ( )

2
1,1 2 3 2

2
1,2 2 3 2

1,3 2 3 3 2

1,4 2 3 3 2

P

P 1

P 1

P 1

ω X = x = x x γ

ω X = x = x x γ

ω X = x = x x x γ

ω X = x = x x x γ

−

−

−

 

and all other P(ωi,j) are equal to 0. Similar to above we get: 

 

( ) ( )( )
( ) ( )( )
( ) ( )

( ) ( )( )

32 2

32 2 2

32 2

32 2

22
1,1 2 2 2

22
1,2 2 2

22 2
1,3 2

22
1,4 2 2 1 2

1( ) 1 26
11 1 46

1 2
6

1( ) 1 26

a n e e e

a n e e e e

na e e e

a n e e e

ττ ττ γ

ττ τ τ γ

ττ τ γ

ττ ττ γ γ

−− −

−− − −

−− −

−− −

= Φ − − +

= − − + +

= − + ⋅

= Φ + − +

  

For Hybridization model 3 (Figure 8) all probabilities P(ωi,j), except P(ω3,4), are equal to 0. For 

( ) 2
3,4 1 1X x xω γΡ = = , similar to above, we obtain: 2

1,4 2 1 2( )a n γ τ= Φ . 

If retrotransposon insertions occur in branch T3 (t2 <t < t3), then for Hybridization model 1 

(Figure 6) we have: 
2 3

2

3
1,2 1,2 3 3( ) ( )

t T

t

a p t dt n τ
+

= = Φ∫ . Similary, for the Hybridization models 2 and 3 

we obtain: 3
1,2 3 2 3( )a n γ τ= Φ .  

The final result for each of the hybridization models is obtained by summarizing:  
0 1 2 3

, , , , ,i j i j i j i j i ja a a a a= + + +       (6) 

according to the type of hybridization.  

 

 

2. Special cases 

The binary tree topologies can be derived from hybridization models using specific parameter 

values. For example, in Hybridization models 1 and 2 (Figures 6 and 7, respectively), setting 

1 0γ =  (and, respectively 2 1γ = ) results in Tree topology 1 (Figure 1), while setting 1 1γ =  in these 

two hybridization models results in Tree topology 2 (Figure 2). In Hybridization model 3 (Figure 

8), setting 1 0γ =  or 1 1γ =  both result in Tree topology 2 (Figure 2). 

Partial polytomy 1 (Figure 3) can be derived from all three hybridization models with the 

following parameter settings: 1 30,  0γ τ= = . Partial polytomy 2 (Figure 4) can be derived from 

Hybridization models 1 and 2 (Figures 6 and 7, respectively) by the settings 1 20,  0γ τ= = . In all 
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the described models, the settings 1 2 30,  0,  and 0τ τ τ= = =  

lead to Full polytomy (Figure 5), where the value of γ is 

indefinite. In Hybridization models 1 and 2, the settings 

1 30 1,  0γ τ< < =  lead to an additional mixed hybridization-

polytomy configuration (Figure 9). 

 

 

3. Likelihood approach 

To estimate the tree topology for real presence/absence patterns obtained from genomic 

screenings, we denote the number of markers ηi,j with condition ωi,j detected in the screening. For 

these informative markers we denote the probability β that they were detected. Then ηi,j is a 

Poisson distributed random variable with parameters ai,j, defined earlier (6), where n0, n1, n2, n3  

are replaced by βn0, βn1, βn2, βn3. 

 Denoting { } { }
41,41, ,
≤≤≤≤≤≤

==
jijijiji yyηη , where yi,j are arbitrary non-negative values, we can 

write: 

( ) ∏
≤≤≤

−==
41 ,

, ,

,

!ji

a

ji

y
ji ji

ji

e
y
a

yηP . 

Estimates of the parameters for the corresponding model are derived by maximizing the 

log-likelihood function: 

( )∑
≤≤≤

−⋅=
41

,,, )ln(),(
ji

jijiji aayyL θ ,     (7) 

where θ = {n0, n1, n2, n3, τ1, τ2, τ3, γ} is the model parameters vector, and functions  ai,j = ai,j(θ) are 

defined earlier (6) (here  γ1 = γ, and γ2 = 1 – γ ). 

Note, that for Full polytomy (Figure 5) (τ1 = τ2 = τ3 = 0) all 
6
0

,
naa ji == , and the log-

likelihood function ( ) aayayL
ji

ji 10ln),(
41
,0 −⋅= ∑

≤≤≤

. Equating to zero the derivative of L0(y,a) of a: 

0101
41
, =−∑

≤≤≤ ji
jiya

, provides an estimation of maximum likelihood ∑
≤≤≤

=
41
,10

1ˆ
ji

jiya . Thus the 

maximum value of log-likelihood function in case of Full polytomy is equal to: 

( )1)ˆln(ˆ10)ˆ,(0 −= aaayL .  

  
 

 

 

Fig. 9. Mixed hybridization-polytomy 
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4. Testing laurasiatherian data   

According to the requirements of our mathematical diffusion model, we included all 

phylogenetically informative markers, with those that were unfixed in the common ancestor of the 

four investigated laurasiatherian lineages (Chiroptera, Perissodactyla, Cetartiodactyla, Carnivora) 

or differently represented in the investigated orders (see Table 1). Due to the increasing 

complexity involved in including additional lineages we did not consider the fifth lineage 

Eulipotyphla that is clearly located outside the remaining laurasiatherians. Under our model 

conditions the moment of fixation of retroelements rather than the moment of their insertion is 

relevant. Our diffusion model is tolerant to any "outside of the focused lineages" conflicts. 

Therefore, the dataset for the 4-Lineage Insertion Likelihood test consists of 102 diagnostic 

markers (with no conflicts in the Eulipotyphla and Pholidota groups) plus 60 markers where 

Eulipotyphla sequence information was absent or Eulipotyphla or Pholidota showed conflicts (the 

additional 60 markers see in the Supplemental_Table_S1d, e and Supplemental_Material_S2b, c). 

Here ,162
41
, =∑

≤≤≤ ji
jiy  and accordingly ˆ 16.2,a =  hence 

0
0 ˆmax ( , ) ( , ) 289,1718.

H
L y L y aθ = =  

 

Table 1. Distribution of presence/absence patterns for different combinations of the four 

investigated laurasiatherian branches used in the 4-Lineage Insertion Likelihood test.  

 
Pluses and minuses denote presence and absence of individual retrotransposon insertions, 

respectively, and (yi,j) indicates the total number of insertions for each pattern. 

 

We obtained maximum likelihood values for all presented hybridization models (taking 

rearrangements into account) using the FindMaximum function of the software package Wolfram 

Mathematica 10 (Version Number 10.4.0.0). For simplification we took n0 = n1 = n2 = n3. Our 

model conditions are additionally restricted to 1 2 30;  0;  0;  0 1τ τ τ γ≥ ≥ ≥ ≤ ≤ . The maximum log-

Dog Cow Horse Bat yi j 
+ + - - 17 
+ - + - 18 
+ - - + 12 
- + + - 11 
- + - + 7 
- - + + 21 
+ + + - 24 
+ + - + 16 
+ - + + 14 
- + + + 22 
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likelihood ratio was calculated as ( )0 ˆ( ) 2 max ( , ) ( , )d y L y L y a
θ

θ= − . According to Waddell et al. 

(2001), we approximated this difference by a χ-square distribution with two degrees of freedom. 

The best results for different hybridization models are presented in Table 2. 

 

Table 2. Maximum log-likelihood ratios for different hybridization models. 

Model 
configurations 

Resulting 
Tree topologies 

log- 
likelihood 

ratios 
(*significant) 

τ1 τ2 τ3 
γ 

(γ= γ1) 
p-value 

Hybridization 
model 1 

 

6.986* 0.498 0.145 0 0.236 p<0.031 

Hybridization 
model 2 

 

7.057* 0.424 0.144 0.027 0.284 p<0.029 

 

6.986* 0.498 0.145 0 0.236 p<0.031 

Hybridization 
model 3 

 

3.630 0.063 0.065 0.078 0 p>0.1 

 
Hybridization model 1 assigns a maximum log-likelihood value for a hybridization-polytomy 

topology (Figure 9), where the horse is a result of fusion of the dog-cow and the bat ancestors with 

a somehow stronger connection to the dog-cow ancestor (here 1γ γ= , hence 2 1 0.76γ γ= − ≈ ).  

Hybridization model 2 represents two significant tree topologies. The first shows the 

maximum log-likelihood value representing hybridization by fusion between the dog and bat 

ancestors resulting in the horse lineage. This case shows a very short branch of dog ancestor 

before fusion, indicated by 3 0.027τ =  and other parameters are similar to the hybridization-
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polytomy topology. The second tree topology is identical to the resulting Tree topology shown for 

Hybridization model 1.  

The maximum log-likelihood ratio for Hybridization model 3 was not significant, but does 

indicate a resulting Tree topology without hybridization and a very short branch of the common 

ancester of dog, cow, and horse ( 1 2 30.063;  0.143τ τ += = ), identical to the tree topology we 

received with Dollop in Phylip (see Figure 2 here, also Figure 2 in the main text). 
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