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Supplemental Methods 

Hi-C datasets 

ESCs and NPCs Hi-C datasets were obtained in Ref. (Giorgetti et al. 2016). Reads from 129Sv 
and Cast/EiJ alleles were combined to increase read depth, and data were binned at 20 kb 
resolution. CH12 data are from Rao et al. (Rao et al. 2014), binned at 10 kb. Mouse fetal liver 
Hi-C data are from Nagano et al. (Nagano et al. 2015), binned at 25 kb. ESC, NPC and liver 
Hi-C were normalized with iterative correction (Imakaev et al. 2012). CH12 were normalized 
with the VC-SQRT method (Rao et al. 2014). 

Domain-calling algorithm 

The CaTCH algorithm takes as an input a normalized Hi-C matrix, binned at an arbitrary 
resolution r. The genome is first partitioned into seeds of domains of size 2*r, which are then 
progressively merged into large domains. Merging of two consecutive domains A and B is 
determined by the reciprocal insulation (RI) measure: 

                            RI(A,B)=[ Pin(A)+Pin(B)-Pout(A,B) ]/ [Pin(A)+Pin(B)]*100             (1) 

Where Pin and Pout are the average Hi-C counts within domains A and B, and across their 
boundary respectively (see Figure 1a in the main text).  

A threshold on RI is then defined, and any two consecutive domains whose RI is below the 
threshold are merged in a single domain. The threshold is progressively increased from 0% 
to 100% in steps of 0.1%, resulting in increasingly larger domains. The fact that only 
consecutive domains can be merged ensures that the overall organization of the domains is 
tree-like, excluding the possibility of interactions between distant domains. This could be 
observed otherwise by imposing a different distance based on the Hi-C map, which is not 
strictly ultrametric. In order to lose dependency on the initial partitioning of the genome in the 
final determination of domain boundaries, we allowed small shifts in the boundaries of 
domains (2 genomic bins) at each step. Note that the domains identified by CaTCH do not 
depend on bin size, provided the domain is larger than the genomic bin. 

Since the increase of the threshold is discrete, the above procedure undergoes the risk of 
being dependent on the order of mergings, which would result in a non-unique tree. To 
overcome this problem, we set a specific rule on the matching order. Namely, if a domain can 
be merged with either the preceding or the following along, the pair that has the lowest RI is 
merged first. This is in fact equivalent to merging domains according to their order along the 
chromosomes, and increasing smoothly (rather than in discrete steps) the threshold on the 
reciprocal insulation value. Indeed, smoothly increasing the threshold corresponds to cutting 
the hierarchical tree densely enough that one is able to always merge the domains with the 
lowest RI.  

Computationally generated contact maps with preferential folding levels 

To generate contact maps characterized by one or two preferential folding levels, we 
generated a contact map for each individual level (where contact probabilities decrease as a 
power law with increasing genomic distance), to which a weak background Gaussian noise 
was added. For example, to generate a pseudo-genome with two folding levels (see right 
panel in main Figure 1f), we first generated a uniform (power-law decaying) contact map with 

Gaussian noise. Then, we partitioned the matrix into a set of small domains d1={d1i} (smallest 



squares along the diagonal in Figure 1f). The first folding level was generated within this set 
of domains by adding a new power-law decreasing interaction pattern. We then merged pairs 

of adjacent domains (e.g. d11 with d12; d13 with d14 and so on) leading to a second set of 

domains d2={d2i} to which the same power-law decreasing interaction pattern was added. 
The contact map with no folding layer was generated by replacing the actual Hi-C counts in 
the contact map for chr19 in ESCs with the average genome-wide counts for oci with the same 
genomic distance, and adding Gaussian noise. 

CTCF motif analysis 

We called CTCF peaks using macs2 (Zhang et al. 2008) using default parameters. We used 
the top 1000 high-significance peaks to define a CTCF position-weight matrix, resulting in a 
PWM that is indistinguishable from previous reports (Jaspar accession number MA0139.1; 
see Ref. (Mathelier et al. 2013)). We then used MEME tool (Bailey and Elkan 1994) with a 
custom background, which includes non-overlapping mappable sequences with the same 
distribution size of the top 1000 peaks, to perform de novo motif discovery. Finally, we used 
the motif identified within the top 1000 CTCF peaks called by macs2 to extract the position 
and directionality of CTCF-bound sites among all the peaks using the MAST tool (Bailey and 
Gribskov 1998). 

Boundary conservation 

In order to identify the fraction of boundaries that are conserved either between cell types or 
domain sets, we allowed a 40-kb tolerance in boundary conservation between contact 
domains and sets of domains in the hierarchy of CH12 cells; for comparison with 
compartments we allowed a tolerance of 750kb; for all the other comparisons, we allowed a 
tolerance of 100-kb.  

Cell culture 

The female mouse ES cell line F121.6 (129Sv-Cast/EiJ) was grown on mitomycin C-
inactivated MEFs in ES cell media containing 15% FBS (Gibco), 10-4M ß-mercaptoethanol 
(Sigma), and 1000U/ml of leukaemia inhibitory factor (LIF, Chemicon). Culture of the same 
NPC clone that was analyzed in wa(Giorgetti et al. 2016)s performed as previously described 
(Gendrel et al. 2014; Giorgetti et al. 2016). All cells used in this study were characterized for 
absence of mycoplasma contamination. 

RNA-seq data, analysis and transcript annotation 

After Trizol extraction, strand-specific total RNA-seq libraries from two biological replicates for 
both ESCs and NPCs were prepared with the ScriptSeq v2 kit (Illumina) and sequenced on 
an Illumina HiSeq 2000 for a total of ~30 million uniquely aligned reads per sample on average. 
Libraries were prepared in two technical replicates per biological replicate (technical replicates 
were pooled for subsequent analyses). All samples were aligned to mouse mm9 using QuasR 
(Gaidatzis et al. 2015) keeping uniquely mappable reads only. A complete list of all non-
overlapping known genes from UCSC (Carlson M and Maintainer BP. 
TxDb.Mmusculus.UCSC.mm9.knownGene: Annotation package for TxDb object(s). R 
package version 3.2.2) was used to quantify both exonic and intronic transcription. Levels 
were estimated by separately aligning the reads to exonic and intronic regions and quantifying 
RPKMs as 

                                                       RPKM=M/(N*L)*1'000*1'000'000  

Where M is the mapped reads to the genomic region, L is the length of the region (sum of all 
exons or introns for each gene) and N is the total number of mapped reads. 



We used the DESeq2 package (Love et al. 2014) to perform differential gene expression 
analysis between ESCs and NPCs. Cutoff on q-value<=0.05 and on a fold-change larger than 
3 were used to define differentially expressed genes.  

ChIP-seq analysis 

We analysed the available ChIP-seq datasets listed in Supplemental Table S1. Reads were 
aligned to mouse mm9 using (Gaidatzis et al. 2015) and only the uniquely mapped reads were 
kept for further analysis. Quantification of ChIP-seq signal was made using the csaw package 
(Lun and Smyth 2016), in particular using the function windowCounts with options dedup=T 
and minq=28. A window of 10 kb was used for quantification. If more than one replicate were 
available, all replicates were combined using the geometric mean of the mapped reads. 
Normalisation over input was performed as in (Perner et al. 2014) using a pseudo-count of 8. 
Peaks were called with macs2 (Zhang et al. 2008) using default parameters. A peak is 
assigned to a specific boundary if it belongs to the 40kb window centered on the boundary 
coordinate. 

Transcriptional coregulation 

To determine whether a domain is transcriptionally co-regulated during differentiation, a cyclic 
permutation of gene locations is performed. We defined a domain at any scale in the hierarchy 
to be co-regulated, if the number of co-regulated genes in the domain is larger than in 95% of 
the cyclic permutated genomes (empirical p<=0.05). For each insulation value, we calculated 
the number of domains (Nobs) that are up or down-regulated. In order to measure the statistical 
enrichment of Nobs, we calculated a Z-score as follows. We randomly reshuffled gene positions 
in the genome N=2000 times, and calculated the mean value (Nexp) and the standard deviation 
(σ) of the number of up- or down-domains (defined as described above) in the randomized 
genomes. The Z-score was defined as: 

Z-score = (Nobs - Nexp) / σ 

Enhancer calling 

Enhancer regions were identified taking advantage of H3K27ac, H3K4me1, H3K4me3 and 
CTCF ChIP-Seq data (Supplemental Table S1) as follows. We used H3K27ac peaks (called 
with macs2 (Zhang et al. 2008) with qvalue <= 10E-8) as landmark regions. We then expanded 
the peak regions to +/-1kb and evaluated the ratio between H3K4me1 and H3K4me3 signal 
in these regions. Since the distribution of ratios is bimodal, we could define a list of regions 
with high H3K4me1 and low H3K4me3 (Heintzman et al. 2007). This allows us to distinguish 
enhancer regions (characterized by high H3K4me1 and low H3K4me3) from promoter regions 
(characterized by low H3K4me1 and high H3K4me3). From this list of regions, we finally 
defined enhancers by discarding those regions that overlap with conserved CTCF peaks 
conserved across ESCs and NPCs (putative insulators), and those that localize within +/- 
2.5kb from the gene promoters (putative core promoters and TSS-proximal, cis-acting 
regulatory elements). 

Analysis of enhancer-promoter interactions 

For each pair of genomic loci used in the analysis, we calculated the ratio between the 
observed Hi-C counts and the genome-wide average Hi-C count (including zeroes) for loci 
that are separated by the same genomic distance. The median ratios for interactions occurring 
within a domain, or across two adjacent domains, were used for plotting the curves in Figure 
4. Similar results were found using mean values (data not shown). To avoid including under 
sampled interactions due to limited Hi-C coverage at large genomic distances, we only 
considered pairs of loci separated by less than 2Mb in ESCs and NPCs, and 1 Mb in CH12 
cells. Cutoffs were chosen to exclude genomic distances where average Hi-C counts are 
dominated by experimental noise (Supplemental Figure S4d). Genomic 20-kb (ESCs and 



NPCs) and 10-kb (CH12) bins were assigned to ‘enhancer’, ‘promoter’ or ‘CTCF’ categories if 
they contain at least one of these elements, identified as described before. If a bin shows 
multiple classifications, we assigned it to all the categories. 

Correction to account for the presence of an inactive X chromosome in NPCs 

The presence of an inactive X chromosome in the NPC sample we analyzed implies that only 
one copy of the genes on chromosome X is active (except the set of escape genes identified 
in the same NPC clone in (Giorgetti et al. 2016)). As a consequence, the expression level of 
a gene (excluding escapees) that increases by a factor 2 specifically on the active X during 
differentiation will be detected as unchanged in non-allelic RNA-seq data. To correct for this 
issue in the definition of down- and up- regulated chrX genes (except escapees), we 
introduced a modified criterion compared to autosomal genes: 

𝐹𝐶 <  −𝑙𝑜𝑔2(3) − 𝑙𝑜𝑔2(2)                            for down − regulation  

𝐹𝐶 >  𝑙𝑜𝑔2(3) − 𝑙𝑜𝑔2(2)                         for up − regulation 

where the factor -log2(2) accounts for the twofold reduction in the detected expression level 
of genes on the active X in NPCs.  

Correlation of histone marks within and across domains  

To look at correlation of histone modification we proceeded as in (Rao et al. 2014). To briefly 
summarize the method, we divided each domain into 10 bins, where the bin size was a tenth 
of the size of the domain. For each domain and its corresponding adjacent domains we then 
recorded the mean value of the chromatin mark of interest for each bin.  

This procedure yielded a matrix whose length was the number of domains, and whose width 
was 30. By calculating the correlation of the columns of this matrix, we obtain a 30x30 
correlation matrix (Supplemental Figure S1k). This correlation matrix represents how 
correlated the chromatin marks are at any two loci within and across domains. 

 

 

Source Code 

#include <R.h> 
#include <Rinternals.h> 
#include <Rmath.h> 
#define ND 1000 
#define MINSIZE 15 
#define MAXMOVE 3 
#define MINDIST 1 
 
float max(float a, float b){ 
 if(a>b) return a; 
 else return b; 
} 
 
float min(float a, float b){ 
        if(a<b) return a; 
        else return b; 
} 
//calculate total counts 
float sum(int i, int j, unsigned short **mat) 
{ 
 float x=0,h; 
 int k,l; 



 
 for (k=i;k<=j;k++) 
  for (l=i;l<=j;l++) 
   x += mat[k][l]; 
 return x; 
} 
 
float dist(int i1, int j1, int i2, int j2, unsigned short **mat) 
{ 
        float x=0,v=0,di=0,d1=0,d2=0; 
        int k,l; 
        for(k=i1;k<=j1;k++) 
                for(l=i2;l<=j2;l++) if(k!=l && abs(l-k)>=MINDIST) x+=mat[k][l]; 
        v=(j1-i1+1)*(j2-i2+1)-1; 
 
              for(k=i1;k<=j1;k++) 
  for(l=i1;l<=j1;l++)     if(k!=l && abs(l-k)>=MINDIST) d1+=mat[k][l]; 
              for(k=i2;k<=j2;k++) 
                      for(l=i2;l<=j2;l++)     if(k!=l && abs(l-k)>=MINDIST) d2+=mat[k][l]; 
              di=(x/v)/((d1+d2)/((j1-i1+1)*(j1-i1)+(j2-i2+1)*(j2-i2))); 
              return di; 
} 
 
SEXP catch(SEXP input) 
{ 

int i,j,k,id,joined,imin=99999,size=0,tot=0,appo=0; 
   //float **insulation; 
   float dt,p[ND+1],prevdist=0,newdist=0; 
 int nrow,ncol; 
 
   unsigned short **cfrom,**cto,*ncl; 
         unsigned short **mat; 
   SEXP out,attrib,prof,ncluster; 
         FILE *fp; 
 
 nrow = INTEGER(getAttrib(input, R_DimSymbol))[0]; 
 ncol = INTEGER(getAttrib(input, R_DimSymbol))[1]; 
 
        for(i=0;i<nrow;i++) 
         for(j=0;j<2;j++) { 
   if((j==0 || j==1) && REAL(input)[i+2*nrow]!=-1){ 
    if(REAL(input)[i+j*nrow]>size)  size=REAL(input)[i+j*nrow]; 
    if(REAL(input)[i+j*nrow]<imin) imin=REAL(input)[i+j*nrow]; 
   } 
         } 
  
 size++; 
 mat = (unsigned short **) calloc(size,sizeof(unsigned short *)); 
        for (i=0;i<size;i++) mat[i] = (unsigned short *) calloc(size,sizeof(unsigned short)); 
        for (i=0;i<size;i++) 
                for (j=0;j<size;j++) mat[i][j]=0; 
 for(i=0;i<nrow;i++){ 
  if(REAL(input)[i+2*nrow]!=-1)
 mat[(int)REAL(input)[i+0*nrow]][(int)REAL(input)[i+1*nrow]]=(unsigned short) REAL(input)[i+2*nrow]; 
 } 
        
 cfrom = (unsigned short **) calloc(ND+1,sizeof(unsigned short *)); 
 for (i=0;i<ND+1;i++) cfrom[i] = (unsigned short *) calloc(size,sizeof(unsigned short)); 
 cto = (unsigned short **) calloc(ND+1,sizeof(unsigned short *)); 
 for (i=0;i<ND+1;i++) cto[i] = (unsigned short *) calloc(size,sizeof(unsigned short)); 
 ncl = (unsigned short *) calloc(ND+1,sizeof(unsigned short)); 
  
 for (i=0;i<ND+1;i++) ncl[i]=0; 
 for (i=0;i<(int)(size-imin)/(MINDIST+1);i++) 
 { 
  cfrom[0][i]=i*(1+MINDIST)+imin; 
  cto[0][i]=(i+1)*(1+MINDIST)+imin-1; 



  ncl[0]++;   
 } 
 
 Rprintf("Clustering on different thresholds: \n"); 
 for (id=1;id<=ND;id++) // increasing threshold 
 { 
  dt = (float) (ND-id)/ND;   
  if(id%100==0) Rprintf("Relative Insulation: %f\n",1-dt); 
  for (i=0;i<ncl[id-1];i++) // run on clusters 
  { 
   joined=-1; 
  
   cfrom[id][ncl[id]] = cfrom[id-1][i]; 
                          cto[id][ncl[id]] = cto[id-1][i] 
   for (k=i+1;k<ncl[id-1];k++) // clusters to join previous 
   { 
    
     
    if ( dist(cfrom[id][ncl[id]],cto[id][ncl[id]],cfrom[id-1][k],cto[id-1][k],mat) >= dt ) 
    { 
     cfrom[id][ncl[id]] = cfrom[id-1][i]; 
     cto[id][ncl[id]] = cto[id-1][k]; 
 
     joined = k; 
    }  
    else break; 
   } 
 
   if (joined==-1) 
   { 
    cfrom[id][ncl[id]] = cfrom[id-1][i]; 
    cto[id][ncl[id]] = cto[id-1][i]; 
    ncl[id] ++; 
   } 
   else  
   { 
    i=joined+1; 
     
    ncl[id] ++; 
    i = joined; 
   } 
  } 
    
  //movement 
         for(i=0;i<ncl[id]-1;i++){ 
          //except last 
           if((cto[id][i]-cfrom[id][i]>(2*MAXMOVE) && cto[id][i+1]-cfrom[id][i+1]>(2*MAXMOVE)) 
&& (cto[id][i]-cfrom[id][i]>MINSIZE || cto[id][i+1]-cfrom[id][i+1]>MINSIZE)){ 
            prevdist=dist(cfrom[id][i],cto[id][i],cfrom[id][i+1],cto[id][i+1],mat); 
     for(j=1;j<MAXMOVE;j++){ 
             newdist=dist(cfrom[id][i],cto[id][i]+j,cfrom[id][i+1]+j,cto[id][i+1],mat); 
      if(newdist<prevdist){ 
       prevdist=newdist; 
       cto[id][i]=cto[id][i]+j; 
       cfrom[id][i+1]=cfrom[id][i+1]+j; 
      }  
                                         newdist=dist(cfrom[id][i],cto[id][i]-j,cfrom[id][i+1]-j,cto[id][i+1],mat); 
      
                                                if(newdist<prevdist){ 
                                                        prevdist=newdist; 
                                                        cto[id][i]=cto[id][i]-j; 
                                                        cfrom[id][i+1]=cfrom[id][i+1]-j; 
                                                } 
 
 
 
            } 



           } 
     
         } 
   
 } 
 Rprintf("\n"); 
 
 PROTECT(ncluster=allocMatrix(REALSXP,ND+1,2)); 
  
 for (i=0;i<ND+1;i++) { 
  REAL(ncluster)[i+0*(ND+1)]=(float)i/ND; 
  REAL(ncluster)[i+1*(ND+1)]=ncl[i]; 
 } 
        tot=0; 
        for (i=1;i<=ND;i++) 
                for (j=0;j<ncl[i];j++)  tot++; 
 appo=0; 
 PROTECT(out = allocMatrix(REALSXP, tot,3)); 
 
        for (i=1;i<=ND;i++) 
                for (j=0;j<ncl[i];j++){ 
                        REAL(out)[appo+tot*0] =(float)i/ND; 
                        REAL(out)[appo+tot*1] =cfrom[i][j]; 
                        REAL(out)[appo+tot*2] =cto[i][j]; 
                        appo++; 
                } 
  
 PROTECT(prof=allocVector(VECSXP,2)); 
 PROTECT(attrib=allocVector(STRSXP,2)); 
 SET_STRING_ELT(attrib,0,mkChar("clusters")); 
 SET_STRING_ELT(attrib,1,mkChar("ncluster")); 
  
 SET_VECTOR_ELT(prof,0,out); 
 SET_VECTOR_ELT(prof,1,ncluster); 
 setAttrib(prof, R_NamesSymbol,attrib); 
 
 UNPROTECT(4); 
 return prof; 
  
} 
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