Zhan et al., ‘Reciprocal insulation analysis of Hi-C data show that TADs
represent a functionally but not structurally privileged scale in the
hierarchical folding of chromosomes’

Supplemental Methods
Hi-C datasets

ESCs and NPCs Hi-C datasets were obtained in Ref. (Giorgetti et al. 2016). Reads from 129Sv
and Cast/EiJ alleles were combined to increase read depth, and data were binned at 20 kb
resolution. CH12 data are from Rao et al. (Rao et al. 2014), binned at 10 kb. Mouse fetal liver
Hi-C data are from Nagano et al. (Nagano et al. 2015), binned at 25 kb. ESC, NPC and liver
Hi-C were normalized with iterative correction (Imakaev et al. 2012). CH12 were normalized
with the VC-SQRT method (Rao et al. 2014).

Domain-calling algorithm

The CaTCH algorithm takes as an input a normalized Hi-C matrix, binned at an arbitrary
resolution r. The genome is first partitioned into seeds of domains of size 2*r, which are then
progressively merged into large domains. Merging of two consecutive domains A and B is
determined by the reciprocal insulation (RI) measure:

RI(A,B)=[ Pin(A)+Pin(B)-Pout(A,B) ]/ [Pin(A)+Pin(B)]*100 (1)

Where Pi, and P are the average Hi-C counts within domains A and B, and across their
boundary respectively (see Figure 1a in the main text).

A threshold on RI is then defined, and any two consecutive domains whose RI is below the
threshold are merged in a single domain. The threshold is progressively increased from 0%
to 100% in steps of 0.1%, resulting in increasingly larger domains. The fact that only
consecutive domains can be merged ensures that the overall organization of the domains is
tree-like, excluding the possibility of interactions between distant domains. This could be
observed otherwise by imposing a different distance based on the Hi-C map, which is not
strictly ultrametric. In order to lose dependency on the initial partitioning of the genome in the
final determination of domain boundaries, we allowed small shifts in the boundaries of
domains (2 genomic bins) at each step. Note that the domains identified by CaTCH do not
depend on bin size, provided the domain is larger than the genomic bin.

Since the increase of the threshold is discrete, the above procedure undergoes the risk of
being dependent on the order of mergings, which would result in a non-unique tree. To
overcome this problem, we set a specific rule on the matching order. Namely, if a domain can
be merged with either the preceding or the following along, the pair that has the lowest Rl is
merged first. This is in fact equivalent to merging domains according to their order along the
chromosomes, and increasing smoothly (rather than in discrete steps) the threshold on the
reciprocal insulation value. Indeed, smoothly increasing the threshold corresponds to cutting
the hierarchical tree densely enough that one is able to always merge the domains with the
lowest RI.

Computationally generated contact maps with preferential folding levels

To generate contact maps characterized by one or two preferential folding levels, we
generated a contact map for each individual level (where contact probabilities decrease as a
power law with increasing genomic distance), to which a weak background Gaussian noise
was added. For example, to generate a pseudo-genome with two folding levels (see right
panel in main Figure 1f), we first generated a uniform (power-law decaying) contact map with

Gaussian noise. Then, we partitioned the matrix into a set of small domains d1={d1i} (smallest



squares along the diagonal in Figure 1f). The first folding level was generated within this set
of domains by adding a new power-law decreasing interaction pattern. We then merged pairs
of adjacent domains (e.g. d11 with d12; d13 with d14 and so on) leading to a second set of
domains d2={d2} to which the same power-law decreasing interaction pattern was added.
The contact map with no folding layer was generated by replacing the actual Hi-C counts in
the contact map for chrl9 in ESCs with the average genome-wide counts for oci with the same
genomic distance, and adding Gaussian noise.

CTCF motif analysis

We called CTCF peaks using macs2 (Zhang et al. 2008) using default parameters. We used
the top 1000 high-significance peaks to define a CTCF position-weight matrix, resulting in a
PWM that is indistinguishable from previous reports (Jaspar accession number MA0139.1;
see Ref. (Mathelier et al. 2013)). We then used MEME tool (Bailey and Elkan 1994) with a
custom background, which includes non-overlapping mappable sequences with the same
distribution size of the top 1000 peaks, to perform de novo motif discovery. Finally, we used
the motif identified within the top 1000 CTCF peaks called by macs2 to extract the position
and directionality of CTCF-bound sites among all the peaks using the MAST tool (Bailey and
Gribskov 1998).

Boundary conservation

In order to identify the fraction of boundaries that are conserved either between cell types or
domain sets, we allowed a 40-kb tolerance in boundary conservation between contact
domains and sets of domains in the hierarchy of CH12 cells; for comparison with
compartments we allowed a tolerance of 750kb; for all the other comparisons, we allowed a
tolerance of 100-kb.

Cell culture

The female mouse ES cell line F121.6 (129Sv-Cast/EiJ) was grown on mitomycin C-
inactivated MEFs in ES cell media containing 15% FBS (Gibco), 10-M 3-mercaptoethanol
(Sigma), and 1000U/ml of leukaemia inhibitory factor (LIF, Chemicon). Culture of the same
NPC clone that was analyzed in wa(Giorgetti et al. 2016)s performed as previously described
(Gendrel et al. 2014; Giorgetti et al. 2016). All cells used in this study were characterized for
absence of mycoplasma contamination.

RNA-seq data, analysis and transcript annotation

After Trizol extraction, strand-specific total RNA-seq libraries from two biological replicates for
both ESCs and NPCs were prepared with the ScriptSeq v2 kit (lllumina) and sequenced on
an lllumina HiSeq 2000 for a total of ~30 million uniquely aligned reads per sample on average.
Libraries were prepared in two technical replicates per biological replicate (technical replicates
were pooled for subsequent analyses). All samples were aligned to mouse mm9 using QuasR
(Gaidatzis et al. 2015) keeping uniquely mappable reads only. A complete list of all non-
overlapping known genes from UCSC (Carlson M and Maintainer BP.
TxDb.Mmusculus.UCSC.mm9.knownGene: Annotation package for TxDb object(s). R
package version 3.2.2) was used to quantify both exonic and intronic transcription. Levels
were estimated by separately aligning the reads to exonic and intronic regions and quantifying
RPKMs as

RPKM=M/(N*L)*1'000*1'000'000

Where M is the mapped reads to the genomic region, L is the length of the region (sum of all
exons or introns for each gene) and N is the total number of mapped reads.



We used the DESeq2 package (Love et al. 2014) to perform differential gene expression
analysis between ESCs and NPCs. Cutoff on g-value<=0.05 and on a fold-change larger than
3 were used to define differentially expressed genes.

ChlP-seq analysis

We analysed the available ChIP-seq datasets listed in Supplemental Table S1. Reads were
aligned to mouse mm9 using (Gaidatzis et al. 2015) and only the uniquely mapped reads were
kept for further analysis. Quantification of ChlP-seq signal was made using the csaw package
(Lun and Smyth 2016), in particular using the function windowCounts with options dedup=T
and ming=28. A window of 10 kb was used for quantification. If more than one replicate were
available, all replicates were combined using the geometric mean of the mapped reads.
Normalisation over input was performed as in (Perner et al. 2014) using a pseudo-count of 8.
Peaks were called with macs2 (Zhang et al. 2008) using default parameters. A peak is
assigned to a specific boundary if it belongs to the 40kb window centered on the boundary
coordinate.

Transcriptional coregulation

To determine whether a domain is transcriptionally co-regulated during differentiation, a cyclic
permutation of gene locations is performed. We defined a domain at any scale in the hierarchy
to be co-regulated, if the number of co-regulated genes in the domain is larger than in 95% of
the cyclic permutated genomes (empirical p<=0.05). For each insulation value, we calculated
the number of domains (Nobs) that are up or down-regulated. In order to measure the statistical
enrichment of Nobs, We calculated a Z-score as follows. We randomly reshuffled gene positions
in the genome N=2000 times, and calculated the mean value (Nex,) and the standard deviation
(o) of the number of up- or down-domains (defined as described above) in the randomized
genomes. The Z-score was defined as:

Z-SCOI’e = (Nobs - Nexp) / (o)

Enhancer calling

Enhancer regions were identified taking advantage of H3K27ac, H3K4mel, H3K4me3 and
CTCF ChIP-Seq data (Supplemental Table S1) as follows. We used H3K27ac peaks (called
with macs2 (Zhang et al. 2008) with qvalue <= 10E-8) as landmark regions. We then expanded
the peak regions to +/-1kb and evaluated the ratio between H3K4mel and H3K4me3 signal
in these regions. Since the distribution of ratios is bimodal, we could define a list of regions
with high H3K4mel and low H3K4me3 (Heintzman et al. 2007). This allows us to distinguish
enhancer regions (characterized by high H3K4mel and low H3K4me3) from promoter regions
(characterized by low H3K4mel and high H3K4me3). From this list of regions, we finally
defined enhancers by discarding those regions that overlap with conserved CTCF peaks
conserved across ESCs and NPCs (putative insulators), and those that localize within +/-
2.5kb from the gene promoters (putative core promoters and TSS-proximal, cis-acting
regulatory elements).

Analysis of enhancer-promoter interactions

For each pair of genomic loci used in the analysis, we calculated the ratio between the
observed Hi-C counts and the genome-wide average Hi-C count (including zeroes) for loci
that are separated by the same genomic distance. The median ratios for interactions occurring
within a domain, or across two adjacent domains, were used for plotting the curves in Figure
4. Similar results were found using mean values (data not shown). To avoid including under
sampled interactions due to limited Hi-C coverage at large genomic distances, we only
considered pairs of loci separated by less than 2Mb in ESCs and NPCs, and 1 Mb in CH12
cells. Cutoffs were chosen to exclude genomic distances where average Hi-C counts are
dominated by experimental noise (Supplemental Figure S4d). Genomic 20-kb (ESCs and



NPCs) and 10-kb (CH12) bins were assigned to ‘enhancer’, ‘promoter’ or ‘CTCF’ categories if
they contain at least one of these elements, identified as described before. If a bin shows
multiple classifications, we assigned it to all the categories.

Correction to account for the presence of an inactive X chromosome in NPCs

The presence of an inactive X chromosome in the NPC sample we analyzed implies that only
one copy of the genes on chromosome X is active (except the set of escape genes identified
in the same NPC clone in (Giorgetti et al. 2016)). As a consequence, the expression level of
a gene (excluding escapees) that increases by a factor 2 specifically on the active X during
differentiation will be detected as unchanged in non-allelic RNA-seq data. To correct for this
issue in the definition of down- and up- regulated chrX genes (except escapees), we
introduced a modified criterion compared to autosomal genes:

FC < —log2(3) —log2(2) for down — regulation
FC > log2(3) —log2(2) for up — regulation

where the factor -log2(2) accounts for the twofold reduction in the detected expression level
of genes on the active X in NPCs.

Correlation of histone marks within and across domains

To look at correlation of histone modification we proceeded as in (Rao et al. 2014). To briefly
summarize the method, we divided each domain into 10 bins, where the bin size was a tenth
of the size of the domain. For each domain and its corresponding adjacent domains we then
recorded the mean value of the chromatin mark of interest for each bin.

This procedure yielded a matrix whose length was the number of domains, and whose width
was 30. By calculating the correlation of the columns of this matrix, we obtain a 30x30
correlation matrix (Supplemental Figure S1k). This correlation matrix represents how
correlated the chromatin marks are at any two loci within and across domains.

Source Code

#include <R.h>

#include <Rinternals.h>
#include <Rmath.h>

#define ND 1000
#define MINSIZE 15
#define MAXMOVE 3
#define MINDIST 1

float max(float a, float b){
if(a>b) return a;
else return b;

}

float min(float a, float b){
if(a<b) return a;
else return b;

/Icalculate total counts
float sum(int i, int j, unsigned short **mat)
{

float x=0,h;

int k,l;



}

for (k=i;k<=j;k++)
for (I=i;l<=j;1++)
x += mat[K][l];
return x;

float dist(int i1, int j1, int i2, int j2, unsigned short *mat)

{

}

float x=0,v=0,di=0,d1=0,d2=0;
int k,l;
for(k=i1;k<=j1;k++)
for(I=i2;1<=j2;1++) if(k!=l && abs(l-k)>=MINDIST) x+=mat[K][l];
v=(j1-i1+1)*(j2-i2+1)-1;

for(k=il;k<=j1;k++)

for(I=il;l<=j1;1++)  if(k!=I && abs(l-k)>=MINDIST) d1+=mat[K][l];
for(k=i2;k<=j2;k++)

for(l=i2;l<=j2;1++)  if(k!=l && abs(l-k)>=MINDIST) d2+=mat[k][l];
di=(x/v)/((d1+d2)/((j1-i1+1)*(j1-i1)+(j2-i2+1)*(j2-i2)));
return di;

SEXP catch(SEXP input)

{

int i,j,k,id,joined,imin=99999,size=0,tot=0,appo=0;
[lfloat **insulation;

float dt,p[ND+1],prevdist=0,newdist=0;

int nrow,ncol;

unsigned short **cfrom,**cto,*ncl;
unsigned short **mat;

SEXP out,attrib,prof,ncluster;
FILE *fp;

nrow = INTEGER(getAttrib(input, R_DimSymbol))[0];
ncol = INTEGER(getAttrib(input, R_DimSymbol))[1];

for(i=0;i<nrow;i++)
for(j=0jj<2jj++) {
if((j==0 || j==1) && REAL(input)[i+2*nrow]!=-1){
if(REAL(input)[i+j*nrow]>size) size=REAL(input)[i+j*nrow];
if(REAL(input)[i+j*nrow]<imin) imin=REAL (input)[i+j*nrow];

}

size++;
mat = (unsigned short **) calloc(size,sizeof(unsigned short *));
for (i=0;i<size;i++) mat[i] = (unsigned short *) calloc(size,sizeof(unsigned short));
for (i=0;i<size;i++)
for (j=0;j<size;j++) mat[i][j]=0;
for(i=0;i<nrow;i++){
if(REAL(input)[i+2*nrow]!=-1)
mat[(int) REAL (input)[i+0*nrow]][(int)REAL (input)[i+1*nrow]]=(unsigned short) REAL(input)[i+2*nrow];
}

cfrom = (unsigned short **) calloc(ND+1,sizeof(unsigned short *));

for (i=0;i<ND+1;i++) cfrom[i] = (unsigned short *) calloc(size,sizeof(unsigned short));
cto = (unsigned short **) calloc(ND+1,sizeof(unsigned short *));

for (i=0;i<ND+1;i++) cto[i] = (unsigned short *) calloc(size,sizeof(unsigned short));
ncl = (unsigned short *) calloc(ND+1,sizeof(unsigned short));

for (i=0;i<ND+1;i++) ncl[i]=0;
for (i=0;i<(int)(size-imin)/(MINDIST+1);i++)
{

cfrom[0][i]=i*(1+MINDIST)+imin;
cto[O][i]=(i+1)*(1+MINDIST)+imin-1;



ncl[0]++;

Rprintf("Clustering on different thresholds: \n");

for (id=1;id<=ND;id++) Il increasing threshold

{
dt = (float) (ND-id)/ND;
if(id%100==0) Rprintf("Relative Insulation: %f\n",1-dt);
for (i=0;i<ncl[id-1];i++) /' run on clusters

joined=-1,;
cfrom(id][ncl[id]] = cfrom[id-1][i];

cto[id][ncl[id]] = cto[id-1][i]
for (k=i+1;k<ncl[id-1];k++) // clusters to join previous

{
if ( dist(cfrom[id][ncl[id]],cto[id][ncl[id]],cfrom[id-1][k],cto[id-1][k],mat) >= dt )
{
cfrom(id][ncl[id]] = cfrom[id-1][i];
cto[id][ncl[id]] = cto[id-1][K];
joined = k;
else break;
}
if (joined==-1)
{
cfrom[id][ncl[id]] = cfrom[id-1][i];
cto[id][ncl[id]] = cto[id-1][i];
ncl[id] ++;
}
else
{
i=joined+1,;
ncl[id] ++;
i = joined;
}
}
//Imovement

for(i=0;i<ncl[id]-1;i++){
llexcept last
if((cto[id][i]-cfrom[id][i]>(2*MAXMOVE) && cto[id][i+1]-cfrom[id][i+1]>(2*MAXMOVE))
&& (cto[id][i]-cfrom[id][i]>MINSIZE || cto[id][i+1]-cfrom[id][i+1]>MINSIZE)){
prevdist=dist(cfrom[id][i],cto[id][i],cfrom[id][i+1],cto[id][i+1], mat);
for(j=1;j<MAXMOVE;j++){
newdist=dist(cfrom[id][i],cto[id][i]+j,cfrom[id][i+1]+],cto[id][i+1],mat);
if(newdist<prevdist){

prevdist=newdist;
cto[id][i]=cto[id][i]+j;
cfrom(id][i+1]=cfrom[id][i+1]+j;

}
newdist=dist(cfrom[id][i],cto[id][i]-j,cfrom[id][i+1]-j,cto[id][i+1], mat);

if(newdist<prevdist){
prevdist=newdist;
cto[id][i]=cto[id][i]-j;
cfrom[id][i+1]=cfrom[id][i+1]-j;



}
Rprintf("\n");
PROTECT(ncluster=allocMatrix(REALSXP,ND+1,2));

for (i=0;i<ND+1;i++) {
REAL(ncluster)[i+0*(ND+1)]=(float)i/ND;
REAL(ncluster)[i+1*(ND+1)]=ncl[i];
}
tot=0;
for (i=1;i<=ND;i++)
for (j=0;j<ncl[i];j++) tot++;
appo=0;
PROTECT(out = allocMatrix(REALSXP, tot,3));

for (i=1;i<=ND;i++)
for (j=0;j<ncl[i];j++){
REAL (out)[appo+tot*0] =(float)i/ND;
REAL (out)[appo+tot*1] =cfrom[i][j];
REAL (out)[appo+tot*2] =ctol[i][j];
appot+;

}

PROTECT (prof=allocVector(VECSXP,2));
PROTECT (attrib=allocVector(STRSXP,2));
SET_STRING_ELT(attrib,0,mkChar("clusters"));
SET_STRING_ELT(attrib,1,mkChar("ncluster"));

SET_VECTOR_ELT(prof,0,out);
SET_VECTOR_ELT(prof,1,ncluster);
setAttrib(prof, R_NamesSymbol,attrib);

UNPROTECT(4);
return prof;

}
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