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Distribution of PACs in different genic and intergenic regions 

Results showed that more than half of the PACs were located within the 3’UTR 
across tissues, while remaining PACs were defined in intergenic regions, 
introns, or promoters, as well as a small amount in 5’UTR and coding 
sequences (CDS). For each tissue, however, PAC locations within 3’UTR 
differed slightly from their intergenic distribution. For example, 50%~57% of 
PACs located within the 3’UTR across flower-related tissues, with the least 
percentage of PACs in pollen. On the other hand, 59%~68% of PACs located 
within the 3’UTR across leaf-related tissues, with the highest percentage in 
young shoot. From 63%~66% of PACs located within the 3’UTR across 
seed-related tissues, but their distribution reflected no difference. On the 
contrary, 28% of PACs located within intergenic regions across pollen were the 
most abundant among all tissues, but, as noted above, pollen was also the 
tissue with the least number of PACs located within the 3’UTR. A total of 17% 
of PACs located within the intergenic regions across seedling shoots, and it 
was the least percentage among these tissues. From 9~13% of PACs located 
within the intron across tissues, and the numbers of distribution in intron 
across tissues were similar. In addition, PACs in the 5’UTR were almost the 
same in percentile across tissues. However, PAC counts inCDS were 
significantly lower in certain tissues of young shoots, 20-day-old-leaf, mature 
pollen and pistil; PAC counts in CDS were very similar in seed-related tissues, 
60-day-leaf, 60-day-stem, root-related tissues, husk and anther (Figure 1). 

PAT results are quantitative as validated byRNA-seq 

The validityof the poly(A) sites tallied herein was cross-referenced with 
previously published independent datasets generated using classical ESTs, as 
detailed in Shen et al (2008). To this end, poly(A) site data were downloaded 
and remapped to the annotation of MSU 7 (Kawahara et al. 2013), and 57,846 
poly(A) sites were obtained. Supplemental Fig. 1 shows that 40,481 (70%) 
poly(A) sites of the EST data overlapped identical sites in the PAT-seq data, 
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indicating a significant match of these two datasets. The remaining unmatched 
poly(A) sites could be explained by the strict filtration of raw data in this study, 
different materials used, or the fact that some poly(A) sites were not used in 
terms of spatiotemporal patterns.  

To examine whether PAT-seq results reflected relative gene expression 
level, the corresponding rice RNA-seq data (20-day-old-leaf, anther, pistil, dry 
seed, embryo and endosperm) were obtained from NCBI Short Reads Archive 
(accession number: SRP008821)(Davidson et al. 2012), and the Pearson 
correlation of gene expression level from PATs and FPKM (expected number 
of fragments per kilobases of transcript sequence per millions of base pairs 
sequenced) across tissues were calculated. Pearson correlation across 
tissues was 0.59-0.83 between log2(PAT) and log2(FPKM). These results were 
very similar to those obtained in previous studies (Ulitsky et al. 2012; 
Lianoglou et al. 2013), suggesting the reasonable calculation of relative gene 
expression levels by PAT-seq (Supplemental Fig. 2), a finding similar to that of 
Wu et al. (2011).  

KEGG pathway analysis of pollen specific isoforms 

Pollen-specific isoforms function in some important metabolic pathways. 
For example, the metabolism of starch and sucrose provides enough nutrients 
and energy for pollen tube growth. Carotenoid biosynthesis and N-glycan 
biosynthesis provide reserves for sporopollenin synthesis, while flavonoid 
biosynthesis supplies raw materials for anthocyanin synthesis, offering special 
colors and defense compounds for pollen. As an important material in pollen 
and an indicator of fertility, proline metabolism was also active. Other basic 
pathways were over represented, such as basal transcription factors, carbon 
metabolism, amino sugar and nucleotide sugar metabolism. Therefore, 
pollen-specific APA isoforms might give pollen special traits and provide a 
potential regulatory role for pollen common functions (Supplemental Fig. 4). 

Specific PACs across 14 samples 

As another way to interrogate specificity, the degree of PAC distribution 
among the different samples was investigated, and only about 40% of PACs 
located in the 3’UTR were expressed in all 14 tissues tested herein 
(Supplemental Fig. 5).  This also means that most 3’UTR PACs (60%) 
showed some level of sample specificity. In contrast, only a few PACs located 
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in other genomic regions were expressed in all tissues.  For example, only 
about 16% of intron-associated PACs and 10% CDS-associated PACs were 
expressed across all 14 tissues. Among them, 62% of CDS-associated PACs, 
74% in intron and 83% in 5’UTR, were differentially expressed. This again 
demonstrates significant specificity of PACs among different tissues, 
suggesting potential roles of APA in rice.  

Methods 

Plant Materials 

Rice (Oryza sativa L. subsp japonica cultivar Nipponbare) was grown in 
the experimental field of the Rice Research Institute, Fuzhou, Fujian Academy 
of Agricultural Sciences. Germinating seeds (~24 hr imbibed), leaves, and 
roots from the seedling stage (~5 days after imbibition) were collected after 
germinating in the laboratory (24°C, 16-h/8-h light/dark). Leaves from tillering 
stage (~20 days after transplant) were collected. Leaf, root, stem, husk, pistil, 
and anther from booting stage (~45 days after transplant) were collected from 
the field. Mature pollen was shucked off on a piece of paper and then collected 
using a blade. After collecting, all the tissues were immediately fixed in liquid 
nitrogen and stored at -80 °C until RNA isolation. Each sample had 3 
replicates. 

PAT-seq library construction and sequencing 

Total RNAs were first isolated by TRIzol reagent and used after DNase I 
digestion (Qiagen). The PAT-seq libraries were constructed as described(Liu 
et al. 2014).  Briefly, 2 µg of DNA-free total RNA were fragmented into 
200-400 nt by heating (94°C for 2min) with 5x first strand buffer (SuperScript® 
III Reverse Transcriptase, Invitrogen). Fragments with poly(A) attached were 
enriched using oligo(dT)25 beads and treated with T4 polynucleotide kinase, 
both from New England Biolabs. Fragments were then ligated to the DNA/RNA 
hybrid adapter 
(5’-CGGTCTCGGCATTCCTGCTGAArCrCrGrCrUrCrUrUrCrCrGrArUrCrU-3’), 
using T4 RNA ligase I (New England Biolabs). Reverse-transcription was 
performed using barcoded oligo(dT) primers, purified by AMPURE® XP beads 
(Beckman) and eluted in DEPC-treated water. First single-strand product was 
amplified by PCR. To reduce bias, 18 cycles of PCR were performed with 
Phire II (Thermo Fisher Scientific) to generate the final PAT-seq libraries, 



	
   4	
  

which were tested by Agilent2100 before Illumina HiSeq2000 sequencing was 
performed at Novogen (Beijing, China).   

Poly(A) site analysis  

Raw reads were first filtered using FASTX-Toolkit (Version 0.0.14, parameters 
“-q 10 -p 50 -v -Q 33”), and then Ts at the beginning of the reads were trimmed 
by a Perl script. After that, clean reads were mapped to Nipponbare rice 
genome downloaded from MSU 7 (MSU Rice Genome Annotation Project 
Release 7) using Bowtie 2 (Version 2.1.0, parameters“-L 25 -N 0 -i S,1,1.15 
--no-unal”), and only uniquely aligned reads were used in the following 
analysis.  The resulting datasets were then processed using a series of 
custom Perl scripts. To reduce the extent of false poly(A) sites, internal priming 
was removed in the genome sequence based on a previous protocol (Loke et 
al. 2005) . Because cleavage sites are heterogeneous in plants, adjacent 
poly(A) sites in the range of 24 nt were pooled together and defined as a 
poly(A) cluster (PAC)(Vinciguerra and Stutz 2004), and the one with most read 
support was chosen to represent the poly(A) site of the cluster.  To facilitate 
the assignments of PACs to annotated genes, genes with annotated 3’ UTRs 
were extended for 300 nt, and genes without annotated 3’ UTRs were 
extended by 648 nt, the average length of the annotated 3’ UTRs 348 nt plus 
the extended length 300 nt. Each PAC was then annotated with information 
about its genomic locus, such as gene name and location (intron, CDS, 3'UTR, 
5'UTR, and intergenic region). To remove possible artifacts with very low 
number of PATs and filter robustly expressed PACs, we required a PAC to 
have at least one of the following criteria: (1) total number of supported PATs ≥ 
30; (2) PACs in the intergenic region with ≥1 PAT in ≥ 15 librariesor ≥3 PATs in 
≥ 6 libraries; (3) PACs located in a genomic region with ≥ 10 PATs and ≥3 
PATs in at least one library, accounting for ≥ 15% of PATs in its gene or ≥ 3% 
of PATs in ≥ 15 libraries. The expression levels of each PAC across different 
experiments were further normalized by applying a normalization factor 
derived from DESeq (Version 1.16.0, Anders and Huber 2010). To assess the 
variability of PAC expression model across samples, we performed PCA and 
hierarchical clustering using PAT. PCA was performed using the prcomp 
command with default parameters in the R software package. Hierarchical 
clustering was conducted based on Euclidean distances. To further explore 
the possibility of tissue-specific PACs among all samples, we used two 
measures: a PAC only expressed in one tissue, but not in any other tissues 
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tested herein, or a PAC in one tissue having significantly higher expression 
level (32-fold) than another tissue. 

Detection of novel motifs 

Regions around the polyadenylation sites (±100nt) were predicted for 
sequence motifs using MEME (Bailey et al. 2009). 

Correlation between PAT and RNA-seq 

For better demonstration of the correlation between PATs and RNA-seq, 
we obtained rice RNA-seq data from the Short Read Archive in NCBI 
(accession number SRP00882)(E et al. 2014), including leaf_20_days (two 
replicates), anther, pistil, dry seed (5days and 10days), embryo and 
endosperm (two replicates). Then FPKM (expected number of fragments per 
kilobases of transcript sequence per millions of base pairs sequenced) gene 
expression level was obtained using TopHat (Version 2.0.14) software with 
these parameters: tophat -g 1 -a 10  -i 30 -I 500000 --segment-length 20 
--segment-mismatches 2 cufflinks -I 500000 --min-intron-length 30. To verify 
that PAT-seq was quantitative at the level of mRNA abundance, Pearson’s 
correlation coefficient was calculated for the comparison of mRNA abundance 
levels of samples obtained by PAT-seq (log2 PAT) and RNA-seq (log2 FPKM).  

3’ UTR length analysis  

A strategy similar to that of aprevious studywas adopted to calculate the 
PAT-weighted 3’ UTR length of each gene (Ulitsky et al. 2012). The 3’ UTR 
length of each PAC is the distance from annotated stop codon to the location 
of this PAC. For each gene, the 3’ UTR length was defined as the average 3’ 
UTR length of all PACs weighted by the number of supported PATs. To 
compare 3’ UTR length among different groups of genes, we divided genes 
into four classes: single-DE (differentially expressed genes with single PAC), 
single-NDE (genes with single PAC and not differentially expressed), APA-DE 
(genes with at least one differentially expressed PAC) and APA-NDE (genes 
with multiple PACs, but no differentially expressed PAC). Wilcoxon test was 
performed to test the statistical difference of 3’ UTR length between two 
groups. We then applied the DESeq2 package (Version 1.4.5) (Love et al. 
2014) package to identify DE genes, and genes with adjusted p-value less 
than 0.01 and ︱log2(Fold Change)︱>2 were considered as DE genes. We 
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adopted DEXSeq package (Version 1.10.8) (Anders et al. 2012) package to 
identify differential PAC usage between conditions, and PACs with adjusted 
p-value less than 0.1 were considered as differentially expressed. Genes were 
also grouped on the basis of their expression levels. To determine highly 
expressed genes, we first calculated the Z score of log2 transformed 
expression level of each gene denoting its relative gene expression levels. 
Genes with Z score ≥ 2 were defined as highly expressed genes. 

Identification of APA site switching genes 

To discover APA site switching genes with significant 3’ UTR shortening 
or lengthening, genes with at least two PACs in 3’ UTRs were considered. We 
applied a strategy similar to that of a previous study (Fu et al. 2011) to identify 
APA site switching genes by detecting a trend association for two-way tables 
with ordered levels. The chi-squared test for trend in proportions was 
performed using R function prop.trend.test to obtain the p-value. P-values 
were adjusted using the Benjamin method with R function p.adjust, and genes 
with adjusted p-values smaller than a given threshold were the genes with 
significant 3’ UTR shortening or lengthening. Pearson correlation was also 
calculated for each gene falling between -1 and 1. As correlation increases in 
absolute value, 3’ UTR shortening or lengthening proportionately increases. In 
addition, we adopted a method (Mangone et al. 2010; Wu et al. 2011) to detect 
APA site switching genes involving PACs in non-3’ UTR regions (introns or 
CDS). First, for genes withmore than two PACs, the top two PACs supported 
by the greatest number of PATs were used and denoted as PA1 and PA2. 
Genes with both PA1 and PA2 located in 3’ UTRs were discarded. Then genes 
passing through the following filtering criteria were considered as APA 
switching instances: (1) distance between PA1 and PA2 of at least 50 nt; (2) 
total read count >10 for a gene; (3) PA1:PA2 read count ratio more than 
1.2-fold in one tissue and PA2:PA1 also larger than 1.2-fold in another tissue; 
(4) difference in read counts between PA1 and PA2 >5 within each tissue in 
which switching occurred. 
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