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Supplemental Results 

 

RNH1 deletion leads to petite phenotype 

It was previously reported that deletion of RNH1 leads to petite phenotype, suggesting RNase H1 

is important for maintenance of mitochondria DNA (Bernardi 1979; El Hage et al. 2014).  To 

examine frequency of petite colonies, ~500 cells from wild type and mutant strain were plated 

onto YPD plates, incubated at 25°C for 3 days and colonies were quantified for petite phenotype.  

rnh1- mutant showed an increase in petite colonies (18%) compared to wild type control (5%), 

consistent with previous report (El Hage et al. 2014). 

RDDs are not sequencing or mapping errors 

One of the motivations to study RDD in yeast is to take advantage of its smaller and less 

complex genome (fewer repetitive sequences; <5% genes contain introns) compared to human.  

However, even in yeast, analysis of the sequencing results is not trivial.  Each read from deep 

sequencing is only about 100 nucleotides in length.  To align the 40 million DNA-seq reads and 

10 million RNA-seq reads to the 12 Mb genome is complex.  Many alignment algorithms have 

been developed to analyze deep sequencing data.  They have different strengths and weaknesses.  

For our initial analysis, we used GSNAP (Wu and Nacu, 2010).  To determine how different 

alignment programs may affect our RDD counts, we repeated the analyses using TopHat2 and 

STAR (Djebali et al. 2012; Kim et al. 2013).  We also tested different thresholds in GSNAP by 

varying the number of mismatches allowed in the alignment.  The comparison of the different 

alignment programs showed that GSNAP is the most conservative in that it yielded the fewest 

number of RDDs (759 for S288C), while TopHat2 identified the largest number of RDDs (3,120 

for S288C) (Supplemental Table S4).  It is important to note that there are substantial overlaps 

between the alignments; hundreds of the RDDs are identified by multiple programs.  In 
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Supplemental Figure S4, we showed an example of RDD in IMG1 identified by GSNAP, STAR 

and TopHat2.  These results show that most of the RDDs can be identified regardless of the 

alignment programs used in the sequence analysis.   

 In alignment of sequence reads, those that span splice junctions are more prone to 

misalignment, especially when those junctions fall in the ends of the sequence reads.  The 

alignment programs have to decide whether to place the short overhangs in the RNA-seq reads to 

the intronic regions or to the next exons.  This can lead to misalignment and false identification 

of differences in DNA and RNA sequences.  In budding yeast, only 5% of genes contain introns, 

and the majority of these genes contain only one intron (less than 20 genes have two or more 

introns).  Of the 759 RDDs in the S288C strain, only 7 RDDs mapped to introns.  In our initial 

analysis, GSNAP is set as “splice-aware” mode where reads can be mapped to annotated and 

novel splice junctions.  Some groups have suggested that the “splice-aware” method could 

generate misalignment.  Given the paucity of introns in S. cerevisiae and the small number of 

RDDs found in intron-containing genes, we expect that splicing has little impact on our 

alignments and RDD calls.  To confirm this, we re-aligned our RNA-seq reads using Bowtie2 

local alignment mode and turned off splice-aware option of GSNAP; both of these will not allow 

alignment across exon/intron junctions.  We compared the results from the GSNAP analyses 

with splice-aware option on and off, and from Bowtie2.  The three methods showed highly 

similar results; most of the RDDs were identified by all three methods (Supplemental Fig. S5A); 

only 24 RDDs in S288C were identified by the splice-aware GSNAP alone (no overlap with the 

7 intronic RDDs described above).  This shows that splice junctions do not contribute to false 

discovery of RDDs in this project.  
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 We believe RDD is unlikely due to sequencing errors.  The error rate in deep sequencing 

is rather low (Illumina reports it to be <0.1%) and we required RDDs to be supported by at least 

two independent reads, therefore the likelihood of two independent errors occurring at same 

position is 1 per million.  Regardless, to be sure that RDDs are not due to sequencing errors, we 

assessed our results in three different ways.  First, we calculated error rates in PhiX libraries 

added as internal controls in our sequencing experiments.  The PhiX sequence is known, which 

allowed us to calculate the error rate and we found it to be <0.1%, as one should expect from 

Illumina sequencing.  We also compared the PhiX sequences we generated to its known DNA 

sequence using the same analysis parameters for RDD identification, and did not detect any 

discrepancies between the two (Supplemental Table S5).  Second, we confirmed that the RDD 

frequencies in our samples are higher than predicted from simulated RNA-seq data generated 

using the yeast genome sequence and the Flux simulator (Griebel et al. 2012).  The distribution 

of RDD types in the simulated data was different from what we observed in yeast samples 

(Supplemental Fig. S5B).  Lastly, we estimated error rate using a probability-based test 

developed by Chepelev for identifying RNA editing events (Chepelev 2012), and found that our 

RDD sites are unlikely to result from sequencing (P<0.05) or mapping errors (P<0.001) 

(Supplemental Table S6).   

 Although we applied Phred score ≥20 as the cutoff in initial analysis, vast majority of 

sequenced bases have higher Phred scores.  When we increase the threshold for Phred score, 

very similar numbers of RDDs were identified.  Notably even more RDDs were identified when 

Phred score ≥35 was applied.  This is due to a decrease of total number of RNA-seq reads; 

manual inspection confirmed that the reads that dropped out were those with lower phred scores 

at non-RDD bases, consequently there is an increase of RDD levels, and more RDDs (more that 
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pass the threshold of ≥5% level) (Supplemental Table S7).   To assess whether distribution of 

RDDs within reads will bias our conclusion, we removed RDDs if they reside within 5 nt or 10 

nt from the ends of reads.  We still found all 12 types of RDDs at each threshold (Supplemental 

Fig. S5C) 

 Together, these analyses show that RDD sites are identified by different alignment 

programs, and the RDDs are not results of inaccuracies in sequencing technology. 

RDDs are not caused by rare genomic mutations 

To ensure that RDDs are detected at sites where there is no genomic mutation, only sites that are 

monomorphic in DNA are used for analysis.  Since we sequenced the genomes to obtain high 

coverage, >96% of these sites are covered by 100 or more DNA-seq reads (minimum of 10 

reads).  This ensures that we are confident of the DNA sequences in our analysis.  On average, 

each RDD site is supported by 180 DNA and 33 RNA reads; these sequence coverage allows us 

to be confident of the underlying sequences.  Moreover, to assess the probability of detecting 

DNA mutation as RDDs, we split DNA sequencing data into two sets, and identified “DNA-

DNA sequence difference (DDD)” using the same RDD identification methods.  We found 125 

DDD in over 10 million sites (10,026,631 sites), significantly fewer than RDDs (χ2, P<0.0001).  

None of these overlaps with the RDD sites.  As expected, none of the sites with “DDD” are 

included in our analysis since we only included sites where DNA reads do not show alternative 

bases. 

Identification of RDD-form peptides by mass spectrometry 

We took three approached to ensure accurate identification of peptides encoded by RDDs.  First, 

we applied stringent criteria in analysis of mass spectrometry data in MaxQuant.  The peptide 

tolerance of 4.5ppm is much more stringent than required to detect small mass difference 
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between single amino acids encoded by DNA-form or RNA-form, respectively.  Second, we 

searched sequence of each identified RDD-encoded peptides against yeast protein databases 

using BLAST to ensure they are unique peptides.  Lastly, we used the target-decoy strategy to 

estimate false positive peptides (FDR<0.01). 

 Moreover, we performed immunoprecipitation with Tup1 antibody followed by gel 

electrophoresis, then we carried out mass spectrometric analysis on the gel-purified protein band 

of the expected molecular weight for Tup1, in the hope that we would enrich for peptides 

corresponding to Tup1.  In the first attempt, we did not get any peptide that corresponds to the 

RDD site.  Then after we scaled up the experiment, we found four Tup1 peptides that span the 

RDD site but these four peptides corresponded to the DNA form and not the RDD-encoded 

peptide.  We reasoned that we found so few peptides that span the RDD site because multiple 

post-translational modifications of Tup1 led to different electrophoretic pattern(s) than its 

unmodified form.  Tup1 is modified by acetylation, phosphorylation and ubiquitination at over 

19 residues (Albuquerque et al. 2008; Soulard et al. 2010; Swaney et al. 2013; Weinert et al. 

2013).  Since mass spectrometry analysis of the excised band yielded only a few peptides 

corresponding to Tup1, a large fraction of the protein most likely migrated differently from that 

of the unmodified protein.  In addition, Tup1 is part of a large protein complex thus the 

immunoprecipitation likely pulls down its interacting partners with similar sizes which reduces 

our chance of detecting Tup1 itself (Krogan et al. 2006).  Indeed, Cdc48, a known interacting 

partner of Tup1 with similar molecular weight, was detected in the immunoprecipitant. 

Co-localization of R-loops and RDDs 

 We mapped R-loops by DNA-RNA immunoprecipitation with S9.6 antibody.  We 

identified 1,505 R-loop peaks in BY4741 that span 7% of the genome.  We asked whether RDDs 
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co-localize with these R-loops, and found that RDDs are significantly enriched (P<0.0001) in R-

loop regions.  Among the 829 RDDs found in the same strain, 96 were found within the R-loop 

regions.  When we lowered the thresholds for read depth and fold enrichment in R-loop peak 

calling (DRIP sequencing read depth = 5RPM, fold enrichment = 1.2), 346 (42%) RDDs were 

found in regions covered by DRIP-seq reads. 
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Supplemental Methods 

Yeast cultures.  Each strain was cultured on YPAD plates.  Single colonies were inoculated into 

2 ml start cultures of YPAD medium, and kept in a shaking incubator at 25°C, 250 rpm 

overnight.  Cells were then counted and diluted into 200 ml fresh YPAD medium to 5 X 105 

cells/ml and incubated at 25°C, 250 rpm until reaching early log phase (2~4 X 106 cells/ml).  

Yeast cells were harvested by centrifugation at 1,000 g for 10 min, and washed twice in PBS.  

For temperature-sensitive mutants, yeast cells were grown in YPAD at 25°C to early log phase 

and then shifted to 34°C and cultured for 4 hours. 

DNA sequencing and RNA sequencing.  5 X 106 yeast cells harvested from the same cultures 

were divided for purification of DNA or RNA.  DNA and RNA were extracted using MasterPure 

Yeast DNA or RNA Purification Kit (Epicentre).  Sequencing libraries were prepared from 1μg 

of genomic DNA or total RNA using TruSeq Nano DNA LT Sample Preparation Kit or TruSeq 

Stranded RNA LT kit with Ribo zero gold (Illumina), respectively.  Then they were sequenced 

on a HiSeq 2500 instrument to 100-nt read lengths.  On average 40 million reads were obtained 

from each DNA-seq sample and 10 million reads from each RNA-seq sample.   

Functional analysis of RNA-form of Tup1.  The pBY011-TUP1 plasmid containing GAL1 

promoter was obtained from the Harvard PlasmID repository (Cat# ScCD00095253).  RNA-form 

of TUP1 was generated using the QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene) 

following the manufacture’s instruction.  Primers used to mutagenize TUP1 (A459V) are listed 

in Supplemental Table S8.  Plasmids were sequenced to confirm no other mutations had been 

introduced.  Yeast cells were transformed with either pBY011-TUP1 A459 (DNA form), 

pBY011-TUP1-V459 (RNA form), or empty vector using the lithium acetate method.  Yeast 

transformants were cultured in synthetic dropout medium without uracil (SD URA-) containing 
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2% glucose to mid-log phase at 25°C, 250rpm.  Cells were pelleted and washed 3 times with 

PBS.  Cells were then re-suspended in SD URA- medium containing 2% galactose and 2% 

sucrose, and cultured for 18 hours.  Total RNA was extracted using MasterPure Yeast RNA 

Purification Kit (Epicentre) with the following modifications.  Reverse transcription using 1μg of 

RNA was done using the TaqMan Reverse Transcription kit (Life Technologies) following the 

manufacture’s instruction.  Quantitative PCR was preformed using SYBR Green PCR Master 

mix (Life Technologies).  Tup1 antibody (Abcam, Cat#24313) and anti-GAPDH (Thermo 

Scientific, # MA5-15738) were used for western blot analysis.  Hygromycin-B (Sigma-Aldrich) 

or DMSO control was added to a final concentration of 100μg/ml to SD URA- plates 

supplemented with either 2% glucose or 2% galactose and 2% sucrose.  Cells were cultured 

overnight in SD URA- liquid medium containing 2% glucose and were then washed and re-

suspended in equal volume of PBS.  3μl of ten-fold serial dilution of the cultures were spotted on 

the appropriate plates.  The plates were covered with aluminum foil and incubated at 25°C.  

Pictures were taken 3-5 days after spotting.   

 For cycloheximide chase assay, yeast transformants were grown in SD URA- medium 

containing 2% glucose to mid-log phase.  Cells were then pelleted and washed three times with 

PBS.  Expression was then induced by re-suspending in SD URA- medium containing 2% 

galactose and 2%sucrose for 18 hours.  Cells were collected by centrifugation and washed with 

PBS once before being resuspended in an equal volume of SD URA- containing 2% glucose to 

repress new transcription of TUP1.  Cycloheximide (Sigma-Aldrich) was added to a final 

concentration of 0.75ug/ml.  Immediately after addition of cycloheximide, 2 X 106 cells were 

harvested as samples at baseline.  Cells were harvested in this manner for each subsequent time 

point.  Whole cell lysates were prepared using denaturing conditions as described and analyzed 
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by western blot (Kushnirov 2000).  The intensity of each band were quantified using ImageJ and 

normalized to that from baseline to determine the fraction of protein remaining.   

Experimental validation of RDD using droplet digital PCR.  We picked a few sites of each 

RDD type that are suitable for primer and ddPCR assay design.  DNA probes specific to the 

DNA and RNA alleles at RDD sites were synthesized and labeled by VIC and FAM, respectively 

and custom Taqman assays were designed (ABI Biosystems).  PCR reaction was prepared by 

mixing genomic DNA or cDNA from same yeast strains, Taqman assay reagents containing 

VIC- and FAM- probes, and ddPCR Supermix (Bio-Rad).  Emulsion PCR was carried out on a 

Bio-Rad thermocycler using following cycles: 95°C 10 min, (94°C 30 sec, 58~61°C 1 min) X 40 

cycles, 98°C 10 min (Bio-Rad).  Fluorescent signal representing each variant was quantified by 

QuantaLife Droplet Reader and analyzed using manufacturer’s software (Bio-Rad).  Primers and 

probes are listed in Supplemental Table S9. 

Additional RDD Filtering.  First, we use BLAT to ensure the RDD-containing reads are 

correctly mapped and that they cannot be attributed to sequences in other parts of the genome.  

We extracted genomic sequences 25 bp, 50 bp, and 75 bp upstream and downstream of each site, 

and aligned each of the 6 sequences to the reference genome using BLAT (v. 34x11) (Kent 

2002) with parameters '-stepSize=5' and 'repMatch=2253'.  RDD sites were removed if any of the 

6 surrounding sequences aligned to another genomic location with ≤3 mismatches and with 

sequences that explain the RDD call (that is, if the mapped genomic sequences match the RDD 

allele).  Second, we removed all the sites that reside in repetitive genome regions annotated by 

RepeatMasker (version 3.2.7).  Third, we removed all the sites that are less than 5nt away from 

splicing junctions and the sites where RNA-seq reads were spliced at non-annotated splicing 

sites. 
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Simulation of yeast RNA-seq data.  Yeast reference genome (sacCer3) was used to simulate 

RNA-seq data by Flux simulator (Griebel et al. 2012) using default parameters.  The built-in 

Illumina error profile was used to simulate sequencing errors.  The simulated data were then 

analyzed for RNA-DNA sequence differences using the same methods used for yeast samples. 

Probability-based error rate estimation.  The statistical analysis is adapted from Chepelev 

2012 (Chepelev 2012).  At a given nucleotide position, the base error probability p was 

computed using Phred base quality score in RNA-seq data as Q=-10log10p.  Assuming there is 

no RDD, the observation of alternate allele in RNA-seq reads that differ from the DNA allele is 

due to base-calling error (null hypothesis H0).  Let k be the subset of RNA-seq reads supporting 

DNA allele S0, and m be the subset of reads supporting alternate allele S1 at the same position, 

under null hypothesis H0, the probability of observing S1 is P(D|H0)=(∏m∈S1pm)(∏k∈S0(1-pk), 

where p is the base error probability.  In RNA-seq data, the frequency of alternate allele S1 is 

f=n(S1)/(n(S0)+n(S1), where n(S0) and n(S1) are numbers of reads representing S0 and S1.  The 

probability that the observation of S1 is a true RDD with frequency of f is P(D|H1)=fn(S1)(1-f)n(S0) 

(alternative hypothesis H1).  According to the Wilks’s theorem, the test statistic of likelihood 

ratio -2log(P(D|H0)/P(D|H1) follows a chi-square distribution with the degree of freedom =1, and 

we derived p-values and False Discovery Rate adjusted p-values for each RDD sites using the R 

statistics package.  Similarly, the mapping error probability was computed using mapping scores 

(from GSNAP) for the reads mapped to the position.   

Metagene Analysis of R-loops and RDD.  Each gene annotated in serSac is divided into 3 

regions, “5’UTR” as transcription start site to 500 bp upstream, “3’UTR” as end of last exon to 

500bp downstream, and “gene body: as region between transcription start site and end of last 

exon.  Each region is divided into 100 bins.  For R-loop metagene plot, read count from aligned 
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bam files from DRIP-seq and input samples in each bin is normalized to bin size and total 

number of uniquely mapped reads (number of reads per nucleotide per million of uniquely 

aligned reads; RPM).  Only genes with 2.5 fold enrichment are included.  Average read counts 

from each bin are plotted.  For RDD metagene plot, number of RDD event in each bin is 

similarly normalized to bin size and total number of reads.  Sum of RDD event in each bin is 

plotted. 
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Supplemental Figure legends 

Figure S1  Summary of analysis steps for identifying RNA-DNA differences.  Numbers of 

RDDs that were filtered out in each step are noted. 

Figure S2  RDDs were identified with more stringent thresholds.  (A) Distribution of RDDs by 

type is similar among the wild-type strains.  (B) Distribution of RDDs in different genomic 

regions is similar among the wild-type strains.  Compared to genome background, RDDs are 

significantly enriched in coding exons (Fisher exact test, P<0.05).  (C) Majority of RDD sites 

(>98%) are covered by more than 10 RNA-seq reads.  (D) 12 types of RDDs are detected using 

more stringent thresholds of sequencing depth and RDD level.  

Figure S3  RDD frequencies of deaminase mutants are similar to those in wild-type strains.  (A) 

A-to-G editing level at A34 of tRNA-Ser is reduced in tad2ts mutant at non-permissive 

temperature.  Editing level was measured using droplet digital PCR.  Error bar: SEM of duplicate 

PCR.  (B) RDD levels in wild type and deaminase mutants measured in RNA-seq data. 

Figure S4  The A-to-G in IMG1 at chrIII:210075 was identified by 4 different alignment 

algorithms.  Screenshots from the Integrative Genomics Viewer are shown.  IMG1 is on negative 

strand and reverse complementary sequence of reads is shown. 

Figure S5  Analysis of RDDs using different alignments or simulated data.  (A) Three aligning 

methods that handle spliced reads differently were used to identify RDDs.  DNA-seq data were 

aligned using Bowtie2-local mode, and RNA-seq data were aligned using Bowtie2-local mode, 

GSNAP with or without “splice-aware” mode.  (B) Sequence differences between the simulated 

RNA-seq data and DNA sequences do not resemble characteristics of RDDs identified from 

yeast cells.  RNA-seq data were simulated using Flux simulator and sequence differences were 

identified using the same algorithm for RDD identification. (C) 12 types of RDDs were 

identified after RDDs within 5 nt or 10 nt from both ends of sequencing reads were removed.  

Only RDDs in S288C are shown. 

Figure S6  A C-to-T RDD was found in R-loops of BUG1.  R-loop peak was identified at BUG1 

by DRIP-seq.  Arrow indicates the RDD site.  RPM = number of reads per million of uniquely 

mapped reads.  The RNA-seq and DNA-seq data are displayed using the Integrated Genomics 

Viewer.   
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Supplemental Table S1. RDDs identified from six common wild-type strains. 

Supplemental Table S2. DNA-seq and RNA-seq depth at RDD sites shared by multiple wild 

type strains.  
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Supplemental Table S3. Saccharomyces cerevisiae strains used in this study. 

Strain ID Genotype Source 

S288C 
MATα SUC2 mal mel gal2 CUP1 flo1 flo8-1 

hap1 
ATCC 

BY4741 MATa his3Δ0 leu2Δ0 met15Δ0 ura3Δ0 R Crouch 

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 D Klionsky 

W303-1A 
MATa ade2-1 ura3-1 his3-11 trp1-1 leu2-3 

leu2-112 can1-100 
ATCC 

W303-1B 
MATα leu2-3 leu2-112 trp1-1 ura3-1 his3-11 

his3-15 ade2-1 can1-100 
ATCC 

SNM8 

MATa CAN1 his7-2 leu2-Δ::kanMX ura3-Δ 

trp1-289 ade2-1 lys2-ΔGG2899-2900 

agp1::URA3-OR1 

T Kunkel (Williams et al. 

2013) 

YTAK015 SNM8, top1::natMX4 
T Kunkel (Williams et al. 

2013) 

YTAK030 SNM8, rnh1::natMX4 
T Kunkel (Williams et al. 

2013) 

VCY201 BY4741, rnh1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY203 BY4741, top1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY224 BY4741, tad1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY225 BY4741, aah1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY226 BY4741, amd1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY227 BY4741, fcy1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY228 BY4741, gud1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY251 BY4741, tup1::kanMX4 
Yeast Deletion Project(Kelly 

et al. 2001) 

VCY216 BY4741, sen1-1 
D Klionsky (Mischo et al. 

2011, 1) 

VCY229 BY4741, tad2ts 
D Klionsky (Winey and 

Culbertson 1988) 

VCY230 BY4741, tad3ts 
D Klionsky (Winey and 

Culbertson 1988) 
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Supplemental Table S4.  RDDs are identified using various aligning algorithms. 

  
Aligner* S288C BY4741 BY4742 

W303-

1A 

W303

-1B 
SNM8 

Individual 

aligner 

GSNAP(7MM) 741 817 645 1004 392 846 

GSNAP(3MM 529 549 424 763 309 720 

STAR 906 957 724 1334 547 1328 

TopHat2 3120 3340 2529 4355 1830 4478 

Overlap 

between 2 

aligners 

GSNAP(7MM) & 

GSNAP(3MM) 
501 519 391 710 289 650 

GSNAP(7MM) & STAR 429 442 337 592 249 554 

GSNAP(7MM) & 

TopHat2 
366 368 276 464 210 438 

GSNAP(3MM) & STAR 440 456 350 612 258 590 

GSNAP(3MM) & 

TopHat2 
378 380 292 484 217 473 

STAR & TopHat2 623 652 506 869 403 858 

Overlap 

between 3 

aligners 

GSNAP(7MM) & 

GSNAP(3MM) & STAR 
425 439 335 587 249 550 

GSNAP(7MM) & 

GSNAP(3MM) & 

TopHat2 
363 365 276 459 209 437 

GSNAP(3MM) & STAR 

& TopHat2 
364 371 281 470 208 457 

GSNAP(7MM) & STAR 

& TopHat2 
352 358 268 452 201 425 

Overlap 

between 3 

aligners 

GSNAP(7MM) & 

GSNAP(3MM) & STAR 

& TopHat2 
351 358 268 451 201 425 

* GSNAP(7MM): GSNAP with default parameter for mismatches (< 7 mismatches for 100-nt 

reads); GSNAP(3MM): GSNAP with ≤3 mismatches for each read. 
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Supplemental Table S5.  Sequencing errors detected in PhiX control spiked in RNA-seq 

samples. 

Sequencing 

Sample 

#sites ≥ 10 

reads 

# sites with 

errors 

# sites with ≥ 2 reads containing same 

errors 

Sample 1 5051 32 0 

Sample 2 5013 29 0 

Sample 3 5098 51 0 

Sample 4 3724 20 0 

Sample 5 5019 30 0 

Sample 6 5139 47 0 
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Supplemental Table S6. Probability-based error rate estimation  

P-value 

(Base Error) 
S288C SNM8 BY4741 BY4742 W303-1A W303-1B 

<0.01 739 845 814 641 1000 392 

0.01-0.05 2 1 1 3 3 0 

0.05-0.1 0 0 1 1 1 0 

0.1-1 0 0 1 0 0 0 

 

P-value 

(Mapping 

Error) 

S288C SNM8 BY4741 BY4742 W303-1A W303-1B 

<0.01 741 846 816 645 1004 392 

0.01-0.05 0 0 1 0 0 0 

0.05-0.1 0 0 0 0 0 0 

0.1-1 0 0 0 0 0 0 
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Supplemental Table S7.  Phred score threshold has minimal effect on RDD identification. 

Phred Score Cutoff S288C BY4741 BY4742 W303-1A W303-1B SNM8 

Phred≥20 (initial) 759 829 666 1023 394 867 

Phred≥25 744 812 648 999 392 852 

Phred≥30 744 806 643 988 373 854 

Phred≥35 790 827 667 1082 381 891 
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Supplemental Table S8. Primers and probes used in this study. 

Gene Experiments Forward Primer Reverse Primer 

TUP1 Cloning 5'-

CCAGATGGGAAATTTTTGGTAACA

GGTGCTGAAGACAG-3'  

 

5'-

CTGTCTTCAGCACCTGTTACCAAAA

ATTTCCCATCTGG-3'. 

TUP1 Real-time 

PCR 

5'-CATCGGCCTTCCCAGTACAA-3' 5'-ACAGGCAAAGTGGTGGTAGG-3' 

RPL15A Real-time 

PCR 

5'-TGTGACCCAGTTCACAAGCAC-3' 5'-GTATCTCCACAAGGACAAAGTG-3' 
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Supplemental Table S9. Sequence of probes and primers in droplet digital PCR. 

Genomic 

Location 

Gene 

Name 

RDD 

type 
Forward Primer Reverse Primer VIC Probe Sequence 

FAM Probe 

Sequence 

chrII:396658 RPG1 A>G 
CCACAAGAAACT

GAAGACGGTGAA 

TGTTGTGGATGTA
AGAATTGCGGAT

A 

CAGATTCTTCTTC

CTTTTC 

AGATTCTTCCTCC

TTTTC 

chrIV:454727 RCR2 G>A 
CTCCGACTGTTGA
ATCTTCTTCCTT 

CGAAAAATCACTT
ACTCACTTTCGCT 

ATAACGCGCCGG
CAAG 

AATAACGCACCG
GCAAG 

chrIV:1086040 TFB1 G>C 
GGTGACGTAATC
ATTGACAGGTACT 

GTCGTCCTGTATG

TTACCATCTAAAT

CTATAATTTT 

CGACAGAAAAGA
TGATGACAT 

CGACAGAAAAGA
TCATGACAT 

chrIV:895335 ADR1 C>G 

CAAGTTGCCCGA

AAATTTAAGGCTT

A 

TCTCGTACAAACC
TCGCAAACAA 

ATGACCTTAGTTT
CCC 

ATGACCTTACTTT
CCC 

chrVII:146359 CDC55 A>T 
ACCATAAACATA
CATGAGCAATTG

AAGGA 

CACTTGAACTATC
ACCACTAAAATTA

ACTTCAAA 

TGAGTGATACCTA

TGAAAAC 

AGTGATACCTTTG

AAAAC 

chrIX:220698 RPN2 G>C 
GACCACCCAGAA
TAGATTGAGTTCA

A 

GCTAAAAGAGGA

GCAGCAGTCG 

CCGGAAAAGATG

TCTTTGA 

CCGGAAAAGATC

TCTTTGA 

chrXI:103490 FAS1 C>T 

AAGAGATTGGTG

GAATTAATGTTCA
TCAGA 

GACGTAGGAAAT

CACCAGTAAAGG
T 

CATGTGACGTCAA

ACC 

CATGTGACATCAA

ACC 

chrXVI:450033 PDR12 C>T 
GTCTCGTCAATTG

GAACAGGGAAT 

GCAGCAGAGGCA

TCAACAC 

ATTCTGGTATTGC

CTTTAAA 

ATTCTGGTATTGC

TTTTAAA 

chrXVI:829933 NCE102 G>A 
CTTCTCAAAGCAT
ACCTAATAACAAT

ATAATCCCA 

GATTAAACCGAT
GGAAATAACCAA

AAATAGGAA 

CTAGCCCTAGCTG
ATAAC 

TAGCCCTAGCTAA
TAAC 

chrXVI:23121 SAM3 G>A 
GCATGTCATTCCA
GAAGACCTTGAA 

GCTGAGAAGCTA
GTTTCCATTGGAT 

AGACAGAGCAGG
AAAA 

ACAGAGCAGAAA
AA 

chrX:524060 tRNA-Ser A>G 
ACTTGGCCGAGTG

GTTAAGG 

TGCGCGGGCAAA

GC 

CGAAAGATTAGA

AATC 

CGAAAGATTGGA

AATC 

chrII:540135 ARA1 C>A GACAGCAAATCC
TCACGAAAAGTT

A 

GCCTGTATCCAGC
TTTGATTGC 

CGGCTTGTTTTGT
TTCAG 

CGGCTTGTTTTTT
TTCAG 

chrIV:33734 YPD1 T>C CGACAGCTGGAC
GGTGAAAA 

CCTAATGCAGCA
GAAGAACCCTTTA 

AAATGGCCCAGA
TTGT 

AATGGCCCGGATT
GT 

chrVII:351377 GUP1 T>C GCCGGCCCCATTA

TAACATTCA 

CAATAACGAATCT

CACCGCATAGTA

AAA 

CAATCGAAACAT

ACCTTGCCAT 

ATCGAAACATAC

CCTGCCAT 

chrVII:447735 TRP5 T>A ACGACGTTGCTAA

GGAATATGTACA

G 

GCGGACTTCAAG

GACTCTTTTTGA 

TGGACAGAACCTT

ATGCTTA 

TGGACAGAACCTT

TTGCTTA 

chrVII:885558 PDX1 G>A GTCTTGGAAATAT
AAAGTTGGCGAA

CC 

GCTTCCACATCAA
TTTGAGATTTATC

TGTT 

CAGCGCGGGCGA
T 

ATTCAGCACGGG
CGAT 

chrX:701486 MGM101 C>G AGGCGAACAAGA
CTATTTCAACGAA 

CCGAGATCTTTGC
AACACCTCATTA 

CTGTAGCAGTTGG
TATGC 

CTGTAGCAGTTCG
TATGC 

chrXII:724769 YHC1 G>A CCAAGAAGCGGA

TGCATTCC 

ATTTCCATACCGC

CTCCTTTTATATC

C 

ACGGCATACGGA

AAC 

CGGCATACGAAA

AC 

chrXIV:134490 BNI1 G>A CTCTTTCATCGGT

AGGTACGTCAAC 

GAGATGGCTGCTT

TTTCAAACTCC 

CTCACTAATTTTT

TCCCCTTCG 

CTCACTAATTTTT

TTCCCTTCG 

chrXV:545227 RPT5 G>A GTCCCATGAAAA
CAACGTTATGCT 

CCACAAGGTACG
GTAACTGTCTATT 

AGATTAAGGACA
ATAAGGAAAA 

AAGGACAATAAG
AAAAA 

chrXVI:823056 ASN1 T>C GAGACCCAATCG

GTATTACGACAT 

GTTCGGATGCAA

AATAAACGGTCTT 

AAGAGCGTCCCA

TATATA 

AAGAGCGTCCCG

TATATA 
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