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Supplemental Results

RNH1 deletion leads to petite phenotype

It was previously reported that deletion of RNH1 leads to petite phenotype, suggesting RNase H1
is important for maintenance of mitochondria DNA (Bernardi 1979; El Hage et al. 2014). To
examine frequency of petite colonies, ~500 cells from wild type and mutant strain were plated
onto YPD plates, incubated at 25°C for 3 days and colonies were quantified for petite phenotype.
rnh1” mutant showed an increase in petite colonies (18%) compared to wild type control (5%),

consistent with previous report (El Hage et al. 2014).

RDDs are not sequencing or mapping errors

One of the motivations to study RDD in yeast is to take advantage of its smaller and less
complex genome (fewer repetitive sequences; <5% genes contain introns) compared to human.
However, even in yeast, analysis of the sequencing results is not trivial. Each read from deep
sequencing is only about 100 nucleotides in length. To align the 40 million DNA-seq reads and
10 million RNA-seq reads to the 12 Mb genome is complex. Many alignment algorithms have
been developed to analyze deep sequencing data. They have different strengths and weaknesses.
For our initial analysis, we used GSNAP (Wu and Nacu, 2010). To determine how different
alignment programs may affect our RDD counts, we repeated the analyses using TopHat2 and
STAR (Djebali et al. 2012; Kim et al. 2013). We also tested different thresholds in GSNAP by
varying the number of mismatches allowed in the alignment. The comparison of the different
alignment programs showed that GSNAP is the most conservative in that it yielded the fewest
number of RDDs (759 for S288C), while TopHat2 identified the largest number of RDDs (3,120
for S288C) (Supplemental Table S4). It is important to note that there are substantial overlaps

between the alignments; hundreds of the RDDs are identified by multiple programs. In



Supplemental Figure S4, we showed an example of RDD in IMG1 identified by GSNAP, STAR
and TopHat2. These results show that most of the RDDs can be identified regardless of the

alignment programs used in the sequence analysis.

In alignment of sequence reads, those that span splice junctions are more prone to
misalignment, especially when those junctions fall in the ends of the sequence reads. The
alignment programs have to decide whether to place the short overhangs in the RNA-seq reads to
the intronic regions or to the next exons. This can lead to misalignment and false identification
of differences in DNA and RNA sequences. In budding yeast, only 5% of genes contain introns,
and the majority of these genes contain only one intron (less than 20 genes have two or more
introns). Of the 759 RDDs in the S288C strain, only 7 RDDs mapped to introns. In our initial
analysis, GSNAP is set as “splice-aware” mode where reads can be mapped to annotated and
novel splice junctions. Some groups have suggested that the “splice-aware” method could
generate misalignment. Given the paucity of introns in S. cerevisiae and the small number of
RDDs found in intron-containing genes, we expect that splicing has little impact on our
alignments and RDD calls. To confirm this, we re-aligned our RNA-seq reads using Bowtie2
local alignment mode and turned off splice-aware option of GSNAP; both of these will not allow
alignment across exon/intron junctions. We compared the results from the GSNAP analyses
with splice-aware option on and off, and from Bowtie2. The three methods showed highly
similar results; most of the RDDs were identified by all three methods (Supplemental Fig. S5A);
only 24 RDDs in S288C were identified by the splice-aware GSNAP alone (no overlap with the
7 intronic RDDs described above). This shows that splice junctions do not contribute to false

discovery of RDDs in this project.



We believe RDD is unlikely due to sequencing errors. The error rate in deep sequencing
is rather low (Illumina reports it to be <0.1%) and we required RDDs to be supported by at least
two independent reads, therefore the likelihood of two independent errors occurring at same
position is 1 per million. Regardless, to be sure that RDDs are not due to sequencing errors, we
assessed our results in three different ways. First, we calculated error rates in PhiX libraries
added as internal controls in our sequencing experiments. The PhiX sequence is known, which
allowed us to calculate the error rate and we found it to be <0.1%, as one should expect from
Illumina sequencing. We also compared the PhiX sequences we generated to its known DNA
sequence using the same analysis parameters for RDD identification, and did not detect any
discrepancies between the two (Supplemental Table S5). Second, we confirmed that the RDD
frequencies in our samples are higher than predicted from simulated RNA-seq data generated
using the yeast genome sequence and the Flux simulator (Griebel et al. 2012). The distribution
of RDD types in the simulated data was different from what we observed in yeast samples
(Supplemental Fig. S5B). Lastly, we estimated error rate using a probability-based test
developed by Chepelev for identifying RNA editing events (Chepelev 2012), and found that our
RDD sites are unlikely to result from sequencing (P<0.05) or mapping errors (P<0.001)

(Supplemental Table S6).

Although we applied Phred score >20 as the cutoff in initial analysis, vast majority of
sequenced bases have higher Phred scores. When we increase the threshold for Phred score,
very similar numbers of RDDs were identified. Notably even more RDDs were identified when
Phred score >35 was applied. This is due to a decrease of total number of RNA-seq reads;
manual inspection confirmed that the reads that dropped out were those with lower phred scores

at non-RDD bases, consequently there is an increase of RDD levels, and more RDDs (more that



pass the threshold of >5% level) (Supplemental Table S7). To assess whether distribution of
RDDs within reads will bias our conclusion, we removed RDDs if they reside within 5 nt or 10
nt from the ends of reads. We still found all 12 types of RDDs at each threshold (Supplemental

Fig. S5C)

Together, these analyses show that RDD sites are identified by different alignment

programs, and the RDDs are not results of inaccuracies in sequencing technology.

RDDs are not caused by rare genomic mutations

To ensure that RDDs are detected at sites where there is no genomic mutation, only sites that are
monomorphic in DNA are used for analysis. Since we sequenced the genomes to obtain high
coverage, >96% of these sites are covered by 100 or more DNA-seq reads (minimum of 10
reads). This ensures that we are confident of the DNA sequences in our analysis. On average,
each RDD site is supported by 180 DNA and 33 RNA reads; these sequence coverage allows us
to be confident of the underlying sequences. Moreover, to assess the probability of detecting
DNA mutation as RDDs, we split DNA sequencing data into two sets, and identified “DNA-
DNA sequence difference (DDD)” using the same RDD identification methods. We found 125
DDD in over 10 million sites (10,026,631 sites), significantly fewer than RDDs (%2, P<0.0001).
None of these overlaps with the RDD sites. As expected, none of the sites with “DDD” are
included in our analysis since we only included sites where DNA reads do not show alternative

bases.

Identification of RDD-form peptides by mass spectrometry

We took three approached to ensure accurate identification of peptides encoded by RDDs. First,
we applied stringent criteria in analysis of mass spectrometry data in MaxQuant. The peptide

tolerance of 4.5ppm is much more stringent than required to detect small mass difference



between single amino acids encoded by DNA-form or RNA-form, respectively. Second, we
searched sequence of each identified RDD-encoded peptides against yeast protein databases
using BLAST to ensure they are unique peptides. Lastly, we used the target-decoy strategy to

estimate false positive peptides (FDR<0.01).

Moreover, we performed immunoprecipitation with Tupl antibody followed by gel
electrophoresis, then we carried out mass spectrometric analysis on the gel-purified protein band
of the expected molecular weight for Tupl, in the hope that we would enrich for peptides
corresponding to Tupl. In the first attempt, we did not get any peptide that corresponds to the
RDD site. Then after we scaled up the experiment, we found four Tupl peptides that span the
RDD site but these four peptides corresponded to the DNA form and not the RDD-encoded
peptide. We reasoned that we found so few peptides that span the RDD site because multiple
post-translational modifications of Tupl led to different electrophoretic pattern(s) than its
unmodified form. Tupl is modified by acetylation, phosphorylation and ubiquitination at over
19 residues (Albuquerque et al. 2008; Soulard et al. 2010; Swaney et al. 2013; Weinert et al.
2013). Since mass spectrometry analysis of the excised band yielded only a few peptides
corresponding to Tupl, a large fraction of the protein most likely migrated differently from that
of the unmodified protein. In addition, Tupl is part of a large protein complex thus the
immunoprecipitation likely pulls down its interacting partners with similar sizes which reduces
our chance of detecting Tup1 itself (Krogan et al. 2006). Indeed, Cdc48, a known interacting

partner of Tupl with similar molecular weight, was detected in the immunoprecipitant.

Co-localization of R-loops and RDDs

We mapped R-loops by DNA-RNA immunoprecipitation with S9.6 antibody. We

identified 1,505 R-loop peaks in BY4741 that span 7% of the genome. We asked whether RDDs



co-localize with these R-loops, and found that RDDs are significantly enriched (P<0.0001) in R-
loop regions. Among the 829 RDDs found in the same strain, 96 were found within the R-loop
regions. When we lowered the thresholds for read depth and fold enrichment in R-loop peak
calling (DRIP sequencing read depth = 5RPM, fold enrichment = 1.2), 346 (42%) RDDs were

found in regions covered by DRIP-seq reads.



Supplemental Methods

Yeast cultures. Each strain was cultured on YPAD plates. Single colonies were inoculated into
2 ml start cultures of YPAD medium, and kept in a shaking incubator at 25°C, 250 rpm
overnight. Cells were then counted and diluted into 200 ml fresh YPAD medium to 5 X 10°
cells/ml and incubated at 25°C, 250 rpm until reaching early log phase (2~4 X 10° cells/ml).
Yeast cells were harvested by centrifugation at 1,000 g for 10 min, and washed twice in PBS.
For temperature-sensitive mutants, yeast cells were grown in YPAD at 25°C to early log phase

and then shifted to 34°C and cultured for 4 hours.

DNA sequencing and RNA sequencing. 5 X 10° yeast cells harvested from the same cultures
were divided for purification of DNA or RNA. DNA and RNA were extracted using MasterPure
Yeast DNA or RNA Purification Kit (Epicentre). Sequencing libraries were prepared from 1ug
of genomic DNA or total RNA using TruSeq Nano DNA LT Sample Preparation Kit or TruSeq
Stranded RNA LT kit with Ribo zero gold (Illumina), respectively. Then they were sequenced
on a HiSeq 2500 instrument to 100-nt read lengths. On average 40 million reads were obtained

from each DNA-seq sample and 10 million reads from each RNA-seq sample.

Functional analysis of RNA-form of Tupl. The pBY011-TUP1 plasmid containing GAL1
promoter was obtained from the Harvard PlasmID repository (Cat# ScCD00095253). RNA-form
of TUP1 was generated using the QuikChange 11 XL Site-Directed Mutagenesis Kit (Stratagene)
following the manufacture’s instruction. Primers used to mutagenize TUP1 (A459V) are listed
in Supplemental Table S8. Plasmids were sequenced to confirm no other mutations had been
introduced. Yeast cells were transformed with either pBY011-TUP1 A459 (DNA form),
pBY011-TUP1-V459 (RNA form), or empty vector using the lithium acetate method. Yeast

transformants were cultured in synthetic dropout medium without uracil (SD URA-) containing



2% glucose to mid-log phase at 25°C, 250rpm. Cells were pelleted and washed 3 times with
PBS. Cells were then re-suspended in SD URA- medium containing 2% galactose and 2%
sucrose, and cultured for 18 hours. Total RNA was extracted using MasterPure Yeast RNA
Purification Kit (Epicentre) with the following modifications. Reverse transcription using 1ug of
RNA was done using the TagMan Reverse Transcription kit (Life Technologies) following the
manufacture’s instruction. Quantitative PCR was preformed using SYBR Green PCR Master
mix (Life Technologies). Tupl antibody (Abcam, Cat#24313) and anti-GAPDH (Thermo
Scientific, # MA5-15738) were used for western blot analysis. Hygromycin-B (Sigma-Aldrich)
or DMSO control was added to a final concentration of 100ug/ml to SD URA- plates
supplemented with either 2% glucose or 2% galactose and 2% sucrose. Cells were cultured
overnight in SD URA- liquid medium containing 2% glucose and were then washed and re-
suspended in equal volume of PBS. 3ul of ten-fold serial dilution of the cultures were spotted on
the appropriate plates. The plates were covered with aluminum foil and incubated at 25°C.

Pictures were taken 3-5 days after spotting.

For cycloheximide chase assay, yeast transformants were grown in SD URA- medium
containing 2% glucose to mid-log phase. Cells were then pelleted and washed three times with
PBS. Expression was then induced by re-suspending in SD URA- medium containing 2%
galactose and 2%sucrose for 18 hours. Cells were collected by centrifugation and washed with
PBS once before being resuspended in an equal volume of SD URA- containing 2% glucose to
repress new transcription of TUP1. Cycloheximide (Sigma-Aldrich) was added to a final
concentration of 0.75ug/ml. Immediately after addition of cycloheximide, 2 X 10° cells were
harvested as samples at baseline. Cells were harvested in this manner for each subsequent time

point. Whole cell lysates were prepared using denaturing conditions as described and analyzed



by western blot (Kushnirov 2000). The intensity of each band were quantified using ImageJ and

normalized to that from baseline to determine the fraction of protein remaining.

Experimental validation of RDD using droplet digital PCR. We picked a few sites of each
RDD type that are suitable for primer and ddPCR assay design. DNA probes specific to the
DNA and RNA alleles at RDD sites were synthesized and labeled by VIC and FAM, respectively
and custom Tagman assays were designed (ABI Biosystems). PCR reaction was prepared by
mixing genomic DNA or cDNA from same yeast strains, Tagman assay reagents containing
VIC- and FAM- probes, and ddPCR Supermix (Bio-Rad). Emulsion PCR was carried out on a
Bio-Rad thermocycler using following cycles: 95°C 10 min, (94°C 30 sec, 58~61°C 1 min) X 40
cycles, 98°C 10 min (Bio-Rad). Fluorescent signal representing each variant was quantified by
QuantaLife Droplet Reader and analyzed using manufacturer’s software (Bio-Rad). Primers and

probes are listed in Supplemental Table S9.

Additional RDD Filtering. First, we use BLAT to ensure the RDD-containing reads are
correctly mapped and that they cannot be attributed to sequences in other parts of the genome.
We extracted genomic sequences 25 bp, 50 bp, and 75 bp upstream and downstream of each site,
and aligned each of the 6 sequences to the reference genome using BLAT (v. 34x11) (Kent
2002) with parameters '-stepSize=5" and 'repMatch=2253". RDD sites were removed if any of the
6 surrounding sequences aligned to another genomic location with <3 mismatches and with
sequences that explain the RDD call (that is, if the mapped genomic sequences match the RDD
allele). Second, we removed all the sites that reside in repetitive genome regions annotated by
RepeatMasker (version 3.2.7). Third, we removed all the sites that are less than 5nt away from
splicing junctions and the sites where RNA-seq reads were spliced at non-annotated splicing

sites.
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Simulation of yeast RNA-seq data. Yeast reference genome (sacCer3) was used to simulate
RNA-seq data by Flux simulator (Griebel et al. 2012) using default parameters. The built-in
[llumina error profile was used to simulate sequencing errors. The simulated data were then

analyzed for RNA-DNA sequence differences using the same methods used for yeast samples.

Probability-based error rate estimation. The statistical analysis is adapted from Chepelev
2012 (Chepelev 2012). At a given nucleotide position, the base error probability p was
computed using Phred base quality score in RNA-seq data as Q=-10logiop. Assuming there is
no RDD, the observation of alternate allele in RNA-seq reads that differ from the DNA allele is
due to base-calling error (null hypothesis Ho). Let k be the subset of RNA-seq reads supporting
DNA allele So, and m be the subset of reads supporting alternate allele S; at the same position,
under null hypothesis Ho, the probability of observing S1 is P(D|Ho)=(] Tmes1pm)( Jkeso(1-pk),
where p is the base error probability. In RNA-seq data, the frequency of alternate allele Sy is
f=n(S1)/(n(So)+n(S1), where n(So) and n(S1) are numbers of reads representing So and S1. The
probability that the observation of S; is a true RDD with frequency of f is P(D|H1)=f"CD(1-f)"S0)
(alternative hypothesis Hi). According to the Wilks’s theorem, the test statistic of likelihood
ratio -2log(P(D|Ho)/P(D|H1) follows a chi-square distribution with the degree of freedom =1, and
we derived p-values and False Discovery Rate adjusted p-values for each RDD sites using the R
statistics package. Similarly, the mapping error probability was computed using mapping scores

(from GSNAP) for the reads mapped to the position.

Metagene Analysis of R-loops and RDD. Each gene annotated in serSac is divided into 3
regions, “5’UTR” as transcription start site to 500 bp upstream, “3’UTR” as end of last exon to
500bp downstream, and “gene body: as region between transcription start site and end of last

exon. Each region is divided into 100 bins. For R-loop metagene plot, read count from aligned

1"



bam files from DRIP-seq and input samples in each bin is normalized to bin size and total
number of uniquely mapped reads (number of reads per nucleotide per million of uniquely
aligned reads; RPM). Only genes with 2.5 fold enrichment are included. Average read counts
from each bin are plotted. For RDD metagene plot, number of RDD event in each bin is
similarly normalized to bin size and total number of reads. Sum of RDD event in each bin is

plotted.
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Supplemental Figure legends

Figure S1 Summary of analysis steps for identifying RNA-DNA differences. Numbers of
RDDs that were filtered out in each step are noted.

Figure S2 RDDs were identified with more stringent thresholds. (A) Distribution of RDDs by
type is similar among the wild-type strains. (B) Distribution of RDDs in different genomic
regions is similar among the wild-type strains. Compared to genome background, RDDs are
significantly enriched in coding exons (Fisher exact test, P<0.05). (C) Majority of RDD sites
(>98%) are covered by more than 10 RNA-seq reads. (D) 12 types of RDDs are detected using
more stringent thresholds of sequencing depth and RDD level.

Figure S3 RDD frequencies of deaminase mutants are similar to those in wild-type strains. (A)
A-to-G editing level at A34 of tRNA-Ser is reduced in tad2" mutant at non-permissive
temperature. Editing level was measured using droplet digital PCR. Error bar: SEM of duplicate
PCR. (B) RDD levels in wild type and deaminase mutants measured in RNA-seq data.

Figure S4 The A-to-G in IMGL at chrll1:210075 was identified by 4 different alignment
algorithms. Screenshots from the Integrative Genomics Viewer are shown. IMG1 is on negative
strand and reverse complementary sequence of reads is shown.

Figure S5 Analysis of RDDs using different alignments or simulated data. (A) Three aligning
methods that handle spliced reads differently were used to identify RDDs. DNA-seq data were
aligned using Bowtie2-local mode, and RNA-seq data were aligned using Bowtie2-local mode,
GSNAP with or without “splice-aware” mode. (B) Sequence differences between the simulated
RNA-seq data and DNA sequences do not resemble characteristics of RDDs identified from
yeast cells. RNA-seq data were simulated using Flux simulator and sequence differences were
identified using the same algorithm for RDD identification. (C) 12 types of RDDs were
identified after RDDs within 5 nt or 10 nt from both ends of sequencing reads were removed.
Only RDDs in S288C are shown.

Figure S6 A C-to-T RDD was found in R-loops of BUG1. R-loop peak was identified at BUG1
by DRIP-seq. Arrow indicates the RDD site. RPM = number of reads per million of uniquely
mapped reads. The RNA-seq and DNA-seq data are displayed using the Integrated Genomics
Viewer.
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Figure S5 Wang et al
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Figure S6, Wang et al
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Supplemental Table S1. RDDs identified from six common wild-type strains.

Supplemental Table S2. DNA-seq and RNA-seq depth at RDD sites shared by multiple wild
type strains.
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Supplemental Table S3. Saccharomyces cerevisiae strains used in this study.

Strain ID Genotype Source
$288C MATa SUC2 mal mf];%iﬁ CUPI flol flo§-1 ATCC
BY4741 MATa his340 leu2A40 met1 540 ura340 R Crouch
BY4742 MATa his341 leu2A0 lys2A0 ura3A40 D Klionsky
MATa ade2-1 ura3-1 his3-11 trp1-1 leu2-3
W303-1A leu2-112 can1-100 ATCC
MATo leu2-3 leu2-112 trpl-1 ura3-1 his3-11
W303-18 his3-15 ade2-1 can1-100 ATCC
MATa CANL1 his7-2 leu2-4.:kanMX ura3-A -
SNM8 trp1-289 ade2-1 lys2-4GG2899-2900 T Kunkel %\fg")'ams etal.
agpl::URA3-OR1
YTAKO15 SNMS, topl::natMX4 T Kunkel %‘g;‘ams etal.
YTAKO30 SNMS8, rnh1::natMx4 T Kunkel é\(’)\i'B")'ams etal.
VCY201 BY4741, rh1::kanMX4 Yeast Deletion Project(Kelly
et al. 2001)
. Yeast Deletion Project(Kelly
VCY203 BY4741, topl::kanMX4 et al. 2001)
VCY224 BY4741, tad1::kanMX4 Yeast Deletion Project(Kelly
et al. 2001)
VCY225 BY4741, aah1::kanMX4 Yeast Deletion Project(Kelly
et al. 2001)
VCY226 BY4741, amd1::kanMX4 Yeast Deletion Project(Kelly
et al. 2001)
. Yeast Deletion Project(Kelly
VCY227 BY4741, fcyl::kanMX4 et al. 2001)
. Yeast Deletion Project(Kelly
VCY228 BY4741, gudl::kanMX4 et al. 2001)
. Yeast Deletion Project(Kelly
VCY251 BY4741, tupl::kanMX4 et al. 2001)
D Klionsky (Mischo et al.
VCY216 BY4741, senl-1 2011, 1)
ts D Klionsky (Winey and
VCY229 BY4741, tad2 Culbertson 1988)
VCY230 BY4741, tad3" D Klionsky (Winey and

Culbertson 1988)
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Supplemental Table S4. RDDs are identified using various aligning algorithms.

Aligner* s288C | BYa7a1 | By4zaz | Vo2 | | snme
GSNAP(7MM) 741 817 645 1004 392 846
Indi_vidual GSNAP(3MM 529 549 424 763 309 720
aligner STAR 906 957 724 1334 547 1328
TopHat2 3120 3340 2529 4355 1830 4478
GSNAP(7TMM) &
GSNAP(3MM) 501 519 391 710 289 650
GSNAP(7TMM) & STAR | 429 442 337 592 249 554
Overlap GSNAP(7TMM) &
between 2 TopHat2 366 368 276 464 210 438
aligners | GSNAP(3MM) & STAR | 440 456 350 612 258 590
GSNAP(3MM) &
TopHat2 378 380 292 484 217 473
STAR & TopHat2 623 652 506 869 403 858
GSNAP(TMM) &
GSNAP(3MM) & STAR 425 439 335 587 249 550
GSNAP(7TMM) &
Overlap GSNAP(3MM) & 363 365 276 459 209 437
between 3 TopHat2
aligners | GSNAP(3MM) & STAR
& TopHat2 364 371 281 470 208 457
GSNAP(7TMM) & STAR
& TopHat2 352 358 268 452 201 425
Overlap GSNAP(7TMM) &
between 3 | GSNAP(BMM) & STAR 351 358 268 451 201 425
aligners & TopHat2

* GSNAP(7MM): GSNAP with default parameter for mismatches (< 7 mismatches for 100-nt
reads); GSNAP(3MM): GSNAP with <3 mismatches for each read.
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Supplemental Table S5. Sequencing errors detected in PhiX control spiked in RNA-seq

samples.
Sequencing #sites > 10 # sites with # sites with > 2 reads containing same
Sample reads errors errors
Sample 1 5051 32 0
Sample 2 5013 29 0
Sample 3 5098 51 0
Sample 4 3724 20 0
Sample 5 5019 30 0
Sample 6 5139 47 0
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Supplemental Table S6. Probability-based error rate estimation

P-value

(Base Error) S288C SNM8 BY4741 BY4742 W303-1A W303-1B
<0.01 739 845 814 641 1000 392
0.01-0.05 2 1 1 3 3 0
0.05-0.1 0 0 1 1 1 0
0.1-1 0 0 1 0 0 0
P-value
(Mapping S288C SNM8 BY4741 BY4742 W303-1A W303-1B
Error)
<0.01 741 846 816 645 1004 392
0.01-0.05 0 0 1 0 0 0
0.05-0.1 0 0 0 0 0 0
0.1-1 0 0 0 0 0 0
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Supplemental Table S7. Phred score threshold has minimal effect on RDD identification.

Phred Score Cutoff | S288C | BY4741 | BY4742 | W303-1A | W303-1B | SNM8
Phred>20 (initial) 759 829 666 1023 394 867
Phred>25 744 812 648 999 392 852
Phred>30 744 806 643 988 373 854
Phred>35 790 827 667 1082 381 891
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Supplemental Table S8. Primers and probes used in this study.

PCR

Gene Experiments | Forward Primer Reverse Primer
TUP1 Cloning 5'- 5'-
CCAGATGGGAAATTTTTGGTAACA | CTGTCTTCAGCACCTGTTACCAAAA
GGTGCTGAAGACAG-3' ATTTCCCATCTGG-3.
TUP1 Real-time 5-CATCGGCCTTCCCAGTACAA-3' 5-ACAGGCAAAGTGGTGGTAGG-3'
PCR
RPL15A | Real-time 5-TGTGACCCAGTTCACAAGCAC-3' | 5-GTATCTCCACAAGGACAAAGTG-3'
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Supplemental Table S9. Sequence of probes and primers in droplet digital PCR.

Genor_mc Gene RDD Forward Primer Reverse Primer VIC Probe Sequence FAM Probe
Location Name type Sequence
hrl1:396658 bl Asg  CCACAAGAAACT TAEKFAGTTT%%AGETTA CAGATTCTTCTTC  AGATTCTTCCTCC
' GAAGACGGTGAA A CTTTTC TTTTC
_ CTCCGACTGTTGA  CGAAAAATCACTT ATAACGCGCCGG  AATAACGCACCG
chrlV:454727 RCRZ G>A ATCTTCTTCCTT  ACTCACTTTCGCT — CAAG GCAAG
GTCGTCCTGTATG
GGTGACGTAATC CGACAGAAAAGA  CGACAGAAAAGA
chrlV:1086040  TFB1L  G>C TTACCATCTAAAT
ATTGACAGGTACT ~ [TACCATCTA TGATGACAT TCATGACAT
CAAGTTGCCCGA
_ TCTCGTACAAACC  ATGACCTTAGTTT  ATGACCTTACTTT
chrlV:895335 ADRL  C>G QAATTTAAGGCTT vy IS e
ACCATAAACATA  CACTTGAACTATC
chrVII146359  CDC55 AST  CATGAGCAATTG  ACCACTAAAATTA %AGTGQTACCTA ﬁi;iéTACCTTTG
AAGGA ACTTCAAA AAAA
GACCACCCAGAA
_ GCTAAAAGAGGA  CCGGAAAAGATG  CCGGAAAAGATC
chrIX:220698 RPN2  G>C LAGATTGAGTTCA NSNS 00¢ S 00¢
AAGAGATTGGTG  GACGTAGGAAAT
chrX1:103490 FASL  C>T  GAATTAATGTTCA CACCAGTAAAGG CATGTGACGTCAA  CATGTGACATCAA
ACC ACC
TCAGA T
_ GTCTCGTCAATTG  GCAGCAGAGGCA  ATTCTGGTATTGC  ATTCTGGTATTGC
chrXVI:450033  PDRIZ C>T o)\ ACAGGGAAT — TCAACAC CTTTAAA TTTTAAA
CTTCTCAAAGCAT — GATTAAACCGAT
chrXVI:829933  NCE102 G>A  ACCTAATAACAAT GGAAATAACCAA EQ%CCTAGCTG iﬁf\gCCTAGCTAA
ATAATCCCA AAATAGGAA
_ GCATGTCATTCCA  GCTGAGAAGCTA  AGACAGAGCAGG ~ ACAGAGCAGAAA
chrXvi:23121 SAM3  G>A GAAGACCTTGAA  GTTTCCATTGGAT  AAAA AA
_ ACTTGGCCGAGTG TGCGCGGGCAAA — CGAAAGATTAGA  CGAAAGATTGGA
chrX:524060 tRNA-Ser A>G GTTAAGG GC AATC AATC
chrll540135  ARAL C>A  GACAGCAAATCC  GCCTGTATCCAGC CGGCTTGTTTTGT  CGGCTTGTTTTTT
TCACGAAAAGTT  TTTGATTGC TTCAG TTCAG
A
chrV:33734  YPD1 TSC  CGACAGCTGGAC  CCTAATGCAGCA  AAATGGCCCAGA  AATGGCCCGGATT
GGTGAAAA GAAGAACCCTTTA  TTGT GT
chrVII351377  GUPL T>C  GCCGGCCCCATTA CAATAACGAATCT CAATCGAAACAT  ATCGAAACATAC
TAACATTCA CACCGCATAGTA  ACCTTGCCAT CCTGCCAT
AAA
chiVIl447735  TRP5 TSA  ACGACGTTGCTAA GCGGACTTCAAG — TGGACAGAACCTT TGGACAGAACCTT
GGAATATGTACA  GACTCTTTTTGA  ATGCTTA TTGCTTA
G
chrVI1:885558  PDX1 G>A  GTCTTGGAAATAT GCTTCCACATCAA CAGCGCGGGCGA  ATTCAGCACGGG
AAAGTTGGCGAA  TTTGAGATTTATC T CGAT
cc TGTT
ChrX:701486  MGMI0L C>G  AGGCGAACAAGA  CCGAGATCTTTGC CTGTAGCAGTTGG CTGTAGCAGTTCG
CTATTTCAACGAA  AACACCTCATTA  TATGC TATGC
ChrXI1724769  YHCL G>A  CCAAGAAGCGGA  ATTTCCATACCGC — ACGGCATACGGA — CGGCATACGAAA
TGCATTCC CTCCTTTTATATC  AAC AC
C
ChrXIV:134490  BNIT GSA  CTCTTTCATCGGT  GAGATGGCTGCTT CTCACTAATTTTT  CTCACTAATTTTT
AGGTACGTCAAC  TTTCAAACTCC TCCCCTTCG TTCCCTTCG
CchrXV545227  RPT5 G>A  GTCCCATGAAAA  CCACAAGGTACG  AGATTAAGGACA  AAGGACAATAAG
CAACGTTATGCT  GTAACTGTCTATT  ATAAGGAAAA AAAAA
ChrXV1:823056  ASN1 TSC  GAGACCCAATCG  GTTCGGATGCAA  AAGAGCGTCCCA  AAGAGCGTCCCG
GTATTACGACAT  AATAAACGGTCTT TATATA TATATA
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