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Motivation for Synergistic Chromatin Models (SCMs) 

Accessible chromatin has been found to correlate strongly with active gene regulatory regions. 
Genome-scale DNase I hypersensitivity (DNase-seq) analysis has confirmed that nearly all 
enhancers and promoters that can be defined through independent methods occur in accessible 
chromatin (Thurman et al., 2012). Additionally, transcription factor (TF) binding sites are almost 
always associated with increased accessibility (Boyle et al., 2008; Hesselberth et al., 2009; 
Neph et al., 2012). Thus, active gene regulatory regions populated by TFs and transcriptional 
machinery occur in accessible chromatin. 

There is evidence that the accessibility of chromatin helps to determine the activity of genomic 
regions. In addition to providing structure, nucleosomes inhibit the gene regulatory function of 
DNA through tightly winding the DNA and thus competing with TFs and the transcriptional 
machinery (Richmond & Davey, 2003; Zaret & Carroll, 2011). Some TFs, known as settler TFs, 
depend directly on prior chromatin accessibility in their binding decisions (Sherwood et al., 
2014). Chromatin remodeling enzymes that decrease nucleosome-DNA contact are required for 
proper gene regulation (Ho & Crabtree, 2010), and an array of histone modifications and DNA 
methylation have been reported to regulate nucleosome-DNA contact (Ernst & Kellis, 2013; 
Heintzman et al., 2009; D. Lee, Karchin, & Beer, 2011; Meissner et al., 2008; Ram et al., 2011; 
Zhou, Goren, & Bernstein, 2011). Altogether, chromatin accessibility is a tightly regulated 
genomic feature that not only correlates with gene regulatory activity but also helps to govern 
the gene regulatory status of a cell through controlling which genomic regions are available to 
TFs and transcriptional machinery. 

Our aim is to establish how DNA encodes chromatin accessibility. DNA, as the chief source of 
heritable information in a cell, almost surely does encode chromatin accessibility; however, it 
has thus far not been possible to predict cellular chromatin accessibility accurately from 
genomic DNA sequence. A class of pioneer TFs has been shown to open chromatin at 
previously closed sites (Gualdi et al., 1996; Sherwood et al., 2014; Soufi, Donahue, & Zaret, 
2012; Zaret & Carroll, 2011), providing a paradigm that TF-DNA interactions can directly 
modulate chromatin accessibility. Promoters have characteristic patterns of chromatin 
accessibility (Thurman et al., 2012), and several canonical promoter-enriched sequences have 
been identified (Frith et al., 2008; Lenhard, Sandelin, & Carninci, 2012; Sandelin et al., 2007; 
Valen & Sandelin, 2011). Additionally, CpG sequences have been shown to signal chromatin 
accessibility at some promoter sequences (Thomson et al., 2010), and GC content is known to 
affect chromatin state(Wang et al., 2012; White, Myers, Corbo, & Cohen, 2013). A code based 
on periodic spacing of dinucleotide DNA sequence motifs has also been revealed to predict 
nucleosome positions in some instances, although its genome-wide accuracy is only modest 
(Hughes & Rando, 2014; Kaplan et al., 2009; Peckham et al., 2007; Segal et al., 2006). 
However, no current model based on these codes can explain genome-wide chromatin 
accessibility. Pioneer TF binding has only been shown to causally influence accessibility at a 
small number of genomic loci, and pioneer TFs do not bind to every instance of their binding 
motif in the genome as might be expected by their imperviousness to prior chromatin 
state(Sherwood et al., 2014),indicating that a code positing chromatin opening at pioneer TF 
motifs would be replete with false positives. Promoter motifs and CpG islands are also highly 
degenerate(Siebert & Söding, 2014), thus a code positing accessibility at every instance of 
these motifs would have poor predictive accuracy. And the nucleosome positioning code 
performs most poorly at predicting nucleosome-depleted regions that typify accessible 



chromatin (Hughes & Rando, 2014; Kaplan et al., 2009; Peckham et al., 2007; Segal et al., 
2006). Therefore, prior research has not established how chromatin accessibility is encoded. 
In this work, we generate a computational algorithm, the Synergistic Chromatin Model (SCM), 
that uses machine learning techniques to predict genome-wide chromatin accessibility. The goal 
of SCMs is to provide insight into the mechanisms that underlie chromatin accessibility. SCMs 
use logic operations based on assumptions about how cells encode chromatin accessibility to 
generate predictions of the chromatin accessibility of every DNA base in the genome. For this 
reason, we refer to a DNA logic underlying chromatin accessibility. We posit that a model that is 
accurate enough to predict accessibility under a wide array of natural and artificial conditions will 
improve our understanding of the actual logic used by cells. 
 
Because the inputs to chromatin accessibility may not all be known, we have tried to minimize 
bias in our approach to uncovering its logic. Nonetheless, we do make several assumptions that 
we outline below: 
1. DNA encodes chromatin accessibility. This is the foundational hypothesis of this work. 
2. DNase-seq data reflects chromatin accessibility. It is known that the DNase I enzyme has 
sequence preferences in its cutting(Koohy, Down, & Hubbard, 2013) which can lead to 
erroneous conclusions about chromatin state (He et al., 2013). We do not directly correct for 
such enzyme preferences, so these may be incorporated in the model. However, we have been 
careful to compare results against naked DNase I digestion as well as focus on DNase I 
hypersensitive sites. Decades of work have shown that DNase-I hypersensitivity analysis does 
reflect true biological states, and in fact all enhancers and promoters defined through separate 
methods occur in DNase-I hypersensitive regions (Thurman et al., 2012). Thus, we believe this 
to be a sound assumption. 
3. The DNA “code words” encoding chromatin accessibility can be represented as k-mers 8 bp 
or smaller. Most DNA coding elements including the majority of TF binding motifs, nucleosome 
positioning signals, splicing elements(Barash et al., 2010), and codons are short stretches of 
sequence. Our method can also use bridging k-mers to piece together longer code words 
provided they occur at short and stereotyped distances (see Supplementary Fig. 1). The k ≤ 8 
bp cutoff is a technical compromise to enable manageable algorithm complexity, yet it is 
reasonable to assume that most of the coding information in the genome can be learned by 8 bp 
k-mers. While TFs act at motifs, or thermodynamically related collections of k-mers, modeling 
motifs as k-mers are statistically equivalent. Once the SCM has been learned, these k-mers can 
be constructed into motifs to aid biological interpretation.  
4. K-mers affect chromatin accessibility locally, within +/- 1 kb from their occurrence. Our 
previous work has shown that pioneer TFs alter chromatin state within 1 kb of their occurrence 
(Sherwood et al., 2014), and Ctcf, the most powerful chromatin-shaping TF known, also affects 
accessibility within 1 kb (Boyle et al., 2011). There are known cases in which chromatin states 
spread over long distances (Hathaway et al., 2012; J. T. Lee & Bartolomei, 2013), most notably 
in the inactivation of the X-chromosome; however, these are likely to be exceptional. Three-
dimensional chromatin interactions have also been well documented(Dostie et al., 2006; 
Fullwood et al., 2009; Lieberman-Aiden et al., 2009; Simonis et al., 2006), yet the specificity of 
these interactions makes it likely that they are governed through local DNA sequences and thus 
could be modeled through a local logic. 
5. A small number of k-mers determine chromatin accessibility. There are around 2,000 
transcription factors in the genome, and the vast majority do not play roles in chromatin 
accessibility. Proteins need not be the only readers of the accessibility logic, yet it seems 



reasonable to assume that the code words for accessibility number in the hundreds or 
thousands. Transcription factors act through thermodynamically related collections of k-mers, 
meaning that there are more active k-mers than there are TFs. Nonetheless, it is still safe to 
assume that a minority of the 87,380 k ≤ 8  k-mers play roles in chromatin accessibility.  
6. A particular k-mer produces the same effect on chromatin accessibility wherever it occurs. 
This assumption implies a mechanistically simple logic in which the effectors, be they TFs or 
thermodynamic properties of the DNA itself, act in a stereotyped way at every occurrence 
genome-wide. This assumption does not allow for conditional TF interactions(Mullen et al., 
2011; Trompouki et al., 2011) (i.e. a pioneer TF only opens chromatin when adjacent to a 
specific cofactor k-mer), as these would imply that k-mer effects are dependent on surrounding 
k-mers. Similarly, a logic in which TF access to DNA is dominantly blocked by the surrounding 
chromatin state, as in X-chromosome heterochromatin spreading, is inconsistent with this 
assumption. However, conditional models are harder to learn computationally, as there are only 
a small number of examples of each k-mer with each potential conditional interacting partner. 
Thus, we have chosen to gauge the accuracy of a model that excludes the complications of 
conditionality in an attempt to determine whether the chromatin accessibility logic predominantly 
relies upon unconditional logic. 
7. K-mer effects on chromatin accessibility non-specifically synergize such that the chromatin 
accessibility at any DNA base is the multiplicative product of the effects of all nearby chromatin 
accessibility-affecting k-mers. This assumption follows from the apparent non-linearity of 
genomic functionalization. DNase-seq data and ChIP-seq data both reveal a small number of 
genomic loci with strong activity (DHS, ChIP peaks) surrounded by a vast majority of genomic 
space with no activity above background. This all-or-nothing architecture is more consistent with 
a non-linear than a linear underlying logic. Our assumption of non-specific synergy could be 
explained biologically if TFs influence chromatin accessibility by acting synergisticly to displace 
nucleosomes as has been proposed previously(Mirny, 2010). Our model does not take into 
account specific cofactor interactions that might enhance synergy for the same reason above 
that conditionality is substantially more difficult to learn. 
 
Using the set of assumptions outlined above, we have designed SCMs to learn the logic 
underlying chromatin accessibility. But how do we determine whether our SCMs are good 
representations of the underlying logic? No prior genome-wide models of chromatin accessibility 
have been published, so there is no benchmark of accuracy for comparison. We have chosen a 
multi-part logical framework to gauge the accuracy of our model: 
1. Accuracy at predicting held-out DNase-seq data. We always separate chromosomes used in 
learning and in testing to avoid overfitting that could occur if a SCM “remembers” specific 
stretches of DNA sequence. SCMs are tested over a range of cell types and DNase-seq 
protocols to gauge how consistent their performance is. These tests lead to a correlation 
coefficient of how well the SCM predicts genome-wide variance in DNase-seq signal. To 
evaluate the meaning of this correlation coefficient, variant models that alter the SCM’s 
assumptions are compared to determine whether the SCM’s parameters are improving 
predictive accuracy. Thus, if SCM predicts chromatin accessibility well, and its accuracy is 
diminished if parameters are changed, then the included parameters may well reflect true 
aspects of the chromatin accessibility logic. 

2.  Accuracy at predicting held-out ATAC-seq data when a SCM model is trained on ether 
ATAC-seq or DNase-seq data.   Since ATAC-seq data is an alternate assay for chromatin 
accessibility, the ability to predict this data type as well as do cross-prediction reflects the ability 
of the model to accurately capture accessibility information.  



3. Accuracy at predicting chromatin accessibility over a wide variety of sequence types. Using 
genomic data alone to gauge SCM accuracy has several limitations. (i) Genomic regions can be 
copied across chromosomes in certain instances, so held-out chromosomes may resemble the 
chromosomes used in learning. (ii) Evolutionary selection may have over-specified regions of 
accessible chromatin, as these are often vital gene regulatory regions. Adding redundancy to 
accessible regions would mitigate against deleterious gene regulatory consequences of a single 
mutation, and mutations that add accessibility-promoting motifs in inaccessible chromatin might 
be selected against. Thus, a SCM that accurately predicts genomic accessibility may be 
learning redundancies that would not enable generalization to any DNA sequence. To gauge 
true accuracy of a SCM, we have devised a method, SLOT, that enables us to test DNase-I 
hypersensitivity of a large number of arbitrarily designed DNA sequences in any defined 
genomic context. By testing SCM accuracy on a wide variety of sequences that bear no 
resemblance to the genomic sequences used in training, we can more accurately gauge the 
generalized accuracy of SCMs. Thus, if the SCM accurately predicts sequence-dependent 
chromatin accessibility in a controlled context over a wide range of sequences that bear no 
resemblance to the training data, then we can conclude that the SCM is modeling the actual 
logic of chromatin accessibility.   

4. Ability to make additional predictions about the biology underlying chromatin accessibility. A 
good model should not only accurately model data but should yield insights into the underlying 
biological paradigms. We have chosen to follow up one specific prediction, that genome-wide 
binding patterns of the pioneer TF Nrf1 can be predicted using the same synergistic logic 
governing chromatin accessibility, because it is one of the more surprising implications of the 
SCM. However, with time, we expect our group and others to test other SCM predictions, which 
will either lend more credence to the model of chromatin accessibility underlying the SCM or 
may identify model deficiencies that prompt model refinements.  

 

Interpreting the parameters of the SCM should pave the way for an integrated understanding of 
the cellular systems that have evolved to regulate chromatin accessibility, leading to specific 
predictions about how to alter accessibility through altering the protein and DNA components of 
this system.  

However, we acknowledge that SCMs as currently formulated cannot be fully accurate 
representations of underlying biology. The functionalization of DNA into chromatin through the 
action of sequence-specific regulators is probabilistic and dynamic, whereas our current models 
are deterministic and static. Thus, our models can be understood as statements of the 
equilibrium tendencies of the system governing chromatin accessibility. How chromatin 
accessibility is buffered to maintain consistent function in spite of stochastic changes in 
conditions and how accessibility is dynamically regulated to enable changes in cellular function 
are fascinating questions ripe for future modeling efforts.  

 

Distinction from discriminative motif discovery 

A class of methods with similar methodological ideas to SCMs is discriminative motif discovery, 
which seeks to identify the k-mer sequences that constitute a sequence motif for an underlying 
transcription factor (or functional element). In this approach the user identifies a set of regions of 
interest and uses a discriminative motif finder to construct a model that can distinguish these 



regions from background based upon k-mer frequencies. While our approach is similar in that it 
uses short k-mer sequences as a underlying predictor, it is quite distinct in goals. 

We also note that the SCM is also distinct from variant prioritization techniques which seek to 
discover functionally relevant bases in the genome. The SCM seeks to simply model the 
relationship between sequence and high-thoughtput sequencing reads without claims about the 
underlying causal mechanism or phenotype.  

• Binary vs Quantitative: Discriminative motif discovery has focused upon binary 
features such as regions with transcription factor binding. While discriminative motif 
finding is very well suited for detection of motifs underneath a ChIP-seq peak, our goals 
have been to ask whether DNase-seq can be quantified in its entirety from a spatially 
synergistic sequence model. Much of our results rely on quantitative measurements of 
DNase-seq. 

• Understanding spatial effects: Our goals were to understand the spatial effects and 
interactions involved in chromatin accessibility rather than just purely predicting DNase-
seq data. Existing methods for discriminative motif discovery have treated each region 
as an exchangeable bag, discarding relative positional information of k-mers. While this 
is suitable for motif detection, we wanted to understand if spatial interactions among k-
mers would be able to predict DNase-seq. For example in Figure 4 we show that the 
parameters learned by our model closely match the DNase-seq footprints observed for 
transcription factor binding motifs in other datasets. Our model is not only designed 
simply as a way to predict; it is meant as a computational realization of our current 
understanding of chromatin accessibility. 

• Genome-wide vs focus on function: One final goal of our model was to remove the 
uncertainty associated with selecting a functional region or parameter. The SCM can be 
run without any parameter tuning. It takes an aligned set of sequences and outputs k-
mer profiles. The reason for this approach is to minimize the biased selection of 
functional regions. Unlike ChIP-seq, DNase-seq signals can be quite broad and vary in 
strength, leading to questions of whether the final results depend on the peak selection 
methods used. 

Since it is possible to use SCM to perform classification of a set of DNase-seq peak regions, we 
have performed a set of comparisons against a state-of-the-art discriminative motif finders to 
show that even on a discriminative motif-detection task, SCM is competitive (Supplementary 
Fig. 2).  

 

Comparisons to classification models 

We construct training and test sets on ENCODE K562 DNase-seq datasets using the same 
peak definitions as Figure 1d with a 300bp window around each peak as a positive example. 
Negative examples are drawn uniformly at random from the genome.  

For the gapped kmer-model (Ghandi et al. 2014) we use a 300 bp window as suggested in 
(Zhou and Troyanskaya 2015) for training and test, using the default execution flag of '-d 3' as 
suggested in the README.  

Additionally, we trained the gapped kmer-model using the ENCODE hotspots with the same 
parameters, this training method performs on-par with the 300bp window model despite the 
training test set mismatch. 



For SeqGL (Setty and Leslie 2015), we use the same 300bp train/test windows as the gapped 
kmer model, and train the model using the function 'run.seqgl.wrapper' with default parameters. 

For DeepSEA(Zhou and Troyanskaya 2015), we took the pre-trained model available at the 
authors’ website, and used a 1kb window generated by adding flanking bases to the 300bp 
train/test sets of the gapped kmer-model and extract the 'K562.DNase.None' column (no 
parameters exist for running DeepSEA). 

We use the best transformed output from each method for our regression comparisons. For 
SeqGL and GKMSVM these are the outputs of the linear SVM and group lasso respectively, 
while for DeepSEA this was the probability outputs. 

Our goal with these comparisons was not to show that SCM is suited for discriminative motif 
detection; on the contrary we expect these methods to perform quite well in tasks like ChIP-seq 
for which they were designed. Our goal is instead to show that our method is robust and flexible 
at modeling DNase-seq read counts over the genome despite having no parameters and being 
biologically driven. 

Implementation of SCMs 

Our goal is to produce a predictive model of sequence to a quantitative, integer-valued trait 
measured per base on the genome.  

The design of our algorithm is guided by several goals: 
• Predictive model: our model should predict trait that can be held-out and evaluated for 

goodness of fit. This makes the overall problem well-defined and easy to evaluate. 
• Parameter independence: the model should not have any performance-influencing 

parameters. All parameters that can be set should be set as large as memory and 
computation time allows. 

• Tractable runtime: the model should run in less than several days for any number of 
experiments on the human genome. 

• Interpretable parameters: the output parameters should be interpretable as the local 
effects of an K-mer. 

• Theoretical grounding: the model should provide reasonable theoretical guarantees on 
model recovery and prediction capacity. 

 
These requirements naturally lead us to construct a genome-wide Poisson regression, 

where the variables are K-mer indicators that act log-linearly. The technical innovation in this 
paper is the introduction of a tractable method for fitting 𝐿𝐿1 regularized linear models over the 
genome. Note that while a negative binomial regression would have the advantage of allowing 
us to fit overdispersed count data, it has the drawback that the overdispersion parameter makes 
the overall objective function nonconvex, and makes comparisons between separate samples 
impossible due to different variances. We instead use count truncation at ten reads per base to 
control the effective overdisperson uniformly over all samples. 

In the paper we use a maximum K-mer length of 8 which was the maximum that would fit 
in memory in an Amazon EC2 c3.8xlarge instance. Larger K-mers tested on a larger memory 
machine did not perform substantially better than 8-mers. 
 
Notation and genome representation 

Throughout, we assume that the genome consists of one large chromosome with 
coordinate 0 to N. In practice we will construct this by concatenating chromosomes with the 



telomeres acting as spacers. The variable K represents the maximum k-mer length considered, 
the model fits all k-mers from 1…K. The variable M represents the influence of each k-mer. 

The regularization parameter η is a scalar representing our belief about the sparsity of 
the problem. 

Whenever possible, we will use i for genomic coordinate, k for k-mer length, and j for 
coordinate offset from the start of a k-mer. 

The input variable c is a vector of length N representing counts and 𝑐𝑐𝑖𝑖 represents the 
read-count observed at base i.  

The latent variable λ is a vector of length N representing the current estimate for c using 
θ. 
𝜃𝜃𝑘𝑘 is the parameter matrix of size 4𝑘𝑘 × 2𝑀𝑀 associated with the set of all k-mers. 

The variable 𝑔𝑔𝑘𝑘  is a mapping from genomic coordinate i to the k mer starting at i. The k-
mer for 𝑔𝑔𝑘𝑘  is represented as an integer that maps to rows of 𝜃𝜃 such that the 𝑔𝑔𝑘𝑘 th row of 𝜃𝜃𝑘𝑘 is 
the effect of a k-mer starting at coordinate i. 

For instance, 𝑔𝑔𝑖𝑖4 is the 4-mer starting at coordinate i. If this is ATCG, then the row 𝜃𝜃𝑔𝑔𝑖𝑖4
𝑘𝑘  

must be the effect that ATCG exerts on its neighbors. 
The special parameter 𝜃𝜃0  is used to set the average read rate of the genome globally. 

 
Model setup 

The problem we solve is a regularized Poisson regression. We would like to maximize 
the following: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

��𝑐𝑐𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖)−𝜆𝜆𝑖𝑖
𝑖𝑖
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The intermediate variables 𝜆𝜆 are defined by: 

𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �� � � 𝜃𝜃�𝑔𝑔𝑖𝑖+𝑗𝑗𝑘𝑘 ,−𝑗𝑗�
𝑘𝑘

𝑗𝑗∈[−𝑀𝑀,𝑀𝑀−1]𝑘𝑘∈[1..𝐾𝐾]

�−𝜃𝜃0�. 

Naive inference algorithm 
Naively, we would attempt batch proximal gradient descent on this objective function, 

which would involve the following steps:  
1. Given current iterate 𝜃𝜃, calculate current 𝜆𝜆 for all bases 𝑖𝑖 ∈ [0,𝑁𝑁] by 

𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �� � � 𝜃𝜃�𝑔𝑔𝑖𝑖+𝑗𝑗𝑘𝑘 ,−𝑗𝑗�
𝑘𝑘

𝑗𝑗∈[−𝑀𝑀,𝑀𝑀−1]𝑘𝑘∈[1..𝐾𝐾]

�−𝜃𝜃0�. 

2. Given current 𝜆𝜆 calculate the per base gradient vector 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖 = 𝑐𝑐𝑖𝑖 − 𝜆𝜆𝑖𝑖 . 

3. Propagate the errors back to the parameter 𝜃𝜃. Let s be the integer index corresponding 
to a k-mer. Then the gradient of this kmer 𝑠𝑠 with off set 𝑗𝑗 is 

𝑑𝑑𝜃𝜃𝑠𝑠 ,𝑗𝑗
𝑘𝑘 = � 𝑒𝑒𝑒𝑒𝑟𝑟{𝑖𝑖+𝑗𝑗}
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and 

𝑑𝑑𝜃𝜃0 = �𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

. 

4. Update the current parameter with stepsize alpha. 
𝜃𝜃𝑘𝑘 = 𝜃𝜃𝑘𝑘 + 𝛼𝛼𝛼𝛼𝜃𝜃𝑘𝑘 

5. Update the constant offset 



𝜃𝜃0 = 𝜃𝜃0 − 𝛼𝛼𝛼𝛼𝜃𝜃0 
6. Apply the proximal operator for 𝐿𝐿1 regularization 

𝜃𝜃{𝑠𝑠,𝑗𝑗}
𝑘𝑘 = �𝜃𝜃{𝑠𝑠,𝑗𝑗}

𝑘𝑘 − 𝛼𝛼𝛼𝛼  𝑖𝑖𝑖𝑖�𝜃𝜃{𝑠𝑠,𝑗𝑗}
𝑘𝑘 � > 𝛼𝛼𝛼𝛼
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This algorithm is prohibitively slow, with an iteration runtime of 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁+ 4𝐾𝐾𝑀𝑀). In 

practice, contribution from 𝑁𝑁𝑁𝑁𝑁𝑁 dwarfs that of 4𝐾𝐾𝑀𝑀 since the gradient computation is cache 
incoherent and 𝑁𝑁 = 3 × 109 which is much greater than 4𝐾𝐾𝑀𝑀 = 6 × 104  

There are two free parameters (𝛼𝛼 and 𝜂𝜂). The value for 𝜂𝜂 is set via grid-search over 
values of 𝜂𝜂 using held-out sets starting with the maximal feasible 𝜂𝜂. This maximum is calculated 
analytically as the maximal 𝜂𝜂 for which all 𝐾𝐾mers are nonzero. We will discuss setting 𝛼𝛼 below. 
 

 
Understanding the model 

The 𝑘𝑘-mer model is a standard generalized linear model cast for a particular problem, 
but the role of regularization and the model class represented by the model may be confusing 
for some. The next sections make clear the action of the model. 
 

Convexity of loss 
The overall objective function of our Poisson regression is convex, this has a variety of 

important theoretical and practical properties: 
1. The algorithm does not depend on initial condition of the optimizer 
2. The optimizer converges and at fast rates. 
3. We can understand the algorithm's behavior by analyzing its gradient. 

 
Role of 𝐿𝐿1 regularization 
The model self-tunes its complexity through 𝐿𝐿1 regularization. Consider the following toy 

example: the dinucleotide AT is a causal pioneer signature and we hope to detect this is the key 
𝑘𝑘-mer. 

Consider two possible solutions: the optimal one where only AT models the DNase 
effects and a suboptimal one in which 3-mers ATA,ATC,ATG,ATT together model the effect of 
AT. Then note that the 𝐿𝐿1 penalty penalizes the latter model four times as much, making our 
algorithm strongly prefer the true model. 

This argument can be generalized is a straightforward way to understand the way in 
which 𝐿𝐿1 regularization determines which k-mers are set to zero and which others are set to 
nonzero values. By the proximal update equation, it is clear that in order for a k-mer at zero to 
become nonzero, the following has to be true: 

𝑑𝑑𝜃𝜃{𝑠𝑠,𝑗𝑗}
𝑘𝑘 = � 𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖+𝑗𝑗

�𝑖𝑖 :𝑔𝑔𝑖𝑖
𝑘𝑘=𝑠𝑠�

≥ 𝜂𝜂  

For a given k-mer, s, consider the following thought experiment: take the optimal solution 
𝜃𝜃 and set the effect of s to zero. The above equation claims that if the sum of errors around s is 
less than eta, s should be set to zero and 𝜃𝜃 could not be an optimal solution due to convexity. 

Therefore a k-mer has two paths to becoming nonzero: it can have large effect 
whenever it appears, or it can appear many times and cause a consistent small (log) effect. 
 

Role of exponential link function 
The exponential link function allows the model to capture nonspecific interactions 

between k-mers. As an example let us consider the case of modeling a CTCF motif consisting 



of CCACCAGGGG using 4-mers. Consider upweighting the first base of CCAC in the length M 
vector, the second base of CACC, the third base of ACCA ... this allows us to construct a 
regression that has some activation c with a single 4-mer, but has 𝑐𝑐7 activity when beneath a 
CTCF motif.  

The combination of exponential link and modeling all local effects allows for very 
powerful combinatorial expressions that would not be possible with any model ignoring spatial 
relationships between k-mers. This expressivity of the model is the reason why both advanced 
optimization and regularization techniques are necessary to keep the model under control. 
 
Accelerating the algorithm 

Prefix compression 
Note that due to our k-mer matching scheme, a 3-mer can be represented as the sum of 

the 4 possible 4-mers whose prefix matches the 3-mer. Utilizing this fact, we can obtain 
runtimes of 𝑂𝑂(𝑁𝑁𝑁𝑁 + 4𝐾𝐾𝑀𝑀 + 4𝐾𝐾𝐾𝐾) and also reduce cache incoherence substantially. 

We maintain a matrix 𝜙𝜙 of size 4𝑘𝑘 × 2𝑀𝑀which represents only the longest k-mers. We 
then modify the first through fourth steps to use 𝜙𝜙 instead of 𝜃𝜃. Since every k-mer has a unique 
prefix match, this reduction maintains correctness of the algorithm. 

Finally before step 6 we apply a decoding step. Let 𝑔𝑔(𝑠𝑠,𝑘𝑘) be a set-valued function 
consisting of all k-mers whose first k-1 characters match s. 

𝑑𝑑𝜃𝜃𝑠𝑠𝑘𝑘 = � 𝑑𝑑𝜙𝜙𝑠𝑠′
𝑠𝑠′∈𝑔𝑔(𝑠𝑠,𝑘𝑘)

 

The use of dynamic programming (generate 𝜃𝜃𝑠𝑠𝑘𝑘−1 followed by 𝜃𝜃𝑠𝑠𝑘𝑘−2) gives a runtime of 𝑂𝑂(4𝐾𝐾) to 
decode the compressed representation. 

After step 6 we re-encode the parameter matrix into the compressed representation. 
Given a k-mer s, let 𝑓𝑓(𝑠𝑠,𝑘𝑘) be the set valued function returning the k character prefix of s. 

𝜙𝜙𝑠𝑠 = � 𝜃𝜃𝑓𝑓 (𝑠𝑠,𝑘𝑘)
𝑘𝑘

𝐾𝐾

{𝑘𝑘=1}
 

This takes runtime 𝑂𝑂(4𝐾𝐾𝐾𝐾). 
Representing the k-mers as bitstrings where each two bits represents a base allows for 

the query operations to be done nearly entirely bitshifts and cache-coherent additions, which 
allows for fast encoding and decoding for typical values of K=8 and M=500. 
 

More efficient proximal operators 
We derive a provably correct and more efficient proximal operator for the gradient 

descent algorithm.  
The basic algorithm uses the standard 𝐿𝐿1 soft-threshold prox operator: 

𝜃𝜃{𝑠𝑠,𝑗𝑗}
𝑘𝑘 = �𝜃𝜃{𝑠𝑠,𝑗𝑗}

𝑘𝑘 − 𝛼𝛼𝛼𝛼  𝑖𝑖𝑖𝑖�𝜃𝜃{𝑠𝑠,𝑗𝑗}
𝑘𝑘 � > 𝛼𝛼𝛼𝛼

0            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 
However, we note that this solution can be strictly improved with little extra effort. Using the 
same insight as our prefix compression scheme, note that adding a constant c to a k-mer and 
adding the same constant to the 4 possible k-1 mer prefix matches returns the same predicted 𝜆𝜆 
values but have different 𝐿𝐿1 penalty values. Using this idea we can decrease the 𝐿𝐿1  penalty 
without affecting the goodness of fit. 

This algorithmically captures the intuition that if {ATA,ATC,ATG,ATT} all have similar and 
positive effects, we can better represent the effect using just AT. 

Define the median of a k-mer as the median parameter value of the prefix matching k+1-
mers and the negative of itself. Define g(s,k) as before as the set-valued function returning the 



four possible one character continuations of s (for example, given AT, 
g(s,3)={ATA,ATC,ATG,ATT}) and the function 𝑚𝑚(𝑠𝑠, 𝑗𝑗) as: 

𝑚𝑚(𝑠𝑠, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝜃𝜃𝑔𝑔(𝑠𝑠,𝑘𝑘),𝑗𝑗
𝑘𝑘+1 − 𝜃𝜃𝑠𝑠,𝑗𝑗

𝑘𝑘 �. 
Then the parameters for any kmers 𝑠𝑠′ ∈ ℎ(𝑠𝑠) can be updated as 

𝜃𝜃𝑠𝑠′ ,𝑗𝑗
𝑘𝑘 = 𝜃𝜃𝑠𝑠′ ,𝑗𝑗

𝑘𝑘 −𝑚𝑚(𝑠𝑠, 𝑗𝑗) 
and 

𝜃𝜃𝑠𝑠,𝑗𝑗
𝑘𝑘 = 𝜃𝜃𝑠𝑠,𝑗𝑗

𝑘𝑘 + 𝑚𝑚(𝑠𝑠, 𝑗𝑗). 
This is a dynamic programming algorithm starting at K-1 and stopping at k=1. This procedure is 
guaranteed to not change the likelihood term depending on 𝜆𝜆 while strictly shrinking the 𝐿𝐿1 norm 
of 𝜃𝜃. 
 

Stochastic gradient descent 
We find that gradient descent is still far too slow to run on a single 32-core machine in 

less than a week. We achieve nearly ten-fold speedup by utilizing stochastic rather than batch 
gradient descent. 

The variant of gradient descent we use is a minibatch-gradient, where we calculate the 
gradient and error over a smaller subregion of the genome. We use twenty million bases as our 
minibatch size (which we will refer to as B).  

To control the step-size more intelligently, we also use a variant of stochastic gradient 
descent known as Adagrad(Duchi, Hazan, & Singer, 2011). We maintain a separate history 𝛿𝛿𝑠𝑠 
for every k-mer which we increment with the norm of the gradient. 

In our variant, we cut the genome into twenty-million base chunks called minibatches. 
Let 𝑙𝑙 ∈ and 𝜎𝜎(𝑙𝑙) be a permutation of l. 
The steps one to three in the previous algorithm becomes: 

1. At the beginning of every pass over the full genome, we generate a new random 
permutation 𝜎𝜎(𝑙𝑙) 

2. Pick a global step size 𝛼𝛼 by doing a line-search along the region of size B with largest 
number of reads. 

3. For 𝑖𝑖 ∈ �1 … ⌊𝑁𝑁
𝐵𝐵
⌋�  do a full update (naïve algorithm) on the subset of bases (𝜎𝜎(𝑙𝑙)𝑖𝑖−1)𝐵𝐵+

[0,𝐵𝐵]. 
4. For each k-mer s, update its value with 

𝜃𝜃𝑠𝑠𝑘𝑘 = 𝜃𝜃𝑠𝑠𝑘𝑘 + 𝛼𝛼𝛼𝛼𝜃𝜃𝑠𝑠𝑘𝑘 �𝛿𝛿𝑠𝑠�  
5. If the average function value of all minibatches is more than 10% greater than the 

previous iteration, set 𝛼𝛼 = 𝛼𝛼 2⁄ , reset parameters and redo the loop 
6. Else return the averaged iterates over the whole pass. 

While this algorithm gives no asymptotic performance improvement over the batch gradient, in 
practice it returns a solution equivalent to the batch gradient in time that is 10-20 times faster 
than the batch method. This is a well-documented effect in the literature. 
 
 
 
Non-synergistic additive models 
Synergistic interaction between transcription factors are often defined as non-linear effects of 
sequence elements on a phenotype of interest, such as gene expression(Veitia 2003). In the 
case of chromatin accessibility, we are considering the question of whether a log-linear model 
for accessibility is appropriate compared to an additive, linear model. Such model comparisons 
were performed in prior work (He et al. 2010) and used as evidence for a logistic link between 
transcription factor binding and gene expression.  
 



We therefore propose and fit a null linear additive model of k-mer effects which acts as a  way to 
test whether  DNase accessibility fits a synergistic sequence model better. To do this, we modify 
our objective function, defined as  

𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

��𝑐𝑐𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖)−𝜆𝜆𝑖𝑖
𝑖𝑖

�− 𝜂𝜂��𝜃𝜃𝑘𝑘�1 

With intermediate variables 𝜆𝜆 are defined by: 

𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �� � � 𝜃𝜃�𝑔𝑔𝑖𝑖+𝑗𝑗𝑘𝑘 ,−𝑗𝑗�
𝑘𝑘

𝑗𝑗∈[−𝑀𝑀,𝑀𝑀−1]𝑘𝑘∈[1..𝐾𝐾]

�−𝜃𝜃0�. 

By replacing the intermediate variable 𝜆𝜆defined with an additive link, 

𝜆𝜆𝑖𝑖 =  � � � 𝜃𝜃�𝑔𝑔𝑖𝑖+𝑗𝑗𝑘𝑘 ,−𝑗𝑗�
𝑘𝑘

𝑗𝑗∈[−𝑀𝑀,𝑀𝑀−1]𝑘𝑘∈[1..𝐾𝐾]

�−𝜃𝜃0 . 

With the additional constraint, 𝜃𝜃𝑖𝑖 ,𝑗𝑗
𝑘𝑘 > 0and 𝜃𝜃0 > 0.001where the latter constraint is required to 

stabilize the objective function.  
 
The resulting model has a similar expressive power as the log-linear model with identical 
parameters and convolutional assumptions on the k-mers, but with an additive rather than 
exponential effect of k-mers on chromatin accessibility. 
 

Methods 

Cell culture 

Mouse embryonic stem cell culture was performed according to previously published 
protocols3(Sherwood et al., 2014). Undifferentiated 129P2/OlaHsd mouse ES cells were maintained on 
gelatin-coated plates feeder-free in mES media composed of Knockout DMEM (Life 
Technologies) supplemented with 15% defined fetal bovine serum (FBS) (HyClone), 0.1mM 
nonessential amino acids (Life Technologies), Glutamax (Life Technologies), 0.55mM 2-
mercaptoethanol (Sigma), 1X ESGRO LIF (Millipore), 5 nM GSK-3 inhibitor XV and 500 nM 
UO126. Cells were regularly tested for mycoplasma. Genetic manipulations to stem cell lines 
are described below. 

 

DNase-seq  

DNase-seq was performed as described previously(Sherwood et al., 2014). 10-100 million cells 
were digested with 60-100 units of DNase I (Promega) per 107 nuclei. 50-125 bp hypersensitive 
DNA was collected using E-Gel SizeSelect Agarose 2% gels (Life Technologies). Library 
preparation and Illumina HiSeq were performed by the MIT BioMicroCenter. 

 

 

 

ChIP-seq 



ChIP was performed according to the “Mammalian ChIP-on-chip” protocol (Agilent) using a 
polyclonal antibody against Nrf1 antibody (ab34682, Abcam) and Protein G Dynabeads (Life 
Technologies). 10-100 million cells were used for each experiment. qPCR using positive and 
negative control primers was performed to ensure ChIP enrichment. Library preparation and 
Illumina HiSeq were performed by the MIT BioMicroCenter. 

 

Single Locus Oligonucleotide Transfer (SLOT)  

To begin optimizing SLOT, we ordered a library of 175 bp oligonucleotide DNA sequences 
containing 100 bp variable phrases with the following common features: flanking primer 
sequences distinct from any genomic DNA sequence, a unique DNA barcode distinct from all 
other barcodes at Levenshtein distance = 2, and a common internal primer past the barcode 
(see Supplementary Fig. 8) from Broad Technology Services. This library was amplified using 
primers that add 67 bp homology arms to each end using NEBNext High-Fidelity 2X PCR 
Master mix (New England Biolabs), as we found that this polymerase minimized library 
amplification bias. Homology arms were designed to flank two genomic CrispR guide RNA 
sequences in genomic regions with no surrounding DNase-seq activity in mESC.  

In order to utilize CrispR-mediated homologous recombination, we cloned the required guide 
RNA and Cas9 components into convenient vectors. We cloned the U6 promoter guide RNA 
hairpin construct from the dual Cas9/guide RNA expression plasmid pX330(Cong et al., 2013) 
(Addgene) into the Tol2 transposon vector p2TAL200R175(Kawakami & Noda, 2004) along with 
either a Hyromycin resistance cassette or a Blasticidin resistance cassette to form p2T 
U6sgRNA HygroR and p2T U6sgRNA BlastR. In later tests, we modified the hairpin structure to 
incorporate the “FE” alterations shown to improve guide RNA hairpin stability(Chen et al., 2013), 
creating p2T U6sgRNA-FE HygroR and p2T U6sgRNA-FE BlastR. We cloned the CBh promoter 
Cas9 construct from pX330 into the p2Lox vector designed to integrate expression constructs 
into the HPRT locus of the p2Lox mESC line(Iacovino et al., 2009; Mazzoni et al., 2011) to form 
p2Lox CBh Cas9. In later tests, we cloned CBh Cas9 into the p2TAL200R175 vector along with 
a Blasticidin resistance cassette to form p2T CBh Cas9 BlastR. We cloned guide RNAs 
targeting two closed chromatin loci into p2T U6sgRNA HygroR, p2T U6sgRNA BlastR, p2T 
U6sgRNA-FE HygroR, and p2T U6sgRNA-FE BlastR (denoted p2T U6sgLocusA HygroR etc.). 

We then tested homologous recombination frequency by introducing 5 ug PCR-amplified library 
+ 5 ug CBh Cas9 + 5 ug p2T U6sgLocusA HygroR into 106 mESCs by co-electroporation. 
Transient antibiotic selection was performed for 72 hours at 24-96 hours post-electroporation. 
We achieved 0.6% integrated allele frequency as assessed by comparing qPCR cycle counts of 
a locus-specific primer and a phrase-specific primer with control locus cycle counts (see 
Supplementary Fig. 8). We then asked whether constitutive expression of either Cas9 or guide 
RNA could improve homologous recombination frequency. We used the p2Lox system (p2Lox 
CBh Cas9) to constitutively express Cas9 and the Tol2 transposon system (p2T U6sgLocusA 
HygroR) to constitutively express either Cas9 or guide RNA in p2Lox mESCs. We then co-
electroporated 5 ug PCR-amplified library + 5 ug CBh Cas9 + 5 ug p2T U6sgLocusA BlastR into 
106 mESCs (we found that additional Cas9 and guide RNA improved homologous 
recombination even when constitutively expressed). We found that constitutive Cas9 or guide 
RNA improved homologous recombination frequency, yet constitutive guide RNA (6.3% allele 
frequency) was more efficient than constitutive Cas9 (1.7% allele frequency). We then repeated 
the constitutive guide RNA expression experiment but using the FE versions for constitutive 
(p2T U6sgLocusA-FE HygroR) and additional transient (p2T U6sgLocusA-FE BlastR) 
expression, achieving significantly more efficient homologous recombination (15.9% allele 



frequency). We then reasoned that transient selection for Cas9 electroporation might be more 
effective than selection for guide RNA electroporation. So, in the context of constitutive guide 
RNA expression (p2T U6sgLocusA-FE HygroR), we co-electroporated 5 ug PCR-amplified 
library + 5 ug p2T CBh Cas9 BlastR + 5 ug p2T U6sgLocusA HygroR into 106 mESCs, 
achieving even more efficient homologous recombination (30.9% allele frequency). Results from 
this set of experiments are summarized in Supplementary Fig. 8. 

We thus standardized the SLOT protocol: construct a stable cell line constitutively expressing 
p2T U6sgRNA HygroR, then co-electroporate PCR-amplified library + p2T CBh Cas9 BlastR + 
p2T U6sgRNA HygroR. For the experiments described in this work, we electroporated 107 
mESC with 20 ug of each component DNA, achieving 20-50% allele frequency in all three loci. 
Library-integrated mESCs were grown for 7-21 days after electroporation before DNase-I 
hypersensitivity analysis, and care was taken to maintain high pool complexity by splitting at 
high density. 

DNase-I hypersensitivity analysis was performed mostly according to our previously published 
protocol(Sherwood et al., 2014) with several differences. Immediately after nuclear extraction, 5-
10% of nuclei were reserved for genomic DNA isolation to serve as a control. The remaining 
nuclei were treated with 70-90 units of DNase per 107 cells. After DNA purification, E-gel size-
selection was performed to isolate 125-275 bp DNA, a size range that accommodates the 
minimal size required to amplify with locus-specific and internal primers (see Supplementary 
Fig. 8). qPCR using positive and negative control primers was performed to ensure enrichment 
of DNase-hypersensitive DNA. 

Then, we performed a three-step library preparation to allow Illumina deep sequencing analysis 
of barcode representation (see Supplementary Fig. 8). First, we specifically amplified locus-
integrated DNA from either genomic DNA or DNase-I hypersensitive DNA for 16-20 PCR cycles 
using NEBNext. For genomic DNA, 16 ug of input DNA was used in an 800 uL reaction to 
ensure library diversity; for DNase-I hypersensitive DNA, ½ the product was used in a 400 uL 
reaction. This step serves two purposes: (i) it separates locus-integrated phrases from 
unintegrated phrases which remain in cells in substantial numbers even several weeks after 
electroporation; (ii) it highly enriches for phrases at the expense of other genomic regions, 
simplifying the template for the subsequent tailed primer PCR steps. We performed QiaQuick 
PCR purification (Qiagen) to purify the products. We then performed qPCR on a small aliquot of 
each sample to calculate how many PCR cycles to perform for the subsequent two PCR steps, 
typically performing 5-10 cycles of each PCR. The second PCR step amplifies the barcode 
using the flanking and internal primers while adding half of the Illumina paired-end primer 
sequences as well as 5-6 bp multiplexing sample barcodes to allow sequencing of multiple 
samples per MiSeq/HiSeq lane. The third PCR step adds the full Illumina paired-end primer 
sequences. For the experiments reported in this work, we used 70 bp single-end Illumina 
MiSeq, performed by the MIT BioMicroCenter. Full phrases were also sequenced from genomic 
DNA using a similar library preparation strategy as above but using the flanking primer instead 
of the internal primer to amplify locus-integrated phrases. These samples were sequenced 
using 150 + 150 bp paired-end MiSeq.    

 

Oligonucleotides 

Oligonucleotides used in this work are listed in Supplementary Table 2. 

 



Mapping and data preprocessing 

 We use a unified alignment, error-control and bias reduction pipeline from bcbio-nextgen 
built as a docker container. The aligner used was BWA, with a map quality cutoff of at least 1 
(unique mapping). The mapped reads were then filtered, retaining at most ten reads per base 
per strand to remove anomalous towers of reads.  

 

Construction of a DeBrujin graph based SLOT test phrase set 
Traditional phrase library construction methods have relied primarily on hand-

constructing a scaffold of control sequences with a replaceable positive phrase component that 
accepts a motif. This approach has the problem that only a few parts of the phrase are actually 
activating, and that the positive phrase components must be known quite precisely. 

Instead, we demonstrate a method that can construct a phrase library where each 
phrase is constructed solely of positive or control sequences which can model more complex 
structures compared to traditional methods. For example, our algorithm is able to identify that if 
a phrase begins with CCACCA, then the most DNase-seq positive completion is to continue the 
CTCF motif as CCACCAGGGGC. 

Using a pre-trained DNase-seq K-mer model we construct the compressed phrase 
representation 𝜙𝜙 and separate the k-mers into three classes: DNase-hypersensitive, control, 
and DNase-closing.  

For the control-phrases, we construct a deBrujin graph over the K-mers in the control 
group and perform a random walk of length 100-K (our desired phrase length). This produces a 
set of 100-base phrases that are predicted to have no effect at all bases. 

For the positive-phrases, we construct a deBrujin graph over both the control and 
positive groups. Random walking over this graph could result in a phrase that is entirely control, 
so we construct the phrase in the following way: 

1. begin at a positive phrase randomly chosen from the positive phrase set. 
2. if there exists any positive phrases in the out-neighborhood, then jump randomly 

amongst them 
3. otherwise, jump deterministically to the most positive phrase. 

This process has the property that it random walks until it can no-longer continue a positive 
phrase, and then hill-climbs to the next closest phrase. We find that this process produces 
substantially higher enrichment compared to randomly inserting K-mers into a scaffold. 
 

Collapsing k-mers into motifs 
The motif-construction algorithm is for visualization purposes and so optimizes for speed 

rather than performance. We use a hierarchical clustering scheme combined with pairwise 
alignment. 

1. Filter the overall K-mer set into enriched K-mers by thresholding on the sum of effects 𝜙𝜙. 
2. Calculate the pairwise Levenstein distance amongst the candidate K-mer set. 
3. Use complete linkage clustering to obtain clusters with distance at least 2 amongst 

clusters. 
4. Pairwise align each cluster to the most activating k-mer in the cluster 

 

Raw data sources  

All sequencing data were mapped using the BWA aligner, and use the quality score filter 
mapq>20. 



 Sequencing datasets used in this paper from other publications are: 

 

NAME UCSC Acession 
HEK293T wgEncodeEH002565 

 
H7ES wgEncodeEH002554 

 
GM12878 wgEncodeEH000534 

 
GM10248 wgEncodeEH003487 

 
Frontal cortex OC wgEncodeEH003471 

 
FibroP_AG20443 wgEncodeEH002569 

 
FibroP_AG08395 wgEncodeEH002568 

 
Fibrobl_GM03348 lenti-Myod wgEncodeEH003473 

 
ECC1 DMSO wgEncodeEH002555 

 
Cerebrum frontal OC wgEncodeEH003480 

 
K562 wgEncodeEH000530 

wgEncodeEH003489 
 

In addition we have produced and analyzed the following datasets generated in-house: 

mES DNase-Seq 130801 50-100bp  
mES DNase-Seq 130801 175-400bp  
mES DNase-Seq 120710 replicate 1  
mES DNase-Seq 120710 replicate 2  
mES DNase-Seq NFya 50-100bp  
mES DNase-Seq NFya 175-400bp  
mES Nrf1 rep 1 no dox  
mES Nrf1 rep 1 dox  
mES Nrf1 rep 1 sr3  
mES Nrf1 rep 1 sr8  
Hues8 S6 DALT 50-100  
Hues8 S6 DALT 175-400  
 

SCM scoring and determination of correlation coefficient with actual data. 



The k-mer model generates predictions according to the formula for 𝜆𝜆  above. We then 
deduplicate both prediction and raw reads and measure Pearson’s correlation after a 2-kilobase 
smoothing. Variance stabilizing transforms (square-root) are used whenever analysis require 
Homoscedasticity such as in Figure1c.  

 Certain analyses are done after mean-subtraction and normalization by the standard 
deviation (Z-score). 

 For details see the Rmarkdown documents used to generate the figures which are made 
available with the code. 

 

K-mer effect size determination 

 We measure a K-mer’s importance by its summed absolute log-contributions. In the 
notation described previously, this is equivalent to  summing |𝜃𝜃| over a row. 

 

SLOT computational analysis 

 In order to analyze the integrated oligonucleiotides we follow the following procedure: 

1. Reconstruct the set of genomically integrated phrases by paired-end sequencing and 
overlapping sequences using FLASH (http://ccb.jhu.edu/software/FLASH/) 

2. Use the 20bp variable region past the primer as a barcode 
3. Predict per-base number of reads using formula for 𝜆𝜆 
4. Take the average number of reads over each oligo 
5. For each barcode, assign each barcode a kmer-score according to the max over the set 

of mapping oligos 

Measuring sequence fidelity: we calculate the error rate by taking each unique barcode 
generated by 20bp region and calculating the fraction of sequenced oligos that are not 
the consensus sequence. We then average this over all barcodes to get an expected 
error rate per base. 

Mappability was measured by taking each oligo design and mapping it using bwa-mem 
to the genome.  

 

Determination of enrichment between k-mers and pioneer, settler, migrant motifs. 

 We used a master list of JASPAR motifs assigned to the three categories following our 
PIQ paper(Sherwood et al., 2014). The data and analysis are all available as a reproducible 
markdown document with our code. The top 500 ranked 8-mers are mapped to sequence with a 
log-likelihood cutoff of 5. We calculate the random background rate of matching motifs by 
randomly sampling from the set of all 8-mers. The enrichment is then calculated as a ratio. 

 

Binarization 

http://ccb.jhu.edu/software/FLASH/


 For both DNase-seq and Nrf1 binding we consider binarized region calling. For this we 
use the same smoothing as above. Each base is assigned the average number of reads within 
a ±100𝑏𝑏𝑏𝑏 region. Then we call as hypersensitive any base with averaged read count 5 standard 
deviations greater than the mean.  Hypersensitive bases within 10 bases are merged together. 

 For AUC calculations we rank randomly sampled bases using the SCM prediction. If the 
base lies within a hypersensitive region, it receives a positive label, otherwise it receives a 
negative label. 

 

Segmentation 

 In the analysis of classes of regulatory regions, we use segmentations derived from 
ENCODE with CpG taken from 450k Bead arrays (http://genome.ucsc.edu/cgi-
bin/hgTrackUi?db=hg19&g=wgEncodeHaibMethyl450) and segmentations from chromHMM 
(http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm). 

 For calculating correlations we simply subset over each category of segmentation and 
CpG island and calculate correlation only over the segment. 

 

 

Performance of SCM model as a function of cell-type specificity 

i. Regions of DNase-I enrichment 

We smoothed the real and SCM-predicted read counts using a 100bp window for the held-out 
chromosomes chr15 to chr22. We randomly shuffled the real read counts across bases in each 
chromosome and then smoothed these random read counts using a 100bp window as well. For 
each held-out chromosome, we computed the mean and standard deviation of the smoothed 
read counts and transformed the read counts to Z-scores by subtracting the mean and dividing 
by the standard deviation. 

In order to find putative regions of enrichment, we selected all continuous regions of the 
chromosome with Z-score >=3.1 which would correspond to a p-value of 0.001, in case of a 
normal distribution. Now we discretized the regions of enrichment in the real data into 100bp 
blocks and computed the sum of Z-scores within each of these blocks. We simultaneously 
selected a set of random 100000 bins of length 100bp across the chromosome and computed 
the sum of the randomized Z-scores in these bins. Using these scores, we were able to 
determine a z-score sum that corresponded to a 5% FDR threshold. We used this cutoff for sum 
of Z-scores to determine the true regions of enrichment in the real data.   

ii. Computing performance metrics 

Calculating sensitivity: Our true positive set was defined as the set of enriched 100bp bins in the 
real data that met our FDR threshold. We calculated sum of Z-scores for the predicted data for 
each of these bins and compared it to the previously computed 5% FDR threshold using 

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeHaibMethyl450
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeHaibMethyl450
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm


randomized real data. Sensitivity was calculated as the ratio of the number of enriched bins that 
are also enriched in predicted data to the total number of enriched bins in real data. 

Calculating specificity: As true negatives we selected a random set of 100bp bins of equal 
number to the true positive set that are not found to be DNase-I enriched in the real data .We 
then calculated the sum of Z-scores for each of these bins using the predicted data and counted 
the number of bins that are not enriched based on the FDR threshold. Specificity was calculated 
as the ratio of the number of non-enriched real bins that are also not enriched in predicted data 
to the number of non-enriched real bins.  

Balanced accuracy was then measured as an average of the sensitivity and specificity. As a 
control, we used the real data in one cell type to determine true positives and negatives and 
compared it to the predicted data from the other 10 cell-types. 

 

SCM code is available at http://scm.csail.mit.edu.  

http://ccm.csail.mit.edu/
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Supplementary Figures 

Supplementary Figure 1: SCM parameters allow modeling of fixed-distance k-mer 
interaction 

Nearby k-mers can interact non-linearly to produce defined logic functions. Below is a diagram 
of how three k-mers produce a NOT function where Kmer3 is present.   Compositions for AND 
and OR have similar constructions.  

  

  



Supplementary Fig. 2: SCM is equivalent to the state-of-the-art classifiers on 
classification tasks and better at read count prediction. 

Comparison of held out classification accuracy between SCM and classification methods. The 
comparison in panel A favors SCM, as the classification methods are not designed to optimize 
correlations. For GKMSVM and SeqGL we use the linear predictions from the SVM and group 
lasso directly, while for DeepSEA we use the probability predictions. The comparison in panel B 
favors the classifiers, as the classification methods can model the definition of a peak, while the 
SCM must model the entire genome. In both cases, DeepSEA is at a disadvantage because the 
DeepSEA model is pre-trained against ENCODE calls rather than our DNase peak calls over 
300bp windows. In Panel A). we find that the SCM substantially outperforms the competitors at 
predicting the expected read count over 1kb smoothed windows in the genome. Spearman 
correlations for each method are (SCM:0.74, GKMSVM:0.27, Deepsea:0.43, Seqgl: 0.48, 
Basset:0.50) In Panel B), we find that the SCM still performs best compared to 3 classification 
methods despite the fact that the SCM is not designed for classification. 

 

 

 

  



Supplementary Figure 3: Additional examples of SCM prediction of DNase-seq data 

Example human K562 held-out genomic regions showing DNase-seq reads (red), SCM-
predicted reads (black), and reads from a control model trained on IMR-90 naked DNA DNase-
seq data (green), all smoothed at 200 bp. 

 

  



Supplementary figure 4: Comparison to a non-synergistic baseline. 

An additive, non-synergistic model of DNase was produced by training the model according to 
the section “Non-additive synergistic models”. We then examined whether an additive model 
using the same training method and model capacity performed as well as the synergistic model. 

A. The SCM shows better linear correlation than the baseline method in the same 
comparison as figure 1c. 

B. Example plot shows qualitatively better correlation of SCM to observed DNase data 
compared to the non-synergistic model. The additive model cannot reproduce the 
observed dynamic range of the peaks due to the lack of synergy. 

 

  



 

 

Supplementary Figure 5: SCM predicts the vast majority of genomic enhancers and 
promoters 

Pearson’s correlation coefficients measuring accuracy of SCM on specific chromatin types as 
defined by ChromHMM. This figures captures intra-category variability, resulting in CpG 
annotations receiving relatively low correlations. This is partially due to the fact that while it is 
straightforward to distinguish CpG vs non-CpG regions through DNase-seq, it is difficult to 
quantitatively predict the DNase accessibility of any CpG region. 

 

 

  



Supplementary Figure 6: ATAC-seq raw signal diverges from DNase-seq signal and can 
be predicted by a SCM with decent accuracy 

a. Comparison of observed ATAC-seq (x-axis) and observed DNase-seq (y-axis) reads in 2 kb 
binned regions of GM12878 held-out chromosome 14. b. Comparison of SCM (ATAC-seq 
GM12878)-predicted (x-axis) and observed (y-axis) ATAC-seq reads in 2 kb binned regions of 
GM12878 held-out chromosome 14. c. Receiver-operator curve (ROC) showing predictive 
accuracy of a SCM trained on GM12878 ATAC-seq data at predicting held-out GM12878 ATAC-
seq peaks. 

 

 

  



Supplementary Figure 7: The strongest SCM k-mers are conserved across a wide range 
of human cell types 

Pearson’s correlation coefficients measuring the similarity of k-mer effect sizes in SCM trained 
on the listed cell types as compared to the k-mer effect sizes in SCM (K562). 

 

 

 

  



Supplementary figure 8  

Correlations between cell types on chromosome 14 (held-out chromosome) across varying cell types for 
200-base pair smoothed read counts in real data (A) and predicted reads from the SCM (B). The two 
panels show similar clustering across similar cell types (Fibroblast cells and Neuronal cells form distinct 
clusters in each case).   

A B 



Supplementary figure 9: SCM captures aspects of cell type specific k-mer behavior. 

A. Scatterplot of kmer effect sizes (identical to those shown in Figure 3) on SCM trained on 
human ES cells (y-axis) and Islet cells (x-axis). There is a clear set of enriched k-mers 
active in islet. 

B. Motif generated from the 20 extremal k-mers that are active in Islet and not in ES. The 
Motif is nearly exactly the AP-1 complex motif. 

C. The log-effects of the top 20 extremal k-mers shown in panel A shown in red (islet) and 
black (human ES). It is clear that there is a strong activation of AP-1 associated 
chromatin opening in the islet, but not in the ES cell case. 

D. The components of the AP-1 complex are more highly expressed in Islet compared to 
human ES cells. 

 



Supplementary Figure 10: The computed cell type-specificity of DNase-I hypersensitive 
regions depends on how the problem is defined. 

a. Histogram showing the fraction of the genomic space covered by DNase-I 
hypersensitive Hotspots in a single cell type that is covered by a Hotspot in ten 
other human cell types. b. Histogram showing the fraction of the total genomic 
space covered by a DNase-I hypersensitive site (DHS) in the superset of 11 
human cell types that is covered by a DHS in the ten other human cell types. In 
this plot, all DHS from the 11 cell types are considered as opposed to Figure 3b 
and the above panel which compute cell type-specificity using DHS calls from a 
single cell type. For the purposes of our work, we believe the overlap of DHS 
space from one dataset to all others (Figure 3b and the above panel) to be the 
most relevant statistic, as SCMs are each trained on one specific dataset and 
asked to predict the entirety of genomic chromatin accessibility 

.  



Supplementary figure 11: SLOT confirms SCM accuracy in predicting sequence-
dependent chromatin accessibility 

a. SLOT was optimized to yield the highest phrase integration frequency. From left to right on 
the x-axis are successive optimization steps and on the y-axis is the allele frequency of 
integrated phrases. Transient co-electroporation of homology-arm tailed phrase library DNA, 
Cas9 enzyme, and guide RNA followed by transient antibiotic selection for guide RNA 
expression yields <1% integration, whereas stable constitutive expression of FE-modified guide 
RNA followed by transient co-electroporation of homology-arm tailed phrase library DNA, Cas9 
enzyme, and guide RNA followed by transient antibiotic selection for Cas9 expression yields 
30% integration. b. A de Bruijn graph-based algorithm is used to generate a library of phrases 
with varying predicted chromatin accessibility and little resemblance to native genomic DNA 
sequence. c. Over 99% of the phrases have no similarity to mouse genomic DNA as determined 
by mappability, and the maximum mappable fragment is 7 bp. d. The components of a SLOT 
library phrase inserted into a genomic locus are presented. Locus-specific and phrase-specific 
primers are used in qPCR to determine integration frequency, locus-specific and internal phrase 
primers are used to amplify integrated barcodes from DNase-I hypersensitive and genomic DNA 
for deep sequencing, and locus-specific and phrase-flanking primers are used to amplify 
integrated phrases for full-phrase deep sequencing. e. The SLOT PCR-based library 
preparation method is diagrammed. Three steps of PCR are used to generate libraries for deep 
sequencing. f. Technical replicate library preparations of the same SLOT genomic DNA library 
using barcode-only and full-phrase methods yield highly concordant barcode readouts, 
suggesting highly reproducible library preparation. g. Per-base error rates in full-phrase deep 
sequencing sorted by barcode are less than 2% at every base, suggesting that barcodes can be 
reliably used to estimate readouts of specific phrases. h. SCM-predicted and SLOT-measured 
barcode reads are associated after integration in an additional genomic loci, indicating that SCM 
predictions robustly predict sequence-dependent chromatin accessibility. i. ROC curve for 
prediction of individual SLOT barcodes. 

 



 



Supplementary figure 12: Properties of SCM k-mers 

a. SCMs constrained to allow fewer than 20,000 active k-mers have substantially lower 
correlation with held-out DNase-seq data than constrained models with over 20,000 k-mers or 
an unconstrained model. b. Example PWM motifs derived from clustering the 500 k-mers with 
strongest mESC SCM effect size. Below the PWM are merged spatial k-mer effect sizes for all 
k-mers contributing to the motif within +/-1000 bp of the k-mer in hESC (red), mESC (blue), and 
K562 (green), showing the common effects of k-mers in these cell types. Names above 
correspond to high-confidence database matches with TF motifs when known, and known 
pioneer TFs are denoted. Several PWMs do not strongly correspond to known motifs.  

 



 

 

 

  



Supplementary figure 13: Nrf1 binding is better predicted by synergistic logic in genome-
wide binding prediction and in a SLOT assay 

a. Example mouse ESC held-out genomic regions showing Nrf1 ChIP-seq reads (black) and 
reads predicted from a Nrf1 ChIP-trained SCM (red), both smoothed at 200 bp. b-c. Fraction of 
phrases, binned into 100 phrase bins by their overall SCM-predicted chromatin accessibility (b, 
x-axis) or Nrf1 PWM strength (c, x-axis), that are pulled down by Nrf1 ChIP in a SLOT assay (y-
axis). Linear correlation is seen when phrases are ranked by SCM-predicted ChIP reads (b) but 
not PWM strength (c). 

 
 

  



Supplementary Tables 

Supplementary Table 1: Summary of CMM and control CMM held-out chromosome 
performance 

Training data Held-out data Notes Pearson’s 
correlation 
coefficient 

K562 DNase-seq K562 DNase-seq  0.800 
IMR90 naked DNA K562 DNase-seq  0.468 
mESC DNase-seq mESC DNase-seq  0.791 
Genomic DNA mESC DNase-seq  0.482 
mESC DNase-seq mESC DNase-seq Window 

size=2, max 
K=6 

0.410 

mESC Nrf ChIP mESC DNase-seq  0.589 
HEK293T DNase-seq HEK293T DNase-seq  0.857 
H7ES DNase-seq H7ES DNase-seq  0.881 
GM12878 DNase-seq GM12878 DNase-seq  0.807 
GM10248 DNase-seq GM10248 DNase-seq  0.842 
Frontal cortex DNase-seq Frontal cortex DNase-seq  0.831 
Fibroblast AG20443 DNase-
seq 

Fibroblast AG20443 DNase-
seq 

 0.836 

Fibroblast GM03348 DNase-
seq 

Fibroblast GM03348 DNase-
seq 

 0.839 

Epithelial adenocarcinoma 
DNase-seq 

Epithelial adenocarcinoma 
DNase-seq 

 0.868 

Frontal Cerebrum DNase-
seq 

Frontal Cerebrum DNase-
seq 

 0.792 

Cerebellum DNase-seq Cerebellum DNase-seq  0.838 
 

 

 

 

  



Supplementary Table 2: Oligonucleotides used in this work 

CrispR guide RNA cloning oligos 
  
sgRNALocusA_fwoligo CACC GTAGCCCAGGTGTGCAGGCT 

sgRNALocusA_rvoligo AAAC AGCCTGCACACCTGGGCTAC 

sgRNALocusB_fwoligo CACC GAGCAGGTGACAATTTCAGA 
sgRNALocusB_rvoligo AAAC TCTGAAATTGTCACCTGCTC 

Homology-directed repair tailed primers 
 

LocusA_HDR_fw TTCGAATCACTCCATGTGAGTATCACAGAACGGGTGCAGGAGATCAGTTGCTGTGATGGATAGAC  
CGAAAGGATGGGAGTACTAAGCT 

LocusA_HDR_rv ACCACAGTGACATCCGCCCTGAAGCAGGCAGCAGAGCAGATGCTCTGAGATGCTTGCTTTCTGT  
CTCAGTACTTTGTCCGTGCTGAC 

LocusB_HDR_fw GTGAGGCTGGTGGAAGACCACAAACAGGGGAGGGTCATGGAGAGGTCAGGGGTTGCCAACAAA  
CGAAAGGATGGGAGTACTAAGCT 

LocusB_HDR_rv CCTGGTCCAGACACTCATTCTCAAGCTTCCTCATGCTCTTGTGGGAAGCATAGATGCTTTCAGAG  
CTCAGTACTTTGTCCGTGCTGAC 

SLOT library prep and qPCR validation primers 
  

LocusA_upstream_fw CCGGTGGGGTCTCAGTGTTA 
LocusA_downstream_rv CACTGTTCTTTGTGCCATCCCTTTA 

LocusB_upstream_fw TCTACCACACTTCCAGCAGG 

LocusB_downstream_rv CAGATGTGAGGTCAAGGCTGGG 

Library_rv_reversecomplement CGTCAGCACGGACAAAGTACTGAG 

Library_fw_reversecomplement AAGCTTAGTACTCCCATCCTTTCG 
Library_fw_extension GCCGAAAGGATGGGAGTACTAAGCT 

Library_rv_extension CTCAGTACTTTGTCCGTGCTGACG 

InternalPrimer_extension AGGCCTTTCGACCTGCATCCA 
PhrPE1_BcO CTCTTTCCCTACACGACGCTCTTCCGATCTaactc GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcP CTCTTTCCCTACACGACGCTCTTCCGATCTctgga GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcQ CTCTTTCCCTACACGACGCTCTTCCGATCTggact GCCGAAAGGATGGGAGTACTAAGCT 
PhrPE1_BcR CTCTTTCCCTACACGACGCTCTTCCGATCTtctgc GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcS CTCTTTCCCTACACGACGCTCTTCCGATCTaaccg GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcT CTCTTTCCCTACACGACGCTCTTCCGATCTctctg GCCGAAAGGATGGGAGTACTAAGCT 
PhrPE1_BcU CTCTTTCCCTACACGACGCTCTTCCGATCTggtaa GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcV CTCTTTCCCTACACGACGCTCTTCCGATCTaagct GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcW CTCTTTCCCTACACGACGCTCTTCCGATCTtcgtc GCCGAAAGGATGGGAGTACTAAGCT 
PhrPE1_BcX CTCTTTCCCTACACGACGCTCTTCCGATCTccaat GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcY CTCTTTCCCTACACGACGCTCTTCCGATCTgcgta GCCGAAAGGATGGGAGTACTAAGCT 

PhrPE1_BcZ CTCTTTCCCTACACGACGCTCTTCCGATCTtgagc GCCGAAAGGATGGGAGTACTAAGCT 
SSPBMPE2_BcA CATTCCTGCTGAACCGCTCTTCCGATCT ACATCGCTCAGTACTTTGTCCGTGCTGACG 

SSPBMPE2_BcB CATTCCTGCTGAACCGCTCTTCCGATCT GCCTAACTCAGTACTTTGTCCGTGCTGACG 

SSPBMPE2_BcC CATTCCTGCTGAACCGCTCTTCCGATCT TGGTCACTCAGTACTTTGTCCGTGCTGACG 
SSPBMPE2_BcD CATTCCTGCTGAACCGCTCTTCCGATCT CACTGTCTCAGTACTTTGTCCGTGCTGACG 

IntPriPE2_BcA CATTCCTGCTGAACCGCTCTTCCGATCT ACATCAGGCCTTTCGACCTGCATCCA 



IntPriPE2_BcB CATTCCTGCTGAACCGCTCTTCCGATCT GCCTAAGGCCTTTCGACCTGCATCCA 
IntPriPE2_BcC CATTCCTGCTGAACCGCTCTTCCGATCT TGGTCAGGCCTTTCGACCTGCATCCA 

IntPriPE2_BcD CATTCCTGCTGAACCGCTCTTCCGATCT CACTGAGGCCTTTCGACCTGCATCCA 

PE1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 
PE2 CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 

DNase control primers 
  
NegDNase50b_1_fw TTGACTGCTCCCAGGTAGAGA 

NegDNase50b_1_rv TCTTGGTGATTTCATTCATAGGC 

NegDNase50b_2_fw TCCATAATGATTTGGGGAAAG 
NegDNase50b_2_rv GAAAGTTCTGGAAGACAGTGCAT 

NegDNase50b_3_fw CCAACTGCCTCCATTAGAGC 

NegDNase50b_3_rv TGCATGCTTGTGAATGTCAA 
PosDNase50b_2_fw TTTGGAAACAACCACAGTGC 

PosDNase50b_2_rv CAATACGCAGCTTTGACCAG 

PosDNase50b_4_fw GTTAAACCCAGCCTCAGTGG 
PosDNase50b_4_rv CTTCCAGGGCCTTCTTTGAT 

PosDNase50b_5_fw TTCAGGGTCCAAATAGCAGTC 

PosDNase50b_5_rv TGTTGTTAGAATGGCCACCA 
Nrf1 ChIP control primers 

 

NrfPos_1_fw GGAGCCGCGAGACTATGTG 
NrfPos_1_rv GCAATGCCGCTTCCAC 

NrfPos_2_fw CTGCGCAGCACAGTGGAC 

NrfPos_2_rv GCGGGACTTCCTGTCTCAG 
NrfPos_3_fw CATGTCCGCTTGTAGGTGTG 

NrfPos_3_rv TGCGCACAGGTTTTCTACTG 
 

 


