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Motivation for Synergistic Chromatin Models (SCMs)

Accessible chromatin has been found to correlate strongly with active gene regulatory regions.
Genome-scale DNase | hypersensitivity (DNase-seq) analysis has confirmed that nearly all
enhancers and promoters that can be defined through independent methods occur in accessible
chromatin (Thurman et al., 2012). Additionally, transcription factor (TF) binding sites are almaost
always associated with increased accessibility (Boyle et al., 2008; Hesselberth et al., 2009;
Neph et al., 2012). Thus, active gene regulatory regions populated by TFs and transcriptional
machinery occur in accessible chromatin.

There is evidence that the accessibility of chromatin helps to determine the activity of genomic
regions. In addition to providing structure, nucleosomes inhibit the gene regulatory function of
DNA through tightly winding the DNA and thus competing with TFs and the transcriptional
machinery (Richmond & Davey, 2003; Zaret & Carroll, 2011). Some TFs, known as settler TFs,
depend directly on prior chromatin accessibility in their binding decisions (Sherwood et al.,
2014). Chromatin remodeling enzymes that decrease nucleosome-DNA contact are required for
proper gene regulation (Ho & Crabtree, 2010), and an array of histone modifications and DNA
methylation have been reported to regulate nucleosome-DNA contact (Ernst & Kellis, 2013;
Heintzman et al., 2009; D. Lee, Karchin, & Beer, 2011; Meissner et al., 2008; Ram et al., 2011;
Zhou, Goren, & Bernstein, 2011). Altogether, chromatin accessibility is a tightly regulated
genomic feature that not only correlates with gene regulatory activity but also helps to govern
the gene regulatory status of a cell through controlling which genomic regions are available to
TFs and transcriptional machinery.

Our aim is to establish how DNA encodes chromatin accessibility. DNA, as the chief source of
heritable information in a cell, almost surely does encode chromatin accessibility; however, it
has thus far not been possible to predict cellular chromatin accessibility accurately from
genomic DNA sequence. A class of pioneer TFs has been shown to open chromatin at
previously closed sites (Gualdi et al., 1996; Sherwood et al., 2014; Soufi, Donahue, & Zaret,
2012; Zaret & Carroll, 2011), providing a paradigm that TF-DNA interactions can directly
modulate chromatin accessibility. Promoters have characteristic patterns of chromatin
accessibility (Thurman et al., 2012), and several canonical promoter-enriched sequences have
been identified (Frith et al., 2008; Lenhard, Sandelin, & Carninci, 2012; Sandelin et al., 2007;
Valen & Sandelin, 2011). Additionally, CpG sequences have been shown to signal chromatin
accessibility at some promoter sequences (Thomson et al., 2010), and GC content is known to
affect chromatin state(Wang et al., 2012; White, Myers, Corbo, & Cohen, 2013). A code based
on periodic spacing of dinucleotide DNA sequence motifs has also been revealed to predict
nucleosome positions in some instances, although its genome-wide accuracy is only modest
(Hughes & Rando, 2014; Kaplan et al., 2009; Peckham et al., 2007; Segal et al., 2006).

However, no current model based on these codes can explain genome-wide chromatin
accessibility. Pioneer TF binding has only been shown to causally influence accessibility at a
small number of genomic loci, and pioneer TFs do not bind to every instance of their binding
motif in the genome as might be expected by their imperviousness to prior chromatin
state(Sherwood et al., 2014),indicating that a code positing chromatin opening at pioneer TF
motifs would be replete with false positives. Promoter motifs and CpG islands are also highly
degenerate(Siebert & Soding, 2014), thus a code positing accessibility at every instance of
these motifs would have poor predictive accuracy. And the nucleosome positioning code
performs most poorly at predicting nucleosome-depleted regions that typify accessible



chromatin (Hughes & Rando, 2014; Kaplan et al., 2009; Peckham et al., 2007; Segal et al.,
2006). Therefore, prior research has not established how chromatin accessibility is encoded.

In this work, we generate a computational algorithm, the Synergistic Chromatin Model (SCM),
that uses machine learning techniques to predict genome-wide chromatin accessibility. The goal
of SCMs is to provide insight into the mechanisms that underlie chromatin accessibility. SCMs
use logic operations based on assumptions about how cells encode chromatin accessibility to
generate predictions of the chromatin accessibility of every DNA base in the genome. For this
reason, we refer to a DNA logic underlying chromatin accessibility. We posit that a model that is
accurate enough to predict accessibility under a wide array of natural and artificial conditions will
improve our understanding of the actual logic used by cells.

Because the inputs to chromatin accessibility may not all be known, we have tried to minimize
bias in our approach to uncovering its logic. Nonetheless, we do make several assumptions that
we outline below:

1. DNA encodes chromatin accessibility. This is the foundational hypothesis of this work.

2. DNase-seq data reflects chromatin accessibility. It is known that the DNase | enzyme has
sequence preferences in its cutting(Koohy, Down, & Hubbard, 2013) which can lead to
erroneous conclusions about chromatin state (He et al., 2013). We do not directly correct for
such enzyme preferences, so these may be incorporated in the model. However, we have been
careful to compare results against naked DNase | digestion as well as focus on DNase |
hypersensitive sites. Decades of work have shown that DNase-I hypersensitivity analysis does
reflect true biological states, and in fact all enhancers and promoters defined through separate
methods occur in DNase-I hypersensitive regions (Thurman et al., 2012). Thus, we believe this
to be a sound assumption.

3. The DNA “code words” encoding chromatin accessibility can be represented as k-mers 8 bp
or smaller. Most DNA coding elements including the majority of TF binding motifs, nucleosome
positioning signals, splicing elements(Barash et al., 2010), and codons are short stretches of
sequence. Our method can also use bridging k-mers to piece together longer code words
provided they occur at short and stereotyped distances (see Supplementary Fig. 1). The k< 8
bp cutoff is a technical compromise to enable manageable algorithm complexity, yet it is
reasonable to assume that most of the coding information in the genome can be learned by 8 bp
k-mers. While TFs act at motifs, or thermodynamically related collections of k-mers, modeling
motifs as k-mers are statistically equivalent. Once the SCM has been learned, these k-mers can
be constructed into motifs to aid biological interpretation.

4. K-mers affect chromatin accessibility locally, within +/- 1 kb from their occurrence. Our
previous work has shown that pioneer TFs alter chromatin state within 1 kb of their occurrence
(Sherwood et al., 2014), and Ctcf, the most powerful chromatin-shaping TF known, also affects
accessibility within 1 kb (Boyle et al., 2011). There are known cases in which chromatin states
spread over long distances (Hathaway et al., 2012; J. T. Lee & Bartolomei, 2013), most notably
in the inactivation of the X-chromosome; however, these are likely to be exceptional. Three-
dimensional chromatin interactions have also been well documented(Dostie et al., 2006;
Fullwood et al., 2009; Lieberman-Aiden et al., 2009; Simonis et al., 2006), yet the specificity of
these interactions makes it likely that they are governed through local DNA sequences and thus
could be modeled through a local logic.

5. A small number of k-mers determine chromatin accessibility. There are around 2,000
transcription factors in the genome, and the vast majority do not play roles in chromatin
accessibility. Proteins need not be the only readers of the accessibility logic, yet it seems



reasonable to assume that the code words for accessibility number in the hundreds or
thousands. Transcription factors act through thermodynamically related collections of k-mers,
meaning that there are more active k-mers than there are TFs. Nonetheless, it is still safe to
assume that a minority of the 87,380 k <8 k-mers play roles in chromatin accessibility.

6. A particular k-mer produces the same effect on chromatin accessibility wherever it occurs.
This assumption implies a mechanistically simple logic in which the effectors, be they TFs or
thermodynamic properties of the DNA itself, act in a stereotyped way at every occurrence
genome-wide. This assumption does not allow for conditional TF interactions(Mullen et al.,
2011; Trompouki et al., 2011) (i.e. a pioneer TF only opens chromatin when adjacent to a
specific cofactor k-mer), as these would imply that k-mer effects are dependent on surrounding
k-mers. Similarly, a logic in which TF access to DNA is dominantly blocked by the surrounding
chromatin state, as in X-chromosome heterochromatin spreading, is inconsistent with this
assumption. However, conditional models are harder to learn computationally, as there are only
a small number of examples of each k-mer with each potential conditional interacting partner.
Thus, we have chosen to gauge the accuracy of a model that excludes the complications of
conditionality in an attempt to determine whether the chromatin accessibility logic predominantly
relies upon unconditional logic.

7. K-mer effects on chromatin accessibility non-specifically synergize such that the chromatin
accessibility at any DNA base is the multiplicative product of the effects of all nearby chromatin
accessibility-affecting k-mers. This assumption follows from the apparent non-linearity of
genomic functionalization. DNase-seq data and ChiIP-seq data both reveal a small number of
genomic loci with strong activity (DHS, ChIP peaks) surrounded by a vast majority of genomic
space with no activity above background. This all-or-nothing architecture is more consistent with
a non-linear than a linear underlying logic. Our assumption of non-specific synergy could be
explained biologically if TFs influence chromatin accessibility by acting synergisticly to displace
nucleosomes as has been proposed previously(Mirny, 2010). Our model does not take into
account specific cofactor interactions that might enhance synergy for the same reason above
that conditionality is substantially more difficult to learn.

Using the set of assumptions outlined above, we have designed SCMs to learn the logic
underlying chromatin accessibility. But how do we determine whether our SCMs are good
representations of the underlying logic? No prior genome-wide models of chromatin accessibility
have been published, so there is no benchmark of accuracy for comparison. We have chosen a
multi-part logical framework to gauge the accuracy of our model:

1. Accuracy at predicting held-out DNase-seq data. We always separate chromosomes used in
learning and in testing to avoid overfitting that could occur if a SCM “remembers” specific
stretches of DNA sequence. SCMs are tested over a range of cell types and DNase-seq
protocols to gauge how consistent their performance is. These tests lead to a correlation
coefficient of how well the SCM predicts genome-wide variance in DNase-seq signal. To
evaluate the meaning of this correlation coefficient, variant models that alter the SCM's
assumptions are compared to determine whether the SCMs parameters are improving
predictive accuracy. Thus, if SCM predicts chromatin accessibility well, and its accuracy is
diminished if parameters are changed, then the included parameters may well reflect true
aspects of the chromatin accessibility logic.

2. Accuracy at predicting held-out ATAC-seq data when a SCM model is trained on ether
ATAC-seq or DNase-seq data. Since ATAC-seq data is an alternate assay for chromatin
accessibility, the ability to predict this data type as well as do cross-prediction reflects the ability
of the model to accurately capture accessibility information.



3. Accuracy at predicting chromatin accessibility over a wide variety of sequence types. Using
genomic data alone to gauge SCM accuracy has several limitations. (i) Genomic regions can be
copied across chromosomes in certain instances, so held-out chromosomes may resemble the
chromosomes used in learning. (i) Evolutionary selection may have over-specified regions of
accessible chromatin, as these are often vital gene regulatory regions. Adding redundancy to
accessible regions would mitigate against deleterious gene regulatory consequences of a single
mutation, and mutations that add accessibility-promoting motifs in inaccessible chromatin might
be selected against. Thus, a SCM that accurately predicts genomic accessibility may be
learning redundancies that would not enable generalization to any DNA sequence. To gauge
true accuracy of a SCM, we have devised a method, SLOT, that enables us to test DNase-|
hypersensitivity of a large number of arbitrarily designed DNA sequences in any defined
genomic context. By testing SCM accuracy on a wide variety of sequences that bear no
resemblance to the genomic sequences used in training, we can more accurately gauge the
generalized accuracy of SCMs. Thus, if the SCM accurately predicts sequence-dependent
chromatin accessibility in a controlled context over a wide range of sequences that bear no
resemblance to the training data, then we can conclude that the SCM is modeling the actual
logic of chromatin accessibility.

4. Ability to make additional predictions about the biology underlying chromatin accessibility. A
good model should not only accurately model data but should yield insights into the underlying
biological paradigms. We have chosen to follow up one specific prediction, that genome-wide
binding patterns of the pioneer TF Nrfl can be predicted using the same synergistic logic
governing chromatin accessibility, because it is one of the more surprising implications of the
SCM. However, with time, we expect our group and others to test other SCM predictions, which
will either lend more credence to the model of chromatin accessibility underlying the SCM or
may identify model deficiencies that prompt model refinements.

Interpreting the parameters of the SCM should pave the way for an integrated understanding of
the cellular systems that have evolved to regulate chromatin accessibility, leading to specific
predictions about how to alter accessibility through altering the protein and DNA components of
this system.

However, we acknowledge that SCMs as currently formulated cannot be fully accurate
representations of underlying biology. The functionalization of DNA into chromatin through the
action of sequence-specific regulators is probabilistic and dynamic, whereas our current models
are deterministic and static. Thus, our models can be understood as statements of the
equilibrium tendencies of the system governing chromatin accessibility. How chromatin
accessibility is buffered to maintain consistent function in spite of stochastic changes in
conditions and how accessibility is dynamically regulated to enable changes in cellular function
are fascinating questions ripe for future modeling efforts.

Distinction from discriminative motif discovery

A class of methods with similar methodological ideas to SCMs is discriminative motif discovery,
which seeks to identify the k-mer sequences that constitute a sequence motif for an underlying
transcription factor (or functional element). In this approach the user identifies a set of regions of
interest and uses a discriminative motif finder to construct a model that can distinguish these



regions from background based upon k-mer frequencies. While our approach is similar in that it
uses short k-mer sequences as a underlying predictor, it is quite distinct in goals.

We also note that the SCM is also distinct from variant prioritization techniques which seek to
discover functionally relevant bases in the genome. The SCM seeks to simply model the
relationship between sequence and high-thoughtput sequencing reads without claims about the
underlying causal mechanism or phenotype.

e Binary vs Quantitative: Discriminative motif discovery has focused upon binary
features such as regions with transcription factor binding. While discriminative motif
finding is very well suited for detection of motifs underneath a ChIP-seq peak, our goals
have been to ask whether DNase-seq can be quantified in its entirety from a spatially
synergistic sequence model. Much of our results rely on quantitative measurements of
DNase-seq.

e Understanding spatial effects: Our goals were to understand the spatial effects and
interactions involved in chromatin accessibility rather than just purely predicting DNase-
seq data. Existing methods for discriminative motif discovery have treated each region
as an exchangeable bag, discarding relative positional information of k-mers. While this
is suitable for motif detection, we wanted to understand if spatial interactions among k-
mers would be able to predict DNase-seq. For example in Figure 4 we show that the
parameters learned by our model closely match the DNase-seq footprints observed for
transcription factor binding motifs in other datasets. Our model is not only designed
simply as a way to predict; it is meant as a computational realization of our current
understanding of chromatin accessibility.

e Genome-wide vs focus on function: One final goal of our model was to remove the
uncertainty associated with selecting a functional region or parameter. The SCM can be
run without any parameter tuning. It takes an aligned set of sequences and outputs k-
mer profiles. The reason for this approach is to minimize the biased selection of
functional regions. Unlike ChlP-seq, DNase-seq signals can be quite broad and vary in
strength, leading to questions of whether the final results depend on the peak selection
methods used.

Since it is possible to use SCMto perform classification of a set of DNase-seq peak regions, we
have performed a set of comparisons against a state-of-the-art discriminative motif finders to
show that even on a discriminative motif-detection task, SCM is competitive (Supplementary
Fig. 2).

Comparisons to classification models

We construct training and test sets on ENCODE K562 DNase-seq datasets using the same
peak definitions as Figure 1d with a 300bp window around each peak as a positive example.
Negative examples are drawn uniformly at random from the genome.

For the gapped kmer-model (Ghandi et al. 2014) we use a 300 bp window as suggested in
(zhou and Troyanskaya 2015) for training and test, using the default execution flag of -d 3' as
suggested in the README.

Additionally, we trained the gapped kmer-model using the ENCODE hotspots with the same
parameters, this training method performs on-par with the 300bp window model despite the
training test set mismatch.



For SeqGL (Setty and Leslie 2015), we use the same 300bp train/test windows as the gapped
kmer model, and train the model using the function ‘run.seqgl.wrapper' with default parameters.

For DeepSEA(Zhou and Troyanskaya 2015), we took the pre-trained model available at the
authors’ website, and used a 1kb window generated by adding flanking bases to the 300bp
train/test sets of the gapped kmer-model and extract the 'K562.DNase.None' column (no
parameters exist for running DeepSEA).

We use the best transformed output from each method for our regression comparisons. For
SeqGL and GKMSVM these are the outputs of the linear SVM and group lasso respectively,
while for DeepSEA this was the probability outputs.

Our goal with these comparisons was not to show that SCM is suited for discriminative motif
detection; on the contrary we expect these methods to perform quite well in tasks like ChIP-seq
for which they were designed. Our goal is instead to show that our method is robust and flexible
at modeling DNase-seq read counts over the genome despite having no parameters and being
biologically driven.

Implementation of SCMs

Our goal is to produce a predictive model of sequence to a quantitative, integer-valued trait
measured per base on the genome.
The design of our algorithm is guided by several goals:

e Predictive model: our model should predict trait that can be held-out and evaluated for
goodness of fit. This makes the overall problem well-defined and easy to evaluate.

e Parameter independence: the model should not have any performance-influencing
parameters. All parameters that can be set should be set as large as memory and
computation time allows.

e Tractable runtime: the model should run in less than several days for any number of
experiments on the human genome.

e Interpretable parameters: the output parameters should be interpretable as the local
effects of an K-mer.

e Theoretical grounding: the model should provide reasonable theoretical guarantees on
model recovery and prediction capacity.

These requirements naturally lead us to construct a genome-wide Poisson regression,
where the variables are K-mer indicators that act log-linearly. The technical innovation in this
paper is the introduction of a tractable method for fitting L, regularized linear models over the
genome. Note that while a negative binomial regression would have the advantage of allowing
us to fit overdispersed count data, it has the drawback that the overdispersion parameter makes
the overall objective function nonconvex, and makes comparisons between separate samples
impossible due to different variances. We instead use count truncation at ten reads per base to
control the effective overdisperson uniformly over all samples.

In the paper we use a maximum K-mer length of 8 which was the maximum that would fit
in memory in an Amazon EC2 c3.8xlarge instance. Larger K-mers tested on a larger memory
machine did not perform substantially better than 8-mers.

Notation and genome representation
Throughout, we assume that the genome consists of one large chromosome with
coordinate 0 to N. In practice we will construct this by concatenating chromosomes with the



telomeres acting as spacers. The variable K represents the maximum k-mer length considered,
the model fits all k-mers from 1...K. The variable M represents the influence of each k-mer.

The regularization parameter n is a scalar representing our belief about the sparsity of
the problem.

Whenever possible, we will use i for genomic coordinate, k for k-mer length, and j for
coordinate offset from the start of a k-mer.

The input variable c is a vector of length N representing counts and c; represents the
read-count observed at base i.

The latent variable A is a vector of length N representing the current estimate for ¢ using
0.

6% is the parameter matrix of size 4k x 2M associated with the set of all k-mers.

The variable g* is a mapping from genomic coordinate i to the k mer starting at i. The k-
mer for g¥ is represented as an integer that maps to rows of 8 such that the g*th row of 6% is
the effect of a k-mer starting at coordinate 1i.

For instance, g;‘ is the 4-mer starting at coordinate i. If this is ATCG, then the row 9;4

must be the effect that ATCG exerts on its neighbors. l
The special parameter 6, is used to set the average read rate of the genome globally.

Model setup
The problem we solve is a regularized Poisson regression. We would like to maximize

the following:
m6ax<z cilog(1) —Ai)— n2|9"|1

4
The intermediate variables A are defined by:

Ai=€xp Z Z ekk B _90
ke[1.K] je[-M,M—1] (91+,, 1)
Naive inference algorithm

Naively, we would attempt batch proximal gradient descent on this objective function,
which would involve the following steps:
1. Given current iterate 6, calculate current A for all bases i € [0, N] by

Ai=-exp Z Z 0F . Y
k€el1.K] je[-M,M—1] (gl”' ])
2. Given current A calculate the per base gradient vector
dlog(A;) = err; = ¢; — A;.
3. Propagate the errors back to the parameter 8. Let s be the integer index corresponding
to a k-mer. Then the gradient of this kmer s with off set j is

desk'j: Z erriiLj
{i:gf=s}

and
N

db, = Z errn;.

=1
4. Update the current parameter with stepsize alpha.
0k = 0% + ado*
5. Update the constant offset



80 = 90 — a’deo
6. Apply the proximal operator for L, regularization
of = {9{'?,1'} — an if|6f; | > an
J 0 otherwise

This algorithm is prohibitively slow, with an iteration runtime of O(NMK + 4XM). In
practice, contribution from NMK dwarfs that of 4XM since the gradient computation is cache
incoherent and N = 3 x 10° which is much greater than 4XM = 6 x 10*

There are two free parameters (a and n). The value for n is set via grid-search over
values of n using held-out sets starting with the maximal feasible . This maximum is calculated
analytically as the maximal n for which all Kmers are nonzero. We will discuss setting a below.

Understanding the model

The k-mer model is a standard generalized linear model cast for a particular problem,
but the role of regularization and the model class represented by the model may be confusing
for some. The next sections make clear the action of the model.

Convexity of loss
The overall objective function of our Poisson regression is convex, this has a variety of
important theoretical and practical properties:
1. The algorithm does not depend on initial condition of the optimizer
2. The optimizer converges and at fast rates.
3. We can understand the algorithm's behavior by analyzing its gradient.

Role of L; regularization

The model self-tunes its complexity through L; regularization. Consider the following toy
example: the dinucleotide AT is a causal pioneer signature and we hope to detect this is the key
k-mer.

Consider two possible solutions: the optimal one where only AT models the DNase
effects and a suboptimal one in which 3-mers ATA,ATC,ATG,ATT together model the effect of
AT. Then note that the L, penalty penalizes the latter model four times as much, making our
algorithm strongly prefer the true model.

This argument can be generalized is a straightforward way to understand the way in
which L; regularization determines which k-mers are set to zero and which others are set to
nonzero values. By the proximal update equation, it is clear that in order for a k-mer at zero to
become nonzero, the following has to be true:

d@{};j} = Z ertiyj =n
{i:gl=s}
For a given k-mer, s, consider the following thought experiment: take the optimal solution
6 and set the effect of s to zero. The above equation claims that if the sum of errors around s is
less than eta, s should be set to zero and 6 could not be an optimal solution due to convexity.
Therefore a k-mer has two paths to becoming nonzero: it can have large effect
whenever it appears, or it can appear many times and cause a consistent small (log) effect.

Role of exponential link function
The exponential link function allows the model to capture nonspecific interactions
between k-mers. As an example let us consider the case of modeling a CTCF motif consisting



of CCACCAGGGG using 4-mers. Consider upweighting the first base of CCAC in the length M
vector, the second base of CACC, the third base of ACCA ... this allows us to construct a
regression that has some activation ¢ with a single 4-mer, but has c” activity when beneath a
CTCF moitif.

The combination of exponential link and modeling all local effects allows for very
powerful combinatorial expressions that would not be possible with any model ignoring spatial
relationships between k-mers. This expressivity of the model is the reason why both advanced
optimization and regularization techniques are necessary to keep the model under control.

Accelerating the algorithm

Prefix compression

Note that due to our k-mer matching scheme, a 3-mer can be represented as the sum of
the 4 possible 4-mers whose prefix matches the 3-mer. Utilizing this fact, we can obtain
runtimes of O0(NM + 4XM + 4KK) and also reduce cache incoherence substantially.

We maintain a matrix ¢ of size 4% x 2Mwhich represents only the longest k-mers. We
then modify the first through fourth steps to use ¢ instead of 8. Since every k-mer has a unique
prefix match, this reduction maintains correctness of the algorithm.

Finally before step 6 we apply a decoding step. Let g(s, k) be a set-valued function
consisting of all k-mers whose first k-1 characters matchs.

dok= " de
s'eg(sk)
The use of dynamic programming (generate 8%~ followed by 8%-2) gives a runtime of 0 (4X) to
decode the compressed representation.

After step 6 we re-encode the parameter matrix into the compressed representation.
Given a k-mers, let (s, k) be the set valued function returning the k character prefix of s.
K

This takes runtime 0(4XK).

Representing the k-mers as bitstrings where each two bits represents a base allows for
the query operations to be done nearly entirely bitshifts and cache-coherent additions, which
allows for fast encoding and decoding for typical values of K=8 and M=500.

More efficient proximal operators
We derive a provably correct and more efficient proximal operator for the gradient
descent algorithm.
The basic algorithm uses the standard L, soft-threshold prox operator:
of = {e{ks,j} — an if|6f 5| > an
’ 0 otherwise

However, we note that this solution can be strictly improved with little extra effort. Using the
same insight as our prefix compression scheme, note that adding a constant ¢ to a k-mer and
adding the same constant to the 4 possible k-1 mer prefix matches returns the same predicted A
values but have different L, penalty values. Using this idea we can decrease the L; penalty
without affecting the goodness of fit.

This algorithmically captures the intuition that if {ATA,ATC,ATG,ATT} all have similar and
positive effects, we can better represent the effect using just AT.

Define the median of a k-mer as the median parameter value of the prefix matching k+1-
mers and the negative of itself. Define g(s,k) as before as the set-valued function returning the



four possible one character continuations of s (for example, given AT,
9(s,3)={ATAATC,ATG,ATT}) and the function m(s, ]) as

m(s,j) = median(0k k)~ Gsk])

Then the parameters for any kmers s’ € h(s) can be updated as
k _ pk ;
HS,J. = 95’,]' —m(s, j)
and
This is a dynamic programming algorithm starting at K-1 and stopping at k=1. This procedure is
guaranteed to not change the likelihood term depending on A while strictly shrinking the L, norm
of 6.

Stochastic gradient descent

We find that gradient descent is still far too slow to run on a single 32-core machine in
less than a week. We achieve nearly ten-fold speedup by utilizing stochastic rather than batch
gradient descent.

The variant of gradient descent we use is a minibatch-gradient, where we calculate the
gradient and error over a smaller subregion of the genome. We use twenty million bases as our
minibatch size (which we will refer to as B).

To control the step-size more intelligently, we also use a variant of stochastic gradient
descent known as Adagrad(Duchi, Hazan, & Singer, 2011). We maintain a separate history §,
for every k-mer which we increment with the norm of the gradient.

In our variant, we cut the genome into twenty-million base chunks called minibatches.
Let I € and o(1) be a permutation of .

The steps one to three in the previous algorithm becomes:
1. At the beginning of every pass over the full genome, we generate a new random

permutation o (1)

2. Pick a global step size a by doing a line-search along the region of size B with largest
number of reads.

3. Forie [1 [%J] do a full update (naive algorithm) on the subset of bases (a(1);_1)B +

[0, B].
4. For each k-mer s, update its value with
0k = 0k + ad 0% /\[5
5. If the average function value of all minibatches is more than 10% greater than the
previous iteration, set @ = a/2, reset parameters and redo the loop
6. Else return the averaged iterates over the whole pass.
While this algorithm gives no asymptotic performance improvement over the batch gradient, in
practice it returns a solution equivalent to the batch gradient in time that is 10-20 times faster
than the batch method. This is a well-documented effect in the literature.

Non-synergistic additive models

Synergistic interaction between transcription factors are often defined as non-linear effects of
sequence elements on a phenotype of interest, such as gene expression(Veitia 2003). In the
case of chromatin accessibility, we are considering the question of whether a log-linear model
for accessibility is appropriate compared to an additive, linear model. Such model comparisons
were performed in prior work (He et al. 2010) and used as evidence for a logistic link between
transcription factor binding and gene expression.



We therefore propose and fit a null linear additive model of k-mer effects which acts as a way to
test whether DNase accessibility fits a synergistic sequence model better. To do this, we modify
our objective function, defined as

max <Z cilog(d) — /11‘) - UE'GRL

2
With intermediate variables A are defined by:

kel1.K] je[-M,M~-1] (g‘”’ J)

By replacing the intermediate variable Adefined with an additive link,

A = Z Z 0k . |6,
kelL.K] je[-MM—1] G
With the additional constraint, ei’fj > Oand 6, > 0.001where the latter constraint is required to
stabilize the objective function.

The resulting model has a similar expressive power as the log-linear model with identical
parameters and convolutional assumptions on the k-mers, but with an additive rather than
exponential effect of k-mers on chromatin accessibility.

Methods
Cell culture

Mouse embryonic stem cell culture was performed according to previously published
protocolss3Sherwood et al, 2014) - ndifferentiated 129P2/OlaHsd mouse ES cells were maintained on
gelatin-coated plates feeder-free in mMES media composed of Knockout DMEM (Life
Technologies) supplemented with 15% defined fetal bovine serum (FBS) (HyClone), 0.1mM
nonessential amino acids (Life Technologies), Glutamax (Life Technologies), 0.55mM 2-
mercaptoethanol (Sigma), 1X ESGRO LIF (Millipore), 5 nM GSK-3 inhibitor XV and 500 nM
UO126. Cells were regularly tested for mycoplasma. Genetic manipulations to stem cell lines
are described below.

DNase-seq

DNase-seq was performed as described previously(Sherwood et al., 2014). 10-100 million cells
were digested with 60-100 units of DNase | (Promega) per 107 nuclei. 50-125 bp hypersensitive
DNA was collected using E-Gel SizeSelect Agarose 2% gels (Life Technologies). Library
preparation and lllumina HiSeq were performed by the MIT BioMicroCenter.

ChlP-seq



ChIP was performed according to the “Mammalian ChlP-on-chip” protocol (Agilent) using a
polyclonal antibody against Nrfl antibody (ab34682, Abcam) and Protein G Dynabeads (Life
Technologies). 10-100 million cells were used for each experiment. gPCR using positive and
negative control primers was performed to ensure ChIP enrichment. Library preparation and
lllumina HiSeq were performed by the MIT BioMicroCenter.

Single Locus Oligonucleotide Transfer (SLOT)

To begin optimizing SLOT, we ordered a library of 175 bp oligonucleotide DNA sequences
containing 100 bp variable phrases with the following common features: flanking primer
sequences distinct from any genomic DNA sequence, a unique DNA barcode distinct from all
other barcodes at Levenshtein distance = 2, and a common internal primer past the barcode
(see Supplementary Fig. 8) from Broad Technology Services. This library was amplified using
primers that add 67 bp homology arms to each end using NEBNext High-Fidelity 2X PCR
Master mix (New England Biolabs), as we found that this polymerase minimized library
amplification bias. Homology arms were designed to flank two genomic CrispR guide RNA
sequences in genomic regions with no surrounding DNase-seq activity in mESC.

In order to utilize CrispR-mediated homologous recombination, we cloned the required guide
RNA and Cas9 components into convenient vectors. We cloned the U6 promoter guide RNA
hairpin construct from the dual Cas9/guide RNA expression plasmid pX330(Cong et al., 2013)
(Addgene) into the Tol2 transposon vector p2TAL200R175(Kawakami & Noda, 2004) along with
either a Hyromycin resistance cassette or a Blasticidin resistance cassette to form p2T
U6sgRNA HygroR and p2T U6sgRNA BlastR. In later tests, we modified the hairpin structure to
incorporate the “FE” alterations shown to improve guide RNA hairpin stability(Chen et al., 2013),
creating p2T U6sgRNA-FE HygroR and p2T U6sgRNA-FE BlastR. We cloned the CBh promoter
Cas9 construct from pX330 into the p2Lox vector designed to integrate expression constructs
into the HPRT locus of the p2Lox mESC line(lacovino et al., 2009; Mazzoni et al., 2011) to form
p2Lox CBh Cas9. In later tests, we cloned CBh Cas9 into the p2TAL200R175 vector along with
a Blasticidin resistance cassette to form p2T CBh Cas9 BlastR. We cloned guide RNAs
targeting two closed chromatin loci into p2T U6sgRNA HygroR, p2T U6sgRNA BlastR, p2T
U6sgRNA-FE HygroR, and p2T U6sgRNA-FE BlastR (denoted p2T U6sgLocusA HygroR etc.).

We then tested homologous recombination frequency by introducing 5 ug PCR-amplified library
+ 5 ug CBh Cas9 + 5 ug p2T U6sgLocusA HygroR into 10° mESCs by co-electroporation.
Transient antibiotic selection was performed for 72 hours at 24-96 hours post-electroporation.
We achieved 0.6% integrated allele frequency as assessed by comparing gPCR cycle counts of
a locus-specific primer and a phrase-specific primer with control locus cycle counts (see
Supplementary Fig. 8). We then asked whether constitutive expression of either Cas9 or guide
RNA could improve homologous recombination frequency. We used the p2Lox system (p2Lox
CBh Cas9) to constitutively express Cas9 and the Tol2 transposon system (p2T U6sgLocusA
HygroR) to constitutively express either Cas9 or guide RNA in p2Lox mESCs. We then co-
electroporated 5 ug PCR-amplified library + 5 ug CBh Cas9 + 5 ug p2T U6sgLocusA BlastR into
10° mESCs (we found that additional Cas9 and guide RNA improved homologous
recombination even when constitutively expressed). We found that constitutive Cas9 or guide
RNA improved homologous recombination frequency, yet constitutive guide RNA (6.3% allele
frequency) was more efficient than constitutive Cas9 (1.7% allele frequency). We then repeated
the constitutive guide RNA expression experiment but using the FE versions for constitutive
(p2T U6sglLocusA-FE HygroR) and additional transient (p2T U6sglLocusA-FE BlastR)
expression, achieving significantly more efficient homologous recombination (15.9% allele



frequency). We then reasoned that transient selection for Cas9 electroporation might be more
effective than selection for guide RNA electroporation. So, in the context of constitutive guide
RNA expression (p2T U6sglLocusA-FE HygroR), we co-electroporated 5 ug PCR-amplified
library + 5 ug p2T CBh Cas9 BlastR + 5 ug p2T U6sglLocusA HygroR into 10°® mESCs,
achieving even more efficient homologous recombination (30.9% allele frequency). Results from
this set of experiments are summarized in Supplementary Fig. 8.

We thus standardized the SLOT protocol: construct a stable cell line constitutively expressing
p2T U6sgRNA HygroR, then co-electroporate PCR-amplified library + p2T CBh Cas9 BlastR +
p2T U6sgRNA HygroR. For the experiments described in this work, we electroporated 107
mMESC with 20 ug of each component DNA, achieving 20-50% allele frequency in all three loci.
Library-integrated mESCs were grown for 7-21 days after electroporation before DNase-I
hypersensitivity analysis, and care was taken to maintain high pool complexity by splitting at
high density.

DNase-l hypersensitivity analysis was performed mostly according to our previously published
protocol(Sherwood et al., 2014) with several differences. Inmediately after nuclear extraction, 5-
10% of nuclei were reserved for genomic DNA isolation to serve as a control. The remaining
nuclei were treated with 70-90 units of DNase per 107 cells. After DNA purification, E-gel size-
selection was performed to isolate 125-275 bp DNA, a size range that accommodates the
minimal size required to amplify with locus-specific and internal primers (see Supplementary
Fig. 8). gPCR using positive and negative control primers was performed to ensure enrichment
of DNase-hypersensitive DNA.

Then, we performed a three-step library preparation to allow lllumina deep sequencing analysis
of barcode representation (see Supplementary Fig. 8). First, we specifically amplified locus-
integrated DNA from either genomic DNA or DNase-I hypersensitive DNA for 16-20 PCR cycles
using NEBNext. For genomic DNA, 16 ug of input DNA was used in an 800 uL reaction to
ensure library diversity; for DNase-I hypersensitive DNA, ¥z the product was used in a 400 uL
reaction. This step serves two purposes: (i) it separates locus-integrated phrases from
unintegrated phrases which remain in cells in substantial numbers even several weeks after
electroporation; (i) it highly enriches for phrases at the expense of other genomic regions,
simplifying the template for the subsequent tailed primer PCR steps. We performed QiaQuick
PCR purification (Qiagen) to purify the products. We then performed gPCR on a small aliquot of
each sample to calculate how many PCR cycles to perform for the subsequent two PCR steps,
typically performing 5-10 cycles of each PCR. The second PCR step amplifies the barcode
using the flanking and internal primers while adding half of the llumina paired-end primer
sequences as well as 5-6 bp multiplexing sample barcodes to allow sequencing of multiple
samples per MiSeg/HiSeq lane. The third PCR step adds the full lllumina paired-end primer
sequences. For the experiments reported in this work, we used 70 bp single-end lllumina
MiSeq, performed by the MIT BioMicroCenter. Full phrases were also sequenced from genomic
DNA using a similar library preparation strategy as above but using the flanking primer instead
of the internal primer to amplify locus-integrated phrases. These samples were sequenced
using 150 + 150 bp paired-end MiSeq.

Oligonucleotides

Oligonucleotides used in this work are listed in Supplementary Table 2.



Mapping and data preprocessing

We use a unified alignment, error-control and bias reduction pipeline from bcbio-nextgen
built as a docker container. The aligner used was BWA, with a map quality cutoff of at least 1
(unique mapping). The mapped reads were then filtered, retaining at most ten reads per base
per strand to remove anomalous towers of reads.

Construction of a DeBrujin graph based SLOT test phrase set

Traditional phrase library construction methods have relied primarily on hand-
constructing a scaffold of control sequences with a replaceable positive phrase component that
accepts a motif. This approach has the problem that only a few parts of the phrase are actually
activating, and that the positive phrase components must be known quite precisely.

Instead, we demonstrate a method that can construct a phrase library where each
phrase is constructed solely of positive or control sequences which can model more complex
structures compared to traditional methods. For example, our algorithm is able to identify that if
a phrase begins with CCACCA, then the most DNase-seq positive completion is to continue the
CTCF motif as CCACCAGGGGC.

Using a pre-trained DNase-seq K-mer model we construct the compressed phrase
representation ¢ and separate the k-mers into three classes: DNase-hypersensitive, control,
and DNase-closing.

For the control-phrases, we construct a deBrujin graph over the K-mers in the control
group and perform a random walk of length 100-K (our desired phrase length). This produces a
set of 100-base phrases that are predicted to have no effect at all bases.

For the positive-phrases, we construct a deBrujin graph over both the control and
positive groups. Random walking over this graph could result in a phrase that is entirely control,
so we construct the phrase in the following way:

1. begin at a positive phrase randomly chosen from the positive phrase set.
2. if there exists any positive phrases in the out-neighborhood, then jump randomly
amongst them
3. otherwise, jump deterministically to the most positive phrase.
This process has the property that it random walks until it can no-longer continue a positive
phrase, and then hill-climbs to the next closest phrase. We find that this process produces
substantially higher enrichment compared to randomly inserting K-mers into a scaffold.

Collapsing k-mers into motifs

The motif-construction algorithm is for visualization purposes and so optimizes for speed
rather than performance. We use a hierarchical clustering scheme combined with pairwise
alignment.

1. Filter the overall K-mer set into enriched K-mers by thresholding on the sum of effects ¢.

2. Calculate the pairwise Levenstein distance amongst the candidate K-mer set.

3. Use complete linkage clustering to obtain clusters with distance at least 2 amongst

clusters.
4. Pairwise align each cluster to the most activating k-mer in the cluster

Raw data sources

All sequencing data were mapped using the BWA aligner, and use the quality score filter
mapg>20.



Sequencing datasets used in this paper from other publications are:

NAME UCSC Acession
HEK293T wgEncodeEH002565
H7ES wgEncodeEH002554
GM12878 wgEncodeEH000534
GM10248 wgEncodeEH003487
Frontal cortex OC wgEncodeEH003471
FibroP_AG20443 wgEncodeEH002569
FibroP_AG08395 wgEncodeEH002568
Fibrobl_GMO03348 lenti-Myod wgEncodeEH003473
ECC1DMSO wgEncodeEH002555
Cerebrum frontal OC wgEncodeEH003480
K562 wgEncodeEH000530
wgEncodeEH003489

In addition we have produced and analyzed the following datasets generated in-house:

mMES DNase-Seq 130801 50-100bp

mMES DNase-Seq 130801 175-400bp

MES DNase-Seq 120710 replicate 1

MES DNase-Seq 120710 replicate 2

mMES DNase-Seq NFya 50-100bp

mMES DNase-Seq NFya 175-400bp

MES Nrfl rep 1 no dox

MES Nrfl rep 1 dox

MES Nrfl rep 1 sr3

MES Nrfl rep 1 sr8

Hues8 S6 DALT 50-100

Hues8 S6 DALT 175-400

SCM scoring and determination of correlation coefficient with actual data.




The k-mer model generates predictions according to the formula for A above. We then
deduplicate both prediction and raw reads and measure Pearson’s correlation after a 2-kilobase
smoothing. Variance stabilizing transforms (square-root) are used whenever analysis require
Homoscedasticity such as in Figurelc.

Certain analyses are done after mean-subtraction and normalization by the standard
deviation (Z-score).

For details see the Rmarkdown documents used to generate the figures which are made
available with the code.

K-mer effect size determination

We measure a K-mer's importance by its summed absolute log-contributions. In the
notation described previously, this is equivalent to summing |6| over a row.

SLOT computational analysis
In order to analyze the integrated oligonucleiotides we follow the following procedure:

1. Reconstruct the set of genomically integrated phrases by paired-end sequencing and
overlapping sequences using FLASH (http://ccb.jhu.edu/software/FLASH/)

Use the 20bp variable region past the primer as a barcode

Predict per-base number of reads using formula for A

Take the average number of reads over each oligo

For each barcode, assign each barcode a kmer-score according to the max over the set
of mapping oligos

akrwd

Measuring sequence fidelity: we calculate the error rate by taking each unigue barcode
generated by 20bp region and calculating the fraction of sequenced oligos that are not
the consensus sequence. We then average this over all barcodes to get an expected
error rate per base.

Mappability was measured by taking each oligo design and mapping it using bwa-mem
to the genome.

Determination of enrichment between k-mers and pioneer, settler, migrant motifs.

We used a master list of JASPAR motifs assigned to the three categories following our
PIQ paper(Sherwood et al., 2014). The data and analysis are all available as a reproducible
markdown document with our code. The top 500 ranked 8-mers are mapped to sequence with a
log-likelihood cutoff of 5. We calculate the random background rate of matching motifs by
randomly sampling from the set of all 8-mers. The enrichment is then calculated as a ratio.

Binarization


http://ccb.jhu.edu/software/FLASH/

For both DNase-seq and Nrfl binding we consider binarized region calling. For this we
use the same smoothing as above. Each base is assigned the average number of reads within
a +100bp region. Then we call as hypersensitive any base with averaged read count 5 standard
deviations greater than the mean. Hypersensitive bases within 10 bases are merged together.

For AUC calculations we rank randomly sampled bases using the SCM prediction. If the
base lies within a hypersensitive region, it receives a positive label, otherwise it receives a
negative label.

Segmentation

In the analysis of classes of regulatory regions, we use segmentations derived from
ENCODE with CpG taken from 450k Bead arrays (http://genome.ucsc.edu/cqi-
bin/hgTrackUi?db=hg19&g=wgEncodeHaibMethyl450) and segmentations from chromHMM
(http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm).

For calculating correlations we simply subset over each category of segmentation and
CpG island and calculate correlation only over the segment.

Performance of SCM model as a function of cell-type specificity

i. Regions of DNase-l enrichment

We smoothed the real and SCM-predicted read counts using a 100bp window for the held-out
chromosomes chrl5 to chr22. We randomly shuffled the real read counts across bases in each
chromosome and then smoothed these random read counts using a 100bp window as well. For
each held-out chromosome, we computed the mean and standard deviation of the smoothed
read counts and transformed the read counts to Z-scores by subtracting the mean and dividing
by the standard deviation.

In order to find putative regions of enrichment, we selected all continuous regions of the
chromosome with Z-score >=3.1 which would correspond to a p-value of 0.001, in case of a
normal distribution. Now we discretized the regions of enrichment in the real data into 100bp
blocks and computed the sum of Z-scores within each of these blocks. We simultaneously
selected a set of random 100000 bins of length 100bp across the chromosome and computed
the sum of the randomized Z-scores in these bins. Using these scores, we were able to
determine a z-score sum that corresponded to a 5% FDR threshold. We used this cutoff for sum
of Z-scores to determine the true regions of enrichment in the real data.

ii. Computing performance metrics

Calculating sensitivity: Our true positive set was defined as the set of enriched 100bp bins in the
real data that met our FDR threshold. We calculated sum of Z-scores for the predicted data for
each of these bins and compared it to the previously computed 5% FDR threshold using


http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeHaibMethyl450
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeHaibMethyl450
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm

randomized real data. Sensitivity was calculated as the ratio of the number of enriched bins that
are also enriched in predicted data to the total number of enriched bins in real data.

Calculating specificity: As true negatives we selected a random set of 100bp bins of equal
number to the true positive set that are not found to be DNase-I enriched in the real data .We
then calculated the sum of Z-scores for each of these bins using the predicted data and counted
the number of bins that are not enriched based on the FDR threshold. Specificity was calculated
as the ratio of the number of non-enriched real bins that are also not enriched in predicted data
to the number of non-enriched real bins.

Balanced accuracy was then measured as an average of the sensitivity and specificity. As a
control, we used the real data in one cell type to determine true positives and negatives and
compared it to the predicted data from the other 10 cell-types.

SCM code is available at http://scm.csail.mit.edu.



http://ccm.csail.mit.edu/
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Supplementary Figures

Supplementary Figure 1. SCM parameters allow modeling of fixed-distance k-mer
interaction

Nearby k-mers can interact non-linearly to produce defined logic functions. Below is a diagram
of how three k-mers produce a NOT function where Kmer3 is present. Compositions for AND
and OR have similar constructions.
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Supplementary Fig. 2: SCM is equivalent to the state-of-the-art classifiers on
classification tasks and better at read count prediction.

Comparison of held out classification accuracy between SCM and classification methods. The
comparison in panel A favors SCM, as the classification methods are not designed to optimize
correlations. For GKMSVM and SeqGL we use the linear predictions from the SVM and group
lasso directly, while for DeepSEA we use the probability predictions. The comparison in panel B
favors the classifiers, as the classification methods can model the definition of a peak, while the
SCM must model the entire genome. In both cases, DeepSEA is at a disadvantage because the
DeepSEA model is pre-trained against ENCODE calls rather than our DNase peak calls over
300bp windows. In Panel A). we find that the SCM substantially outperforms the competitors at
predicting the expected read count over 1kb smoothed windows in the genome. Spearman
correlations for each method are (SCM:0.74, GKMSVM:0.27, Deepsea:0.43, Seqgl: 0.48,
Basset:0.50) In Panel B), we find that the SCM still performs best compared to 3 classification
methods despite the fact that the SCM is not designed for classification.
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Supplementary Figure 3: Additional examples of SCM prediction of DNase-seq data

Example human K562 held-out genomic regions showing DNase-seq reads (red), SCM-
predicted reads (black), and reads from a control model trained on IMR-90 naked DNA DNase-
seq data (green), all smoothed at 200 bp.
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Supplementary figure 4. Comparison to a non-synergistic baseline.

An additive, non-synergistic model of DNase was produced by training the model according to
the section “Non-additive synergistic models”. We then examined whether an additive model
using the same training method and model capacity performed as well as the synergistic model.

A. The SCM shows better linear correlation than the baseline method in the same
comparison as figure 1c.

B. Example plot shows qualitatively better correlation of SCM to observed DNase data
compared to the non-synergistic model. The additive model cannot reproduce the
observed dynamic range of the peaks due to the lack of synergy.
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Supplementary Figure 5: SCM predicts the vast majority of genomic enhancers and
promoters

Pearson’s correlation coefficients measuring accuracy of SCM on specific chromatin types as
defined by ChromHMM. This figures captures intra-category variability, resulting in CpG
annotations receiving relatively low correlations. This is partially due to the fact that while it is
straightforward to distinguish CpG vs non-CpG regions through DNase-seq, it is difficult to
quantitatively predict the DNase accessibility of any CpG region.
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Supplementary Figure 6: AT AC-seq raw signal diverges from DNase-seq signal and can
be predicted by a SCM with decent accuracy

a. Comparison of observed ATAC-seq (x-axis) and observed DNase-seq (y-axis) reads in 2 kb
binned regions of GM12878 held-out chromosome 14. b. Comparison of SCM (ATAC-seq
GM12878)-predicted (x-axis) and observed (y-axis) ATAC-seq reads in 2 kb binned regions of
GM12878 held-out chromosome 14. c. Receiver-operator curve (ROC) showing predictive
accuracy of a SCMtrained on GM12878 AT AC-seq data at predicting held-out GM12878 ATAC-
seq peaks.
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Supplementary Figure 7: The strongest SCM k-mers are conserved across a wide range
of human cell types

Pearson’s correlation coefficients measuring the similarity of k-mer effect sizes in SCM trained
on the listed cell types as compared to the k-mer effect sizes in SCM (K562).
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Supplementary figure 8

Correlations between cell types on chromosome 14 (held-out chromosome) across varying cell types for
200-base pairsmoothed read countsin real data (A) and predicted reads from the SCM (B). The two
panels show similar clustering across similar cell types (Fibroblast cells and Neuronal cells form distinct
clustersineach case).
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Supplementary figure 9: SCM captures aspects of cell type specific k-mer behavior.

A. Scatterplot of kmer effect sizes (identical to those shown in Figure 3) on SCM trained on
human ES cells (y-axis) and Islet cells (x-axis). There is a clear set of enriched k-mers
active in islet.

B. Motif generated from the 20 extremal k-mers that are active in Islet and not in ES. The
Motif is nearly exactly the AP-1 complex motif.

C. The log-effects of the top 20 extremal k-mers shown in panel A shown in red (islet) and
black (human ES). It is clear that there is a strong activation of AP-1 associated
chromatin opening in the islet, but not in the ES cell case.

D. The components of the AP-1 complex are more highly expressed in Islet compared to
human ES cells.
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Supplementary Figure 10: The computed cell type-specificity of DNase-l hypersensitive
regions depends on how the problem s defined.

a. Histogram showing the fraction of the genomic space covered by DNase-l
hypersensitive Hotspots in a single cell type that is covered by a Hotspot in ten
other human cell types. b. Histogram showing the fraction of the total genomic
space covered by a DNase-l hypersensitive site (DHS) in the superset of 11
human cell types that is covered by a DHS in the ten other human cell types. In
this plot, all DHS from the 11 cell types are considered as opposed to Figure 3b
and the above panel which compute cell type-specificity using DHS calls from a
single cell type. For the purposes of our work, we believe the overlap of DHS
space from one dataset to all others (Figure 3b and the above panel) to be the
most relevant statistic, as SCMs are each trained on one specific dataset and
asked to predict the entirety of genomic chromatin accessibility
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Supplementary figure 11: SLOT confirms SCM accuracy in predicting sequence-
dependent chromatin accessibility

a. SLOT was optimized to yield the highest phrase integration frequency. From left to right on
the x-axis are successive optimization steps and on the y-axis is the allele frequency of
integrated phrases. Transient co-electroporation of homology-arm tailed phrase library DNA,
Cas9 enzyme, and guide RNA followed by transient antibiotic selection for guide RNA
expression yields <1% integration, whereas stable constitutive expression of FE-modified guide
RNA followed by transient co-electroporation of homology-arm tailed phrase library DNA, Cas9
enzyme, and guide RNA followed by transient antibiotic selection for Cas9 expression yields
30% integration. b. A de Bruijn graph-based algorithm is used to generate a library of phrases
with varying predicted chromatin accessibility and little resemblance to native genomic DNA
sequence. c. Over 99% of the phrases have no similarity to mouse genomic DNA as determined
by mappability, and the maximum mappable fragment is 7 bp. d. The components of a SLOT
library phrase inserted into a genomic locus are presented. Locus-specific and phrase-specific
primers are used in gPCR to determine integration frequency, locus-specific and internal phrase
primers are used to amplify integrated barcodes from DNase-I hypersensitive and genomic DNA
for deep sequencing, and locus-specific and phrase-flanking primers are used to amplify
integrated phrases for full-phrase deep sequencing. e. The SLOT PCR-based library
preparation method is diagrammed. Three steps of PCR are used to generate libraries for deep
sequencing. f. Technical replicate library preparations of the same SLOT genomic DNA library
using barcode-only and full-phrase methods vyield highly concordant barcode readouts,
suggesting highly reproducible library preparation. g. Per-base error rates in full-phrase deep
sequencing sorted by barcode are less than 2% at every base, suggesting that barcodes can be
reliably used to estimate readouts of specific phrases. h. SCM-predicted and SLOT-measured
barcode reads are associated after integration in an additional genomic loci, indicating that SCM
predictions robustly predict sequence-dependent chromatin accessibility. i. ROC curve for
prediction of individual SLOT barcodes.
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Supplementary figure 12: Properties of SCM k-mers

a. SCMs constrained to allow fewer than 20,000 active k-mers have substantially lower
correlation with held-out DNase-seq data than constrained models with over 20,000 k-mers or
an unconstrained model. b. Example PWM motifs derived from clustering the 500 k-mers with
strongest MESC SCM effect size. Below the PWM are merged spatial k-mer effect sizes for all
k-mers contributing to the motif within +/-1000 bp of the k-mer in hESC (red), mESC (blue), and
K562 (green), showing the common effects of k-mers in these cell types. Names above
correspond to high-confidence database matches with TF motifs when known, and known

pioneer TFs are denoted. Several PWMs do not strongly correspond to known motifs.
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Supplementary figure 13: Nrfl binding is better predicted by synergistic logic in genome-
wide binding prediction and in a SLOT assay

a. Example mouse ESC held-out genomic regions showing Nrfl ChlP-seq reads (black) and
reads predicted from a Nrfl ChiP-trained SCM (red), both smoothed at 200 bp. b-c. Fraction of
phrases, binned into 100 phrase bins by their overall SCM-predicted chromatin accessibility (b,
x-axis) or Nrfl PWM strength (c, x-axis), that are pulled down by Nrfl ChIP in a SLOT assay (y-
axis). Linear correlation is seen when phrases are ranked by SCM-predicted ChIP reads (b) but
not PWM strength (c).
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Supplementary Table 1: Summary of CMM and control CMM held-out chromosome

Supplementary Tables

performance
Training data Held-out data Notes Pearson’s
correlation
coefficient
K562 DNase-seq K562 DNase-seq 0.800
IMR90 naked DNA K562 DNase-seq 0.468
MESC DNase-seq MESC DNase-seq 0.791
Genomic DNA MESC DNase-seq 0.482
mMESC DNase-seq mMESC DNase-seq Window 0.410
size=2, max
K=6
mMESC Nrf ChIP MESC DNase-seq 0.589
HEK293T DNase-seq HEK293T DNase-seq 0.857
H7ES DNase-seq H7ES DNase-seq 0.881
GM12878 DNase-seq GM12878 DNase-seq 0.807
GM10248 DNase-seq GM10248 DNase-seq 0.842
Frontal cortex DNase-seq Frontal cortex DNase-seq 0.831
Fibroblast AG20443 DNase- | Fibroblast AG20443 DNase- 0.836
seq seq
Fibroblast GM03348 DNase- | Fibroblast GM03348 DNase- 0.839
seq seq
Epithelial adenocarcinoma Epithelial adenocarcinoma 0.868
DNase-seq DNase-seq
Frontal Cerebrum DNase- Frontal Cerebrum DNase- 0.792
seq seq
Cerebellum DNase-seq Cerebellum DNase-seq 0.838




Supplementary Table 2: Oligonucleotides used in this work

CrispR guide RNA cloning oligos

sgRNALocusA fwoligo

CACC GTAGCCCAGGTGTGCAGGCT

sgRNALocusA rnwligo

AAAC AGCCTGCACACCTGGGCTAC

sgRNALocusB_fwoligo

CACC GAGCAGGTGACAATTTCAGA

sgRNALocusB_rvoligo

AAAC TCTGAAATTGTCACCTGCTC

Homology-directed repair tailed primers

LocusA HDR_fw

TTCGAATCACTCCATGTGAGTATCACAGAACGGGTGCAGGAGATCAGTTGCTGTGATGGATAGA(
CGAAAGGATGGGAGTACTAAGCT

LocusA HDR_rv

ACCACAGTGACATCCGCCCTGAAGCAGGCAGCAGAGCAGATGCTCTGAGATGCTTGCTTICTGT
CTCAGTACTTTGTCCGTGCTGAC

LocusB_HDR_fw

GTGAGGCTGGTGGAAGACCACAAACAGGGGAGGGTCATGGAGAGGTCAGGGGTTGCCAACAA/
CGAAAGGATGGGAGTACTAAGCT

LocusB_HDR_rv

CCTGGTCCAGACACTCATTCTCAAGCTTCCTCATGCTCTTGTGGGAAGCATAGATGCTTTCAGAG
CTCAGTACTTTGTCCGTGCTGAC

SLOT library prep and qPCR validation primers

LocusA upstream_fw CCGGTGGGGTCTCAGTGTTA
LocusA _downstream_rv CACTGTTCTTTGTGCCATCCCTTTA
TCTACCACACTTCCAGCAGG

LocusB_upstream_fw

LocusB_downstream_rv

CAGATGTGAGGTCAAGGCTGGG

Library_rv_reversecomplement

CGTCAGCACGGACAAAGTACTGAG

Library_fw_reversecomplement

AAGCTTAGTACTCCCATCCTTTCG

Library_fw_extension

GCCGAAAGGATGGGAGTACTAAGCT

Library_rv_extension

CTCAGTACTTTGTCCGTGCTGACG

InternalPrimer_extension

AGGCCTTTCGACCTGCATCCA

PhrPE1_BcO CTCTTTCCCTACACGACGCTCTTCCGATCTaactc GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcP CTCTTTCCCTACACGACGCTCTTCCGATCTctgga GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcQ CTCTTTCCCTACACGACGCTCTTCCGATCTggact GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcR CTCTTTCCCTACACGACGCTCTTCCGATCTictgc GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcS CTCTTTCCCTACACGACGCTCTTCCGATCTaaccg GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcT CTCTTTCCCTACACGACGCTCTTCCGATCTctctg GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcU CTCTTTCCCTACACGACGCTCTTCCGATCTggtaa GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcV CTCTTTCCCTACACGACGCTCTTCCGATCTaagct GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcW CTCTTTCCCTACACGACGCTCTTCCGATCTtcgtc GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcX CTCTTTCCCTACACGACGCTCTTCCGATCTccaat GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcY CTCTTTCCCTACACGACGCTCTTCCGATCTgcgta GCCGAAAGGATGGGAGTACTAAGCT
PhrPE1_BcZ CTCTTTCCCTACACGACGCTCTTCCGATCTtgagc GCCGAAAGGATGGGAGTACTAAGCT

SSPBMPE2_BcA

CATTCCTGCTGAACCGCTCTTCCGATCT ACATCGCTCAGTACTTTGTCCGTGCTGACG

SSPBMPE2_BcB

CATTCCTGCTGAACCGCTCTTCCGATCT GCCTAACTCAGTACTTTGTCCGTGCTGACG

SSPBMPE2_BcC

CATTCCTGCTGAACCGCTCTTCCGATCT TGGTCACTCAGTACTTTGTCCGTGCTGACG

SSPBMPE2_BcD

CATTCCTGCTGAACCGCTCTTCCGATCT CACTGTCTCAGTACTTTGTCCGTGCTGACG

IntPriPE2_BCcA

CATTCCTGCTGAACCGCTCTTCCGATCT ACATCAGGCCTTTCGACCTGCATCCA




IntPriPE2_BcB CATTCCTGCTGAACCGCTCTTCCGATCT GCCTAAGGCCTTTCGACCTGCATCCA
IntPriPE2_BcC CATTCCTGCTGAACCGCTCTTCCGATCT TGGTCAGGCCTTTCGACCTGCATCCA
IntPriPE2_BcD CATTCCTGCTGAACCGCTCTTCCGATCT CACTGAGGCCTTTCGACCTGCATCCA

PE1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

PE2 CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT

DNase control primers

NegDNase50b_1_fw

TTGACTGCTCCCAGGTAGAGA

NegDNase50b_1_rv

TCTTGGTGATTTCATTCATAGGC

NegDNase50b_2_fw TCCATAATGATTTGGGGAAAG
NegDNase50b_2_rv GAAAGTTCTGGAAGACAGTGCAT
NegDNase50b_3_fw CCAACTGCCTCCATTAGAGC
NegDNase50b_3 rv TGCATGCTTGTGAATGTCAA
PosDNase50b_2_fw TTTGGAAACAACCACAGTGC
PosDNase50b 2 rv CAATACGCAGCTTTGACCAG
PosDNase50b_4_fw GTTAAACCCAGCCTCAGTGG
PosDNase50b 4 rv CTTCCAGGGCCTTCTTTGAT
PosDNase50b_5_fw TTCAGGGTCCAAATAGCAGTC
TGTTGTTAGAATGGCCACCA

PosDNase50b_5_rv

Nrfl ChIP control primers

NrfPos_1_fw GGAGCCGCGAGACTATGTG
NrfPos_1 rv GCAATGCCGCTTCCAC
NrfPos_2_fw CTGCGCAGCACAGTGGAC
NrfPos_2_rv GCGGGACTTCCTGTCTCAG
NrfPos_3_fw CATGTCCGCTTGTAGGTGTG
NrfPos_3_rv TGCGCACAGGTTTTCTACTG




