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Supplemental Methods

Genome annotation and dynamics
Gene predictions for the whole-genome assembly of V. dahliae strain JR2 (Faino et
al. 2015) was performed using the Maker2 software (Holt and Yandell 2011). To this
end, RNA-seq reads derived from different in vitro and in planta conditions (de Jonge
et al. 2012) were mapped to the genome using Tophat2 (default settings) (Trapnell et
al. 2009). Additionally, gene sequences derived from previous genome annotations
as well as protein sequences from 35 fungal proteomes were used as additional
evidence (Klosterman et al. 2011; de Jonge et al. 2013; Seidl et al. 2015).

Homology between 13 fungal species was assessed using OrthoMCL (default
settings) (Li et al. 2003). Genome sequences and annotation for Fusarium
oxysporum f. sp. lycopersici, Colletotrichum higginsianum were retrieved from the

Ensembl fungi database (http://fungi.ensembl.org/). The data for Acremonium

alcalophilum were downloaded from JGI database, and the data for V. alfalfa MS102
(Klosterman et al. 2011) were obtained from the Verticillium database at the Broad
Institute. Sequence similarity between proteins was established by all-vs.-all analyses
using BLASTp (E-value cutoff 1le-5, soft filtering)(Altschul et al. 1990). Orthologous
gene pairs between fungal species, and paralogous gene pairs within V. dahliae
strain JR2, were extracted from the OrthoMCL gene families. Ks values between
gene pairs, as defined by OrthoMCL families, were calculated using the Nei-Gojobori
algorithm included in the K,Ks_Calculator 2.0 package (Wang et al. 2010). The
coding sequences of gene pairs were aligned using protein alignment as a guide.
The phylogenetic tree was generated by RAXML (Stamatakis 2006) using
concatenated protein sequences of 3,492 single-copy orthologs that are conserved
among eight fungal species, where only a single representative species was chosen
for the fungal genera Colletotrichum and Fusarium (Supplemental Fig. 14).

Repetitive elements were identified as described in Faino et al. (2015). Briefly,
repetitive elements were identified using RepeatScout, LTR_Finder and LTRharvest,
and the repetitive elements identified by the different software were combined (non-
redundant). Repetitive elements were further classified as described by Wicker et al.
(2007). Open reading frames within the transposable elements were identified by
BlastN and BlastX (Camacho et al. 2009) searches against NCBI NR databases as

well as by InterProScan (Jones et al. 2014). Repetitive elements that could not be


http://fungi.ensembl.org/

classified were defined as ‘unknown’. Expression of repetitive elements was
assessed based on RNA sequencing data derived from V. dahliae strain JR2 grown
in in vitro media (Czapek Dox) (de Jonge et al. 2012). Reads were mapped onto the
genome assembly of V. dahliae strain JR2 using Tophat2 (default parameters, max-
intron length 1,000 nt) (Trapnell et al. 2009). Mapped reads were summarized using
the R package GenomicAlignments (‘summarizeOverlaps’) (Lawrence et al. 2013),
and the expression per repetitive element, excluding simple repeats and repeats
overlapping genes, was reported as Reads Per Kilobase of transcript per Million
mapped reads (RPKM). To address reads that map multiple-times in the genome,
and their influence on the expression estimates for repetitive elements, we filtered
reads mapped with Tophat2 based on their mapping quality. Only reads with
mapping quality >5 were retained, summarized and reported as RPKM. To estimate
gene expression, mapped reads (Tophat2; default parameters, max-intron length
1,000 nt) were summarized, and reported as RPKM.

To estimate divergence time of transposable elements, each individual copy of
a transposable element was aligned to the consensus of its family using needle,
which is part of the EMBOSS package (Rice et al. 2000). The consensus sequence
for each transposable element family was determined by performing multiple-
sequence alignment of all copies belonging to the same family using mafft (Katoh
and Standley 2013) (each individual copy needed to be longer than 400 bp). For the
consensus sequence, only columns with > 1 aligned sequence (excluding gaps) were
considered, for which the nucleotide occurring in the majority of sequences was used
for the consensus sequence (ties, a nucleotide randomly chosen from the tie was
picked). The sequence divergence between transposable elements and the
consensus was corrected using the Jukes-Cantor distance, which corrects the
divergence (p) by the formula d=-3/4loge(1-4/3p)(Jukes and Cantor 1969).

Identification of genomic rearrangements

The genome assemblies of V. dahliae strain JR2 and VdLS17 are available from
NCBI under the assembly number GCA _000400815.2 and GCA_000952015.1,
respectively (Faino et al. 2015). Whole-genome alignments between chromosomes
of the genome assemblies of V. dahliae strains JR2 and VdLS17 (Faino et al. 2015)
were performed using nucmer (default settings), which is part of the MUMmer 3.0

package(Kurtz et al. 2004). To remove spurious hits, the alignments were
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subsequently filtered by length, retaining alignments > 15 kb and 99% identity. These
parameters were chosen based on the average nucleotide identity between the two
V. dahliae strains (99.98%), as well as the average length of unique sequences in the
genome. These whole-genome alignments were further mined for genomic
rearrangements and associated synteny breakpoints in V. dahliae strain JR2. The
identified synteny breakpoints were further refined by mapping PacBio long-
sequencing reads derived by genomic sequencing of V. dahliae strain VdLS17 to the
genome of V. dahliae strain JR2 using Blasr (default settings) (Chaisson and Tesler
2012), followed by manual refinement. The alignments were plotted using Sushi R
package (Phanstiel et al. 2014). GEvo (Lyons et al. 2008) was used to identify
syntenic regions between V. dahliae strains JR2 and VdLsl17, where only gene-
coding regions were used as anchors between the syntenic chromosomal regions.

To assess the presence or absence of genomic rearrangements in other V.
dahliae strains, paired-end reads derived from genome sequencing (de Jonge et al.
2012) (PRINA169154) were mapped onto the genome of V. dahliae strain JR2 using
BWA (BWA-mem algorithm) (Li and Durbin 2010). Genomic regions surrounding the
identified genomic rearrangements (x 4 kb) were visually evaluated for the quantity of

concordantly and discordantly mapped reads as well as orphan reads.

Identification and analyses of highly dynamic genomic regions
Whole-genome alignments between chromosomes of the complete genome
assemblies of V. dahliae strains JR2 and VdLS17 (Faino et al. 2015) were performed
using nucmer (settings: -maxmatch), which is part of the MUMmer 3.0 package
(Kurtz et al. 2004). Alignments separated by gaps <500 bp were merged in unique
and contiguous alignments. LS regions were manually defined by identifying regions
accumulating alignments breaks and TEs. Additionally, genomic reads derived from
ten V. dahliae strains (de Jonge et al. 2012) were mapped on the V. dahliae strain
JR2 and VdLs17, respectively, using Bowtie2 (default settings) (Langmead et al.
2009). The genomic coverage was determined by BEDtools (Quinlan and Hall 2010).
The phylogenetic tree of eleven different V. dahliae strains was generated using
RealPhy (Bertels et al. 2014) using either V. dahliae strain JR2 or VdLsl17 as a
reference strain.

The presence/absence analysis of the Avel locus was performed by aligning

paired-end reads from DNA sequencing of eleven V. dahliae strains (de Jonge et al.
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2012) (including JR2) to the assembled genome of V. dahliae strain JR2 using BWA
(BWA-mem algorithm) (Li and Durbin 2010). Raw read depth per genomic position
was averaged per genomic windows (window-size 5 kb; slide 500 bp (Figure 3D; E)
and window-size 500 bp; slide 100 bp (Supplemental Fig 10B), respectively), and
subsequently performed a G+C correction similarly as previously described (Yoon et
al. 2009). Briefly, we adjusted these averaged raw read depth (ARD) based on the
observed deviation of read depth for a given G+C percentage. To this end, we first
determined the average ARD for G+C percentages ranging from 0-100% (by 1%).
Subsequently, we corrected the ARD using the formula ARDc; = ARD; * (m/Mg+c),
where ARDg; is the corrected ARD in the ith window, ARD; is the ARD in the ith
window, m is the average ARD over all windows, and mg.c is the average ARD for all
windows with the same G+C percentage as the ith window (Yoon et al. 2009).
Additionally, the genomic reads of each individual additional V. dahliae strain were
assembled using A5 pipeline (v.20140113) (Tritt et al. 2012). The assembled
genomes were aligned to the genome assembly of V. dahliae strain JR2 genome
using nucmer (settings: -maxmatch), which is part of the MUMmer 3.0 package
(Kurtz et al. 2004). Overlaps between genomic coordinates of different genome
features, e.g. lineage-specific regions, genes or transposable elements, were
assessed by BEDtools (v2.24.0) (Quinlan and Hall 2010) or by the R package
GenomicRanges (Lawrence et al. 2013).

Single nucleotide polymorphisms (SNPs) were identified using GATK v2.8.1
(DePristo et al. 2011). Briefly, paired-end reads derived from ten V. dahliae strains
(de Jonge et al. 2012) were mapped onto the complete genome assembly of V.
dahliae strain JR2 (Faino et al. 2015) using BWA (BWA-mem algorithm) (Li and
Durbin 2010). Using GATK v2.8.1 (DePristo et al. 2011), mapped reads were locally
realigned to minimize the number of mismatches over all reads, and subsequently
genomic variants (SNPs) were called using GATK’s UnifiedGenotyper (default
settings; emitting threshold 20, haploid organism) and resulting variants were quality
filtered (quality > 50; phred-scaled quality score for the assertion), depth > 10 and
allelic frequency > 0.9). SNPs derived from different strains were summarized in non-
overlapping windows of 1 kb, and the number of SNPs derived from the individual
strains were averaged per window. Absence of a SNP in a particular strain was only

considered if the corresponding position displayed read coverage.
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Supplemental Fig. S1 — Whole-genome alignment between two Verticillium
dahliae strains reveals frequent chromosomal rearrangements. The whole-
genome dot-plot displays structural polymorphisms between chromosomes of V.
dahliae strains JR2 and VdLs17. Forward alignments are shown in red, reverse
alignments in blue. ldentified synteny breakpoints in V. dahliae strain JR2 are
indicated by triangles (black for inter-chromosomal, green for intra-chromosomal).
For clarity, particular chromosomes of V. dahliae strain VdLs17 have been inverted
as indicated by an asterisk.
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Supplemental Fig. S2 — Long-read mapping for high-resolution identification of
synteny breakpoints. (A) High-resolution analysis of synteny breakpoints is
exemplified for chromosome 1 of V. dahliae strain JR2. Long reads derived from
genomic sequencing of V. dahliae strain VdLs17 are mapped onto chromosome 1 of
V. dahliae strain JR2. The first 50 kb of chromosome 1 are omitted due to high read
depth resulting from the collapse of the ribosomal gene cluster. The heatmaps
indicate the transposable element (TE) density and the gene density, respectively,
using a color scale from white (high density) to black (low density). (B) Synteny
breakpoints between V. dahliae strain JR2 and VdLs17 chromosomes (colors of the
contigs refer to Fig. 1). (C) Mapping of long reads derived from V. dahliae strain
VdLs17 identifies synteny breakpoints in high resolution. Blue lines indicate long
reads mapped on the forward strand, while red lines indicate reads mapped on the
reverse strand. (D) Mapping of long reads derived from V. dahliae strain JR2 onto
chromosome 1 of V. dahliae strain JR2 displays continuous mapping over the
breakpoints.
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Supplemental Fig. S3 — The Avel locus is conserved, yet not monophyletic, in
the Verticillium dahliae population. (A) The unrooted phylogenetic tree was
constructed with RealPhy using V. dahliae strain JR2 as a reference and paired-end
reads from 10 additional V. dahliae strains. The presence (filled) or absence (empty)
of the Avel locus in the respective strain is indicated by circles. (B) The presence
(black) or absence (white) of inter-chromosomal rearrangements, revealed by paired-
end read analyses (Supplemental Fig 4), is indicated in the respective strains by
circles. Grey circles indicate situations in which the exact constitution of the synteny
breakpoint in the other V. dahliae strains could not be determined due to lineage-
specific regions and/or repetitive elements.
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Supplemental Fig. S4 — Paired-end read analyses reveal distinct rearrangement
patterns among V. dahliae strains. Paired-end reads derived from genomic
sequencing of ten V. dahliae strains were mapped onto the genome assembly of V.
dahliae strain JR2. Genomic regions surrounding three identified synteny breakpoints
are highlighted, and concordant, discordant and orphan reads are displayed. A red
box highlights the situation in V. dahliae strain VdLs17. The first synteny breakpoint
(A) is only observed in V. dahliae strain VdLs17 and not in any other strain, the
second synteny breakpoint (B) is present in all analyzed V. dahliae strains, and (C)
the third is present in part of the V. dahliae population.
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Supplemental Fig. S5 - Reconstruction of genomic translocations between V.
dahliae chromosomes. Screenshot of the GEvo output for syntenic regions between
chromosomes of V. dahliae strains JR2 (labeled in black) and VdLs17 (labeled in
red). Each box represents a particular rearrangement between the two strains. Each
panel (A to E, see Table 1 for details) contains 4 boxes that represent genomic
regions of two chromosomes of both V. dahliae strains JR2 and VdLsl17. Gene
models are drawn as colored arrows for both DNA strands, with CDS colored green,
RNA blue, and the full gene model as grey to show introns. GEvo was used to find
regions of similarity (i.e. BLAST hits) between all pairwise sequence comparisons
and are drawn as colored blocks above or below gene models, with each color
representing one pairwise comparison. Ribbons between boxes connect syntenic
regions. Only coding regions were used to identify syntenic blocks between different
genomic regions.

16



>

AN

VdLs17_Chr2:5162241..5167836

VdLs17_Chr1:3132865..3138737

B 100
o
©
N 80
N
. 2
=) 60 =
B v s
= £
(=] i
N 40 o
% 52
5 - 20
l\l
b 0
3
C S VdLs17_Chr2:58362..59597

VdLs17_Chr4:307524..309525
<

VdLs17_Chr3:2660081..2665821
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Chré6

Supplemental Fig. S8 — Paralogous gene pairs in V. dahliae strain JR2. Circos
diagram illustrating paralogous gene pairs in V. dahliae strain JR2. Paralogous gene
pairs of which at least one member is located at the LS regions are connected with
blue lines, while paralogous gene pairs located in the core genome are connected
with red lines.
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Supplemental Fig. S9 — Example of synteny and gene loss between LS regions in V. dahliae strain JR2 and VdLs17. Part of
chromosome 5 of V. dahliae strain JR2 (top) is syntenic to part of chromosome 4 of V. dahliae strain VdLs17 (bottom). Syntenic
non-LS regions between the two strains are indicated with blue ribbons, while syntenic regions within LS regions are indicated with
grey ribbons. Genes are indicated in green and transposable elements are indicated in red.
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Supplemental Fig. S10 — SNP distribution across the V. dahliae JR2 genome.
The box plot represents the average number SNPs derived in genomic windows of 1
kb between V. dahliae strain JR2 and 10 additional V. dahliae strains. The Avel
region was investigated using only race 1 strains. Statistical differences were
assessed using a Wicoxon rank sum test.
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Supplemental Fig. S11 — Verticillium dahliae race 2 strains lack the Avel locus.
(A) Read depth was estimated by mapping the genomic reads derived from race 1
and race 2 strains to the V. dahliae strain JR2 reference (window 500 bp; slide 100
bp). The position of Avel is indicated with a red arrow. (B) Magnification in of the
Avel locus, highlighting the four dominating coverage patterns. Lines indicate the
corrected average read depth (per 5 kb window, 500 bp slide) of paired-end reads
derived from genomic sequencing of eleven V. dahliae strains. Different colors
indicate distinct patterns of coverage across the Avel locus. Genes and transposable
elements/repeats (excluding simple repeats) are indicated. (C) Detailed view of
paired-end reads derived from V. dahliae strains VdLs17 and St100, revealing
distinct regions where the sequence coverage drops.
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Supplemental Fig. S12 — Expression analysis of transposable elements located
in the core genome or in LS regions. The box plot summarizes expression levels
approximated by RNA-seq read counts, which is expressed as log;o(RPKM +1) of
genes (grey) and transposable/repetitive elements (white) for the whole genome, the
core-genome and the variable genome (LS regions). Statistical differences were
assessed using a Wilcoxon rank sum test.
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Supplemental Fig. S13 -Dynamics of LTR transposable elements in the genome
of Verticillium dahliae strain JR2. The divergence time of transposable elements
belonging to the LTR class identified in the genome of V. dahliae strain JR2 (Faino et
al. 2015) was estimated using the Jukes-Cantor distance calculated using the
similarity between 5’ and 3’ Long Terminal Repeats from the same elements. The
distributions of divergence times between transposable elements located in the core
genome (red) and in the LS regions (blue) differ.
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Supplemental Fig. S14 — Phylogenetic tree of fungal species that are related to
Verticillium dahliae. (A) Phylogenetic relationship between 13 fungal species (FPS:
Fusarium pseudograminearum; FFU: Fusarium fujikuroi; FOX: Fusarium oxysporum
f. sp. lycopersici; CHI: Colletotrichum higginsianum; COR: Colletotrichum orbiculare;
CGO: Colletotrichum gloeosporioides; ACRA: Acremonium alcalophilum; SOD:
Sodiomyces alkalinus; MUCL: Verticillium tricorpus MUCL9792; VAA: Verticillium
albo-atrum; MS10: Verticillium alfalfa MS102 LS17: Verticilium dahliae strain
VdLs17; JR2: Verticillium dahliae strain JR2) was inferred using maximume-likelihood
phylogeny based on a concatenated pseudo-molecule containing ~3,400 1:1:1
orthologous protein sequences identified by OrthoMCL analysis. (B) Ks distribution of
orthologous gene pairs. Ks values were calculated based on genes of V. dahliae
strain JR2 and their ortholog in each of the other species.
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