Telomeric analyses source code

This Java application is within a Project entitled “Telomeric methylation”, which is
structured in 3 different packages named “main”, “types” and “types.predicates”. There
is a class (.java) within each package named “Main.java”, “Patterns.java” and
“PredicateOnlyStringsEqualsTo.java”, respectively. The Google “guava” library has
been used.

A schematic representation of the project is shown in the following image:

v (= Telomeric_methylation
w B e
w f main
[J] Mainjava
v i types
[J] Patterns.java

w f3 types.predicates
[J] PredicateOnlyStringsEqualsTo.java

B JRE System Library [JavaSE-1.7]
e guava-14.0.jar
v (= lib
g guava-14.0,jar

The codes of each class are as follows:

Main.java
package main;
import java.io.IOException;
import java.util.Arrays;

import java.util.List;

import types.Patterns;

public class Main {

//Name of the file (including the extension)

private static String file = "SRRXXXXXX(YYYTAAA)4.fasta";
//Route of the address where the file is found + "file"
private static String address = "C:/...... /" + file ;

public static void main(String[] args) throws IOException {

calculate(address);

private static void calculate(String dir) throws IOException{
List<String> AllSequences = Patterns.ALLStrings(dir);
List<String> only5@perSequence = Patterns.AlLLStringsOfOnly (50,
AllSequences);
List<String> rightSequencesYYYTAAA =
Patterns.RightSecuencesYYYTAAA(only5@perSequence);

Integer YYYTAAA = rightSequencesYYYTAAA.size();

Integer numberOfC = Patterns.NumberOfC(rightSequencesYYYTAAA);

Integer noCs =
Patterns.NumberOfCPerSequence(rightSequencesYYYTAAA)[O];

System.out.println("Run: " + file);

System.out.println("Number of (YYYTAAA)n reads (denoted as
50TRs)");
System.out.println(YYYTAAA);

System.out.println("Number of cytosines whithin 50TRs");
System.out.println(numberOfC);

System.out.println("% of cytosines whithin 50TRs");
Double auxl = 100*((1.0*numberOfC)/(YYYTAAA*21));
System.out.println(auxl.floatValue() + "%");

System.out.println("Number of (TTTTAAA)n reads");
System.out.println(noCs);

System.out.println("% of cytosine containing 50TRs");
Double aux2 = 100-(100*((1.0*noCs)/YYYTAAA));
System.out.println(aux2.floatValue() + "%");
System.out.println("Number of @ to n C containing 50TRs");

System.out.println(Arrays.toString(Patterns.NumberOfCPerSequence(right
SequencesYYYTAAA)));

System.out.println("% of 1 to n C containing 50TRs from all the
C containing 50TRs.");

System.out.println(Arrays.toString(Patterns.PercentageOfCForSequence (P
atterns.NumberOfCPerSequence(rightSequencesYYYTAAA))));

System.out.println("List of sequences formed by YYYTAAA:");
System.out.println(rightSequencesYYYTAAA);

Patterns.java

package types;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArraylList;
import java.util.List;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;

import types.predicates.PredicateOnlyStringsEqualsTo;

public class Patterns {
//Different patterns used below

private static String first = "((((((A)?2A)?(C|T))2(C|T))2(C|T))?T)?>";

private static String middle = "(AAA(C|T)(C|T)(C|T)T)+";

private static String last =
"(ACACACCCIT)((CIT)((CITI(T)2)2)2)2)2)?)2";

private static Pattern patternYYYTAAA = Pattern.compile("~" + first +
middle + last + "$");

//0Obtention of DNA strings from the file. Lines containing no DNA
strings have one of the following characters

// '@',"'>","'+" or contain the word 'length'

//If the line does not contain one of the above mentioned characters
it will be considered a DNA string.

public static List<String> AllStrings(String nameFile) throws
IOException{
List<String> aux = new ArraylList<String>();
BufferedReader br = new BufferedReader(new
FileReader(nameFile));
String line = br.readLine();
while(line!=null){
processLine(line,aux);
line = br.readlLine();
}
br.close();
return aux;

private static void processLine(String line, List<String> aux) {
if((!line.contains("@")) && (!line.contains(">")) &&
(!line.equals("")) && (!line.contains("+")) && (!line.contains("length"))){
aux.add(line);

}

//Archives had different sequence lengths. We used the first sequence
as a reference of the rest.

//the following method generates a list with 50 bp long sequences from
every file.

public static List<String> AllStringsOfOnly(Integer
finalNumberOfNucleotids, List<String> list){

Iterable<String> it = Iterables.filter(list, new
PredicateOnlyStringsEqualsTo(list.get(@).length()));
List<String> copylist = Lists.newArrayList(it);

List<String> newlist = new ArraylList<String>();

Character[] characters = new Character[finalNumberOfNucleotids];

String aux = ;
for(String str:copylist){

for(int i = @; i<finalNumberOfNucleotids; i++){
characters[i]= str.charAt(i);

}

for(int i = 0; i<finalNumberOfNucleotids; i++){
aux = aux + characters[i];

}

newlist.add(aux);

aux="";

}

return newlist;

//0btention of the 50 bp long (YYYTAAA) sequences (50TRs)
public static List<String> RightSecuencesYYYTAAA(List<String> list) {
List<String> aux = new ArraylList<String>();

for (String s : list) {
Matcher mat = patternYYYTAAA.matcher(s);

if (mat.find()) {

aux.add(s);

}

return aux;

//Determination of the number of cytosines
public static Integer NumberOfC(List<String> list){
Integer numberCs = 0;

for(String s:1list){
for(int i = @; i<s.length() ; i++){
if(s.charAt(i)=="C"){
numberCs++;

}
}

return numberCs;

public static Integer[] NumberOfCPerSequence(List<String> list){

Integer aux = 0;
Integer[] res = new Integer[23];

for(int i=0; i<23 ; i++){
res[i]=0;

}

for(String s:1list){
for(int i = 0; i<s.length() ; i++){
if(s.charAt(i)=="C"){
aux++;
}
}
res[aux]++;
aux=0;

}

return res;

public static String[] PercentageOfCForSequence(Integer[] in){

Integer total
Integer largo

9;
in.length;

for(Integer integer:in){
total = total + integer;

}
total = total-in[@];

String[] ret = new String[largo-1];

for(int i = 1; i<=ret.length ; i++){
Double dou = 100.0*((1.0*in[i])/total);
Float aux = dou.floatValue();

ret[i-1] = aux + "%";

}

return ret;

PredicateOnliStringsEqualsTo.java

package types.predicates;

import com.google.common.base.Predicate;

public class PredicateOnlyStringsEqualsTo implements Predicate<String> {
private Integer num;

public PredicateOnlyStringsEqualsTo(Integer num){
this.num = num;

}

public boolean apply(String str) {

return str.length()==num;

