
Telomeric analyses source code

This Java application is within a Project entitled “Telomeric methylation”, which is

structured in 3 different packages named “main”, “types” and “types.predicates”. There

is a class (.java) within each package named “Main.java”, “Patterns.java” and

“PredicateOnlyStringsEqualsTo.java”, respectively. The Google “guava” library has

been used.

A schematic representation of the project is shown in the following image:

The codes of each class are as follows:

Main.java

package main;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;

import types.Patterns;

public class Main {

 //Name of the file (including the extension)
 private static String file = "SRRXXXXXX(YYYTAAA)4.fasta";
 //Route of the address where the file is found + "file"
 private static String address = "C:/....../" + file ;

 public static void main(String[] args) throws IOException {

 calculate(address);
 }

 private static void calculate(String dir) throws IOException{
 List<String> AllSequences = Patterns.AllStrings(dir);
 List<String> only50perSequence = Patterns.AllStringsOfOnly(50,
AllSequences);
 List<String> rightSequencesYYYTAAA =
Patterns.RightSecuencesYYYTAAA(only50perSequence);

 Integer YYYTAAA = rightSequencesYYYTAAA.size();
 Integer numberOfC = Patterns.NumberOfC(rightSequencesYYYTAAA);
 Integer noCs =
Patterns.NumberOfCPerSequence(rightSequencesYYYTAAA)[0];

 System.out.println("Run: " + file);

 System.out.println("Number of (YYYTAAA)n reads (denoted as
50TRs)");
 System.out.println(YYYTAAA);

 System.out.println("Number of cytosines whithin 50TRs");
 System.out.println(numberOfC);

 System.out.println("% of cytosines whithin 50TRs");
 Double aux1 = 100*((1.0*numberOfC)/(YYYTAAA*21));
 System.out.println(aux1.floatValue() + "%");

 System.out.println("Number of (TTTTAAA)n reads");
 System.out.println(noCs);

 System.out.println("% of cytosine containing 50TRs");
 Double aux2 = 100-(100*((1.0*noCs)/YYYTAAA));
 System.out.println(aux2.floatValue() + "%");

 System.out.println("Number of 0 to n C containing 50TRs");

 System.out.println(Arrays.toString(Patterns.NumberOfCPerSequence(right
SequencesYYYTAAA)));

 System.out.println("% of 1 to n C containing 50TRs from all the
C containing 50TRs.");

 System.out.println(Arrays.toString(Patterns.PercentageOfCForSequence(P
atterns.NumberOfCPerSequence(rightSequencesYYYTAAA))));

 System.out.println("List of sequences formed by YYYTAAA:");
 System.out.println(rightSequencesYYYTAAA);

 }
}

Patterns.java

package types;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;

import types.predicates.PredicateOnlyStringsEqualsTo;

public class Patterns {

 //Different patterns used below

 private static String first = "((((((A)?A)?(C|T))?(C|T))?(C|T))?T)?";
 private static String middle = "(AAA(C|T)(C|T)(C|T)T)+";
 private static String last =
"(A(A(A((C|T)((C|T)((C|T)(T)?)?)?)?)?)?)?";
 private static Pattern patternYYYTAAA = Pattern.compile("^" + first +
middle + last + "$");

 //Obtention of DNA strings from the file. Lines containing no DNA
strings have one of the following characters
 // '@','>','+' or contain the word 'length'
 //If the line does not contain one of the above mentioned characters
it will be considered a DNA string.

 public static List<String> AllStrings(String nameFile) throws
IOException{
 List<String> aux = new ArrayList<String>();
 BufferedReader br = new BufferedReader(new
FileReader(nameFile));
 String line = br.readLine();
 while(line!=null){
 processLine(line,aux);
 line = br.readLine();
 }
 br.close();
 return aux;
 }

 private static void processLine(String line, List<String> aux) {
 if((!line.contains("@")) && (!line.contains(">")) &&
(!line.equals("")) && (!line.contains("+")) && (!line.contains("length"))){
 aux.add(line);
 }

 }

 //Archives had different sequence lengths. We used the first sequence
as a reference of the rest.
 //the following method generates a list with 50 bp long sequences from
every file.

 public static List<String> AllStringsOfOnly(Integer
finalNumberOfNucleotids, List<String> list){

 Iterable<String> it = Iterables.filter(list, new
PredicateOnlyStringsEqualsTo(list.get(0).length()));
 List<String> copylist = Lists.newArrayList(it);

 List<String> newlist = new ArrayList<String>();

 Character[] characters = new Character[finalNumberOfNucleotids];

 String aux = "";

 for(String str:copylist){
 for(int i = 0; i<finalNumberOfNucleotids; i++){
 characters[i]= str.charAt(i);
 }
 for(int i = 0; i<finalNumberOfNucleotids; i++){
 aux = aux + characters[i];
 }
 newlist.add(aux);

 aux="";

 }

 return newlist;
 }

 //Obtention of the 50 bp long (YYYTAAA) sequences (50TRs)
 public static List<String> RightSecuencesYYYTAAA(List<String> list) {
 List<String> aux = new ArrayList<String>();

 for (String s : list) {
 Matcher mat = patternYYYTAAA.matcher(s);
 if (mat.find()) {
 aux.add(s);
 }
 }

 return aux;
 }

 //Determination of the number of cytosines

 public static Integer NumberOfC(List<String> list){

 Integer numberCs = 0;

 for(String s:list){
 for(int i = 0; i<s.length() ; i++){
 if(s.charAt(i)=='C'){
 numberCs++;
 }
 }
 }

 return numberCs;
 }

 public static Integer[] NumberOfCPerSequence(List<String> list){

 Integer aux = 0;

 Integer[] res = new Integer[23];

 for(int i=0; i<23 ; i++){
 res[i]=0;
 }

 for(String s:list){
 for(int i = 0; i<s.length() ; i++){
 if(s.charAt(i)=='C'){
 aux++;
 }
 }
 res[aux]++;
 aux=0;
 }

 return res;
 }

 public static String[] PercentageOfCForSequence(Integer[] in){

 Integer total = 0;
 Integer largo = in.length;

 for(Integer integer:in){
 total = total + integer;

 }
 total = total-in[0];

 String[] ret = new String[largo-1];

 for(int i = 1; i<=ret.length ; i++){
 Double dou = 100.0*((1.0*in[i])/total);
 Float aux = dou.floatValue();
 ret[i-1] = aux + "%";
 }

 return ret;
 }

}

PredicateOnliStringsEqualsTo.java

package types.predicates;

import com.google.common.base.Predicate;

public class PredicateOnlyStringsEqualsTo implements Predicate<String> {

 private Integer num;

 public PredicateOnlyStringsEqualsTo(Integer num){
 this.num = num;
 }

 public boolean apply(String str) {

 return str.length()==num;
 }

}

