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. Processing RNA-seq and ChIP-seq data

LA, Processing RNA-seq data

RNA-seq data were obtained from two sources: (i) five human and mouse cell lines from
ENCODE (The ENCODE Project Consortium 2012; Stamatoyannopoulos et al. 2012) (Supplemental
Table S1); (ii) sixteen cell types from a mouse hematopoietic differentiation study (Lara-Astiaso et al.
2014) (Gene Expression Omnibus accession number GSE60101).

Supplemental Table S1. ENCODE RNA-seq data sets. All data are from whole-cell fractions.

. . 1 RNA Run Read length 2
Species Cellline @ Sex Treatment DCCID extract  type (nt) Nrep
K562 F No ENCSRO00CPH [ ong 76

Human
GM12878 F No ENCSR000COQ PolyA+ 76
CH12 F No ENCSR000CWD _ Paired- 101 2
MEL M No ENCSRO00CWE ~ R1P0- end 101
Mouse . Zero-
MEL M 2% DMSO o\ rorooocwE  Gold 101

for 5 days

" ENCODE DCC metadata database accession ID (https://www.encodeproject.org)
2 Number of biological replicates

Transcript annotations were taken from GENCODE human version 19 and mouse version 4
(Harrow et al. 2012). Quantifications were performed on all genes with ‘gene_type’ annotated as
‘protein_coding’ and all isoforms from those genes. UCSC genome assemblies hg19 and mm10 were
used for human and mouse, respectively.

RNA-seq reads were aligned with STAR v2.4.0h (Dobin et al. 2012) and quantified by RSEM
v1.2.15 (Li and Dewey 2011) with command-line options from ENCODE’s STAR-RSEM pipeline
(manuscript in preparation; see https://github.com/ENCODE-DCC/long-rna-seqg-pipeline for source
code; the pipeline was implemented in the pRSEM package). Two variants of RSEM estimates were
used. By ‘RSEM ML, we refer to the maximum likelihood estimates obtained from RSEM’s
Expectation-Maximization algorithm. By ‘RSEM’, we refer to the posterior mean estimates obtained
from Gibbs sampling with the Bayesian version of RSEM’s probabilistic model with an initial pseudo-
count of one for every isoform. ‘RSEM’ is the most comparable variant to pPRSEM.

Two variants of pPRSEM were used. ‘pRSEM’ refers to a pRSEM run with the default partition
model. ‘pRSEM no partition’ refers to a pPRSEM run where a single prior parameter is learned from all
the isoforms in a training set without any partition.

Three variants of eXpress version 1.5.1 (Roberts and Pachter 2013) were used. ‘eXpress’
denotes an eXpress run under its default settings. ‘eXpress O1B10’ and ‘eXpress O1B100’ denote an
eXpress run with one round of online EM, followed by ten or one hundred rounds of batch EM,
respectively. All eXpress runs were supplied with command-line option ‘--rf-stranded’ to match the
orientation of the fragments in the ENCODE RNA-seq data sets we used. The same transcript
alignments computed by STAR and used by RSEM and pRSEM were given to eXpress as input after
sorting the alignment BAM files by read name (as required by eXpress).



I.B. Distinguishability of isoforms and genes

The distinguishability of an isoform within an RNA-seq experiment depends on the uniqueness
of the isoforms’ exon(s) and junction(s) as well as the RNA-seq fragment length. Since all ENCODE
human and mouse RNA-seq data sets used in this work were paired-end, we first obtained their
fragment length distributions with RSEM and took the most probable length for each of them
(Supplemental Figure S1A; Supplemental Figure S2A). We then determined a fragment length for each
species by taking the average of the most probable length from each data set from that species (170 nt
for human, 162 nt for mouse). Next, we enumerated all possible fragments of that length from each
isoform and determined which of these could be uniquely mapped back to its parent isoform. Isoforms
that were shorter than the fragment length (0.20% of human isoforms; 0.19% of mouse isoforms) were
ignored because a numeric value characterizing the distinguishability of such an isoform could not be
calculated. We defined an isoform’s distinguishability as the ratio of the number of its uniquely mapped
fragments over the total number of its fragments. Under this definition, an isoform with zero
distinguishability, i.e. an indistinguishable isoform, must have all of its fragments identical to fragments
from other isoforms. We defined a gene’s distinguishability as the average distinguishability of all of its
isoforms. Thus, all the isoforms from an indistinguishable gene are also indistinguishable.

In human, 20,738 isoforms from protein-coding genes are indistinguishable, accounting for 14%
of all isoforms (Supplemental Figure S1B). Moreover, there are more than 100,000 isoforms with
distinguishability of 0.5 or less (Supplemental Figure S1C). At the gene level, more than 45% of
expressed protein-coding genes contain at least one indistinguishable isoform (Supplemental Figure
S1D) and almost 15,000 genes have distinguishability of 0.5 or less (Supplemental Figure S1E).

In addition to the average of the most probable fragment length (170 nt for human), we also
used a number of other fragment lengths, ranging from 100 nt to 500 nt, to calculate isoform and gene
distinguishability. As expected, a longer fragment length led to increased distinguishability at both the
isoform- and the gene-level (Supplemental Figure S1, B to D). With a fragment length of 500 nt, the
number of indistinguishable isoforms dropped to 11,478, roughly half the number when a fragment
length of 170 nt was used (Supplemental Figure S1B). Similarly, the percentage of expressed genes
with an indistinguishable isoform decreased to roughly 35% (Supplemental Figure S1D). Nevertheless,
the number of indistinguishable isoforms and genes is sizable, even with large fragment lengths. Note
that we took 100 nt as the lower bound because a read length of at least 100 nt is common for current
RNA-seq experiments and the fragment length is typically longer than the read length. We did not use a
fragment length longer than 500 nt, because there are already 15,100 transcripts (10% of all the
transcripts) shorter than 500 nt and transcripts shorter than the fragment length were ineligible for the
distinguishability calculations.

We performed the same calculations for the mouse genome. The fraction of isoforms or genes
having low distinguishability was still substantial (Supplemental Figure S2). With the average of the
most probable fragment length (162 nt), 9% of all the isoforms were indistinguishable (Supplemental
Figure S2B) and more than 20% of expressed protein-coding genes had an indistinguishable isoform
(Supplemental Figure S2D). As we observed in human, increasing the fragment length partially
alleviates the low distinguishability issue (Supplemental Figure S2 , C and E).
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Supplemental Figure S1. Distinguishability of human isoforms and genes defined by different fragment
lengths. (A) Fragment length distributions of ENCODE human paired-end RNA-seq data sets estimated by RSEM,;
(B) Fractions of indistinguishable isoforms; (C) Cumulative distributions of distinguishability for all human isoforms;
(D) Fractions of expressed genes with at least one indistinguishable isoform; (E) Cumulative distributions of
distinguishability for all human genes.
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Supplemental Figure S2. Distinguishability of mouse isoforms and genes defined by different fragment
lengths. (A) Fragment length distributions of ENCODE mouse paired-end RNA-seq data sets estimated by RSEM;
(B) Fractions of indistinguishable isoforms; (C) Cumulative distributions of distinguishability for all mouse isoforms; (D)
Fractions of expressed genes with at least one indistinguishable isoform; (E) Cumulative distributions of
distinguishability for all mouse genes.

I.C. Processing ChlP-seq data

ChlIP-seq data sets were from the same sources as the RNA-seq data. For each ENCODE
RNA-seq data set, we obtained ChlP-seq reads for both Pol Il and its control (Supplemental Table S2).
To test whether Pol Il data from unmatched samples could provide an informative prior, we downloaded



Pol Il ChlP-seq peak data for four other human cell lines (Supplemental Table S2). For the mouse
hematopoietic differentiation data, for each cell type with an RNA-seq data set, we retrieved four types
of histone modification ChlP-seq data sets: H3K4me1, H3K4me2, H3K4me3, and H3K27ac (Gene
Expression Omnibus accession number GSE59636).

ChIP-seq reads were aligned with Bowtie v1.0.1 (Langmead et al. 2009) with command-line
options ‘-q -v 2 -a --best --strata -m 1’. These options resulted in the reporting of only the best uniquely
mapped reads. Since ENCODE Pol Il ChlP-seq data sets all have controls, peaks were called by
ENCODE’s SPP and IDR pipeline (Landt et al. 2012) with an IDR threshold of 0.05. The ChlIP-seq
signal for a genomic interval was calculated in the same manner as in dPeak (Chung et al. 2013) and
normalized by interval length. Due to the lack of ChlP-seq controls for the mouse hematopoietic
differentiation samples, peaks were called by HOMER as described previously (Lara-Astiaso et al.
2014). For these samples, the ChlP-seq signal for a genomic interval was computed by counting the
number of reads falling within that interval and then normalizing by interval length and read depth so
that signals for different histone marks could be integrated. To avoid PCR artifacts resulted from the
relatively low-input nature of the primary cell ChlP-seq data, the number of reads aligned to the same
genomic interval was kept at a maximum of five per ChlP-seq replicate.

Supplemental Table S2. ENCODE ChIP-seq data sets for human and mouse.
ChiIP-seq reads

Species Cellline Sex  Treatment pcc Ip’ Target Nrep’ DCCID’ Target Nrep®
K562 @ F No ENCSRO00BMR POLR2A ENCSR000BLS ReVXlink-—
Chromatin
Human POLR2A RevXlink
GM12878 F No ENCSRO00BIF s ENCSRO00BGH (i P 5
CH12 F No ENCSRO00ERQ POLR2A 2 ENCSROO0ERT IgG-mus = 1
Mouse MEL M No ENCSRO0O0EUC POLR2A ENCSRO00EUF  IgG-mus 1
0,
MEL M ZAD(I;/IaSyCS)forS ENCSRO0O0ETG POLR2A ENCSRO00ETD  IgG-rat 1
ChlIP-seq peaks
100 nM
A549 M  dexamethasone ENCFF002CFW POLR2A
for 1 hour
Human H1-hESC M No ENCFF002CJE  POLR2A
HeLa-S3 F No ENCFF002CJZ POLR2A
HepG2 M No ENCFF002CKX POLR2A

" ENCODE DCC metadata database accession ID (https://www.encodeproject.org)
2 Number of biological replicates



Il The pRSEM method

IILA.  An overview of pPRSEM

The framework of pPRSEM is built on RSEM, which employs a generative model and an EM
algorithm to estimate gene and isoform expression levels (Li and Dewey 2011; Li et al. 2010).
Specifically, RSEM models the RNA-seq read sequencing process by taking into account transcript
abundances, sequencing error, fragment length variation, read length variation, and read start position
non-uniformity. RSEM’s implementation also provides a Bayesian version of this model, in which
transcript expression levels are modeled as latent variables from a Dirichlet distribution. By default, the
prior parameters for the Dirichlet distribution are uniformly set to one (an uninformative prior) so that the
maximum a posteriori estimates are equal to RSEM’s maximum likelihood estimates. The framework of
pRSEM takes advantage of this design and learns informative parameters for the Dirichlet prior using a
training set of isoforms partitioned based on an external data set. In this way, pPRSEM can leverage
external information to supervise the allocation of multi-mapping reads and estimate transcript
abundances. A single shared prior parameter is learned for each partition through maximization of the
likelihood of a Dirichlet-multinomial model to fit the distributions of the read counts of the training set
isoforms. In what follows, we use the derivation of a Pol || ChlP-seq prior as an example to describe
these two steps. In addition to Pol Il ChIP-seq, other data types, such as histone modification ChlP-seq,
can also be used for deriving a prior. As described later in section II.F, pPRSEM provides a testing
procedure to determine if a given external data set can be used to derive an informative prior. This
procedure also computes a score to rank multiple informative external data sets.

I.B. Building and partitioning a training set of isoforms

Given Pol Il ChIP-seq data, a training set of isoforms is constructed by first selecting those
isoforms that (i) are from single-isoform genes with a genomic span of at least 1,003 nucleotides, which
ensures that the ‘TSS region’, ‘body region’, and ‘TES region’ of a gene do not overlap (see below for
definitions of “TSS region’, ‘body region’, and ‘TES region’); (ii) have TSSs that are more than 500
nucleotides from the TSS of any other isoform; and (iii) have genomic spans that do not overlap with
the span of any other isoform on either strand. These criteria prevent any ambiguity in assigning ChlP-
seq peaks and signals to isoforms. We further filter the training set by requiring isoforms to have an
average mappability = 0.8 for their TSS regions, body regions, and TES regions, where a ‘TSS region’
is defined as the 500 nucleotide flanking region of a TSS (5’ end), a ‘TES region’ is defined as the 500
nucleotide flanking region of a transcription end site (TES, i.e. 3’ end), and a ‘body region’ is defined as
the genomic span of an isoform excluding its TSS and TES regions. With this filter, we can have high
confidence in each segment’s Pol Il peak calls and signals by using uniquely mapped ChlP-seq reads.
Mappability is defined as the alignability of 36-mers calculated by GEM (Derrien et al. 2012).

We have implemented six partition models in pPRSEM. Models I-V are based on a single
complementary data set and Model VI was developed to utilize information from multiple external data
sets. Below we use Pol Il ChlP-seq data as the complementary data set to describe Models | to V and
use multiple histone modification ChIP-seq data sets to illustrate Model VI.



Model |, uses a binary partition established by the presence or absence of a Pol Il peak overlapping
with an isoform’s TSS region, i.e., a Pol Il TSS peak.

Model Il. Isoforms are first partitioned as in Model | with the resulting ‘no peak’ set further partitioned
into two subsets via a logistic regression model. This partition scheme was motivated by the bimodal
distribution of the fragment counts of ‘no peak’ isoforms (red line in Figure 2B). The logistic regression
model is specified by the predictive equation:

( phas_read )

In| ——————

1- Phas_read
= Bo + P1log10(Rec) + Balogro(Lesr) + B3log10(Stss) + Balvoay + Bslpoayl0g10(Spoay)
+ Be(1 — Ibody)loglo(sbody) + B7lrgs + Bslreslogio(Stes) + Bo(1 — Itgs)log1o(Stes)

where phas_read iS the probability of an isoform having a non-zero RNA-seq read count; Rgc is the ratio of
an isoform’s GC content over the mean GC content of all isoforms in the training set; Lex is an isoform’s
effective length; Stss, Spoay, and Stes are the means of the Pol Il ChlP-seq signal within an isoform’s
TSS region, body region, and TES region, respectively; lpoqy and Ires are Boolean variables
representing whether an isoform has a Pol Il peak overlapping with its body region and TES region,
respectively. The By to By are the intercept and coefficients obtained from fitting the logistic regression
model to the training set. After fitting, isoforms in the ‘no peak’ set are divided based on whether or not
their estimated phas_read is less than 0.5.

Model lll. This model is very similar to Model Il with the difference being that instead of logistic
regression, a linear regression model of the same form is used to divide the ‘no peak’ set. Instead of
Pras_read, the model predicts an isoform’s log read count. Isoforms in the ‘no peak’ set are binned based
on their predicted read count with the upper bound of bin i given by:

i Cmax .
bi = ;loglo (C_,n—ln> + loglo(cmln)

max min

where n is a user-defined number of bins, and ¢ and ¢™" are the largest and smallest predicted read
count, respectively. The interval for each bin is half-closed, (bi.1, bj], except the interval for the first bin,
which is [logo(c™), b].

Model IV. This model is the same as Model lll, except that the ‘with peak’ set is further subdivided
instead of the ‘no peak’ set.

Model V. Like Models Ill and IV, Model V uses a linear regression model to bin the isoforms, but unlike
all other models, it does not initially partition by Pol Il TSS peak. The predictive equation for this model
is:
logyo(c) = Bo + B1logio(Rsc) + ﬁ210910(Leff) + B3lrss + Palrsslogio(Srss) + Bs(1 — Irss)logro(Stss)
+ Bslvoay + Brlvoayl0g10(Svoay) + Bs(1 — Inoay)l0g10(Spoay) + Bolres
+ Brolreslogio(Stes) + f11(1 — Irgs)logy0(Stes)

where c is an isoform’s read count; lrss is a Boolean variable representing whether or not an isoform

has a Pol Il TSS peak; the B to 11 are the intercept and coefficients to be fitted; and all the other
variables are the same as in the Model Il equation.



Model VI. This model was developed to combine signals from multiple external data sets. Assuming we
would like to utilize n types of histone modification ChlP-seq data, we use a logistic regression model
specified by the predictive equation:

n

In (1 Pexpressed ) — ,30 + Z ﬁiloglo(SiTSS)
— Pexpressed =1

where peyressea denotes the probability of an isoform being expressed, S/°° is the ith type of histone

modification signal for isoform’s TSS region, and the B, to B, are the intercept and coefficients obtained

by fitting the model to the training set. After fitting, all isoforms are partitioned by whether pexpressed is

higher than 0.5 or not.

I.C. Learning prior parameters through a Dirichlet-multinomial model

Given a training set and partitioning of the isoforms, we use a Dirichlet-multinomial model and
RSEM’s posterior mean estimates to learn prior parameters for the partitions. Let T be the training set
of isoforms, and nr = |T]. Let ¢; be the initial RNA-seq read count estimate for the ith isoform and
ne = Z?:Tl ¢; be the total number of reads initially assigned to isoforms in T. Let ns denote the number
of partitions and f:[1,ny] - [1,n,4] denote the mapping from transcript indices to partition indices. The
kth partition is associated with the Dirichlet parameter oy, which is shared by all ny isoforms in that
partition. The parameters a={ox | k € [1, nal}, are what we learn from the training set.

Let p; denote the prior probability that a read originates from the ith isoform. We assume that the
probabilities p={p;| i € [1, n7]} follow a Dirichlet distribution parameterized by a and the partition
function f. The read count ¢={c;| i € [1, n]} then follows a multinomial distribution parameterized by p
and n.. Given read counts c¢ for T, the log likelihood is:

ln(Pr(cIa)) In Pr(clp)Pr(pIa) dp)

F(n +1) nr F(Zl 1“f(z))1_[ “f(o 1 )
7, t(c + DL Lt PO T T (ap)

F(nc +Dr(x, “f(z)) nr pfi+“f(i>‘1 dp
i=1 *

[T F(cl + 1)r(af(l))

. (F(nc + DX, ar) 1_[ I(ci + arm) )

M(ne+ 207, arw) i=1T(c; + DI (ar()

_ Ir(n, + 1”(2221 nTkak) I‘(cl + “f(l))

a n( F(nc +ZZilnTkak) 1_[ =1T(c; + 1)r(af(l))>

where I'(x) is the gamma function and dp denotes integrating {pi| i € [1, nt]} over the simplex.

We learn o via maximum likelihood estimation. For this optimization we employ a bound
constrained BFGS algorithm to search over positive values of a. The algorithm requires the gradient of
the log-likelihood, which is given by:



iln(PT(clat)) = iln Ml mrear) iy M+ o)
%0 9 "\ Tt + S nmcs) (v(a))™

na ng
()l T ) w@)) 1 3
=1 = i:f(i)=j

where ¥(x) is the digamma function.

II.D. Comparison of partition models for a single complementary data set

We evaluated the first five models described in section II.B. on the K562 and GM12878
datasets. Models were compared in terms of: (i) the number of isoforms that had fragment count
changes in agreement with their Pol || TSS peak status; and (ii) the number of genes that had
expression status prediction changes in concordance with their Pol Il TSS peak status. In the
evaluation for the first metric, isoform TSS groups were selected in the same way as for Figure 3A.
Based on their Pol Il TSS peak status and change of counts, isoform TSS groups were classified into
four categories: (i) with TSS peak and have fragment count increased (‘with, increased’); (ii) without
TSS peak and have fragment count decreased (‘without, decreased’); (iii) without TSS peak and have
fragment count increased (‘without, increased’); (iv) with TSS peak and have fragment count decreased
(‘with, decreased’). After using a Pol Il prior, we assumed that ‘with peak’ isoform TSS groups would
have counts increased, whereas ‘no peak’ isoform TSS groups were more likely to have counts
decreased. Thus, a good partition model would have a large number of isoform groups in (i) and (ii) and
a small number in (iii) and (iv). No model was found to be overwhelmingly better than the others
(Supplemental Figure S3A).

For the second metric, evaluation methods and gene selection were similar to those used for
Figure 4B. We classified genes into four categories: (i) estimated as ‘expressed’ by RSEM, but not by
pRSEM (‘expr, not expr’); (ii) estimated as ‘not expressed’ by RSEM, but as ‘expressed’ by pPRSEM
(‘not expr, expr’); (iii) estimated as ‘expressed’ by both RSEM and pRSEM (‘expr, expr’); (iv) estimated
as ‘not expressed’ by both RSEM and pRSEM (‘not expr, not expr’). All comparisons were carried out
on the first replicate of the K562 and GM12878 RNA-seq data sets. Model | and Il have two and three
partitions by definition, respectively. For Model Ill, four numbers of bins (2, 3, 4, 5) were applied to the
‘no peak’ set. For Model 1V, we only divided the ‘with peak’ set into two bins, because larger numbers of
bins resulted in one bin containing just a single isoform. For Model V, there were four numbers of bins
(3, 4, 5, 6) applied on the whole training set. No model was found to be overwhelmingly better than the
others with regard to this metric as well (Supplemental Figure S3B).

Therefore, we chose to use the simplest partition model (Model |, by Pol Il TSS peak) as the
default in pRSEM and for the remainder of the experiments in this work. Although the presented
partition models were designed with Pol Il ChIP-seq data in mind, they may be applicable to other types
of external data that are informative regarding isoform abundances. For example, we expect that
transcription factor ChiP-seq data, as well as other types of transcript sequencing data, e.g.
RAMPAGE, can be used with these models to partition the training set of isoforms.
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Supplemental Figure S3. No partition model was found to outperform the others. (A) Partition models
were compared in terms of the number of isoform TSS groups that had a change of fragment count agree
or disagree with their Pol Il TSS peak status. (B) Partition models were compared by the number of genes
that had their expression states changed after using pRSEM.
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We applied pRSEM to five human and mouse cell lines from ENCODE. Every cell line had both
RNA-seq and Pol Il ChIP-seq data available (Supplemental Table S1 and Supplemental Table S2). We

learned prior fit the training set data well for all cell lines (Supplemental Figure S4).

11



Supplemental Figure S4. Pol Il TSS peak
data are informative for deriving pRSEM
priors across cell lines and species.
Empirical and fitted distributions of fragment
counts for pRSEM training set isoforms,
stratified by Pol Il TSS peak status, for five
human and mouse cell lines. Plots were
generated in the same manner as Figure
2B. The estimated Dirichlet prior parameters
(without peak, with peak) are shown in the
top left of each panel.
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A testing procedure to select and compare complementary data sets
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Investigators may not always have a Pol Il ChlP-seq data set from the same condition as their
RNA-seq data. In such cases, users may wish to know whether an unmatched external data set could
be used for RNA-seq quantification with pPRSEM. In pPRSEM, we have implemented a testing procedure
that provides users with two metrics regarding: (i) whether an external data set can provide an
informative prior; and (ii) among multiple external data sets, which one is most informative. The first
metric is a p-value indicating whether external information can significantly separate high read-count
isoforms from low or zero read-count isoforms in the training set based on a Mann-Whitney test. The
second metric is a log-likelihood calibrating how well the prior derived from a complementary data set

fits the training set data.

To demonstrate the use of these two metrics, we first considered ENCODE Pol Il ChIP-seq data
from six human cell lines (Supplemental Table S2) and applied them to the four RNA-seq data sets
from the K562 and GM12878 cell lines (Supplemental Table S1). pPRSEM’s testing procedure resulted
in p-values lower than 10™° for all six Pol Il data sets (Supplemental Figure S5) and indicated that they
are all informative regardless of whether they are from the same condition or not. Comparison of log-
likelihoods showed that Pol Il data from the same cell line as the RNA-seq data always fit the training
set the best (Figure 6A). For each of the two K562 RNA-seq replicates, the prior derived from K562
ChIP-seq data gave the highest log-likelihood compared to priors from the other five ChiP-seq data
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sets, which were collected from cell lines other than K562 (the two panels on the left of Figure 6A).
Similarly, priors derived from GM12878 Pol Il ChIP-seq data have the highest log-likelihood for each of
the two GM12878 RNA-seq replicates (the two panels on the right of Figure 6A). We noticed that there
was a large difference in the log-likelihoods for the two GM12878 RNA-seq replicates. This is most
likely because the second replicate had 25% more aligned RNA-seq fragments than the first replicate
(78 million vs. 62 million) and the log-likelihood scales with the number of aligned RNA-seq fragments.
In contrast, the two K562 RNA-seq replicates had similar read depth (67 million vs. 64 million). As a
result, the log-likelihoods for the two K562 replicates are relatively close to each other. We would like to
point out that pPRSEM’s testing procedure was developed for comparing different sources of prior on the
same RNA-seq data set. For a given RNA-seq data set, the number of aligned RNA-seq fragment is a
constant regardless of which source was used for the prior. Therefore, the fact that the log-likelihood
scales with the number of aligned RNA-seq fragments is not an issue. In cases where RNA-seq data
sets from multiple biological replicates are available and pRSEM users would like to select the best
source of prior, our tests on the GM12878 and K562 RNA-seq data demonstrated that pPRSEM’s testing
procedure would provide consistent results between RNA-seq replicates.

O
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Next, we applied pPRSEM to 52 RNA-seq data sets from the sixteen mouse hematopoiesis cell
types (Lara-Astiaso et al. 2014). Each cell type had four types of histone modification ChiP-seq data
sets available, allowing us to evaluate if histone data could inform RNA-seq quantification and, of the

A T B Supplemental Figure S6. Histone
Q  { modification ChIP-seq data is

informative for RNA-seq
quantification. (A) Comparison of p-
values from Mann-Whitney tests on
partitioned training set isoform read
counts. Isoforms were divided into two
groups by histone TSS peak status or
by a logistic model that utilizes all four
types of histone modification ChIP-seq
B e ot st N o bk e data; (B) Comparison of the log-

e\ a8t 1a a‘\f«‘ A2 AT w087 g19Y a likelihoods from the fit of pPRSEM’s
\A%‘(‘A«\Y\ \(\w\)\ ‘(‘m\'\g\@ A vt ‘(\3\(\ \(\ \’\3‘(\ \A“\ Dirichlet-multinomial model on training

source of prior source of prior set isoforms.

—-100
—-10000
O @

200 g

log-likelihood

—-15000 ~

logqo(p-value)

-300

13



four marks, which was most informative. All four marks had p-values lower than 107% (Supplemental
Figure S6A), indicating that they are all informative for RNA-seq multi-read allocation. The log-
likelihoods obtained from using H3K4me3 and H3K27ac data were systematically better than those
from the other histone marks (Supplemental Figure S6B), suggesting that these two marks are more
informative. In addition, we developed a logistic model that utilizes information from all four types of
histone modifications. A partition derived from the four marks combined resulted in a lower p-value and
better log-likelihood (Supplemental Figure S6, A and B). For 48 out of 52 RNA-seq data sets, the
combined model provided the highest log-likelihood (Figure 6B), suggesting that it is the most
informative one. In summary, our testing procedure indicated that histone modification ChlP-seq data
can be used to derive a prior for pPRSEM and that integrating multiple histone mark data results in a
prior that is generally better than one derived from a single mark.

I.G. Computational requirements

We performed experiments to measure the computational requirements for pPRSEM, RSEM
(PME), RSEM maximum likelihood, and three eXpress variants (Supplemental Table S3). The relative
ordering of pPRSEM and the RSEM variants in terms of running time was: RSEM ML < RSEM <
pRSEM. RSEM is slower than RSEM ML because it additionally runs ten thousand rounds of Gibbs
sampling. pPRSEM is slower because it has to learn the prior parameters and run an additional set of
Gibbs sampling rounds compared to RSEM. When using three CPUs on the human K562 data,
RSEM’s standard Gibbs sampling requires 9.3 hours of computing time (Supplemental Table S3, 19.5
vs. 10.2). Under the same settings, pPRSEM’s prior-learning and additional Gibbs sampling takes 9.4
hours to complete (Supplemental Table S3, 28.9 vs. 19.5), indicating that the prior-learning process is
very fast and most of pPRSEM’s extra running time is spent on Gibbs sampling. Benefitting from RSEM’s
highly parallelized Gibbs sampling, this extra time can be reduced by half (4.5 hours) when running on
eight CPUs (Supplemental Table S3, 14.1 vs. 9.6). Note that the running times for ChiP-seq peak
calling were not included here because we assume that users will have peaks called once they
obtained their ChlP-seq data. Also, we did not include the computational requirements for aligning
RNA-seq reads since these will be the same for all methods shown here.

Compared to pPRSEM and RSEM, eXpress with its default settings runs markedly faster
(Supplemental Table S3). Running an additional ten rounds of batch EM with eXpress is still quicker
than pRSEM if same number of CPUs were used. However, eXpress has limited parallelization abilities
and can only use up to three CPUs in its current implementation. As a result, running an additional
hundred rounds of batch EM on the human K562 data set required about a week. In contrast, running
on eight CPUs—a very common configuration for workstations nowadays, pPRSEM completes faster
than eXpress with ten rounds of batch EM. Moreover, given that the three eXpress variants performed
poorly in our gRT-PCR validations (Supplemental Figure S9 and Supplemental Figure S10 in section
I11.C), pPRSEM compares favorably when considering both time-cost and accuracy.

Supplemental Table S3. Comparison of computational requirements for pPRSEM, two variants of RSEM,
and three variants of eXpress. All jobs ran on AMD 2.1GHz CPUs. Pol Il TSS peak data was used to provide a
prior for pPRSEM.

Number of Mouse MEL' Human K562*

Method
CPUs  Time (hours) Memory (Gbytes) = Time (hours) Memory (Gbytes)
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pRSEM 3 13.1 29 28.9
RSEM 3 9.3 29 19.5
RSEM ML 3 5.3 29 10.2
express 3 0.9 2.7 1.8
eXpress O1B10 3 7.3 2.7 17.4
eXpress O1B100 3 63.4 2.7 158.7
pRSEM 8 6.9 3.4 14 .1
RSEM 8 5.2 3.4 9.6
RSEM ML 8 3.4 3.0 5.3

! RNA-seq data for mouse MEL cell line is 101 nt paired-end with 38.5 million reads aligned to transcripts.
* RNA-seq data for human K562 cell line is 76 nt paired-end with 67.4 million reads aligned to transcripts.

IlLH. Software availability

The source code of pPRSEM is available in the Supplemental Material. The latest version of
pRSEM and a demo can be found at https://github.com/pliu55/RSEM/tree/pRSEM and
https://github.com/pliu55/pRSEM_demo, respectively.
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M. Quantification of human and mouse RNA-seq data by pRSEM

IIlLA. Allocating multi-mapping reads between isoform TSS groups
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Supplemental Figure S7. pPRSEM more accurately allocates multi-mapping reads between isoform TSS
groups in both human and mouse data sets. Distributions of the change of fragment count between
estimates from pRSEM and RSEM. Data shown are from the two replicates of each of five human and mouse
cell line RNA-seq samples. The p-value from a Kolmogorov-Smirnov test is shown in the top left of each
panel. Color code and data generation are the same as Figure 3A.

I1l.B. Validation of pPRSEM estimates by RAMPAGE

An isoform’s RAMPAGE signal was defined by first counting the number of reads that had their
5’ ends map within the 100 nucleotide flanking region of the isoform’s TSS, and then dividing that
number by the total number (in millions) of RAMPAGE reads in that data set. An isoform group’s
RAMPAGE signal was defined similarly, except that the interval in which reads were counted was
[TSSnin - 100, TSShax + 100], where TSSn and TSS.x were the lowest and highest coordinates of
TSSs, respectively, for isoforms within that group.
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Supplemental Figure S8. Allocation of multi-mapping reads by pRSEM is supported by RAMPAGE signals. Distribution
of K562 (A) and GM12878’s (B) RAMPAGE signals for isoform TSS groups that have fragment counts decreased by at least
one and increased by at least one after using pRSEM instead of RSEM. Color code, line styles, and data generation are the
same as in Figure 3C. Calculations were based on each cell line’s two RNA-seq replicates and two RAMPAGE replicates.

I1l.C. Validation of pPRSEM estimates by gRT-PCR

Isoform selection. Two sets of isoforms were selected for the validation of fold changes
between two isoforms of the same gene in the MEL mouse cell line (Supplemental Data S1). First, we
screened for genes that met the following criteria: (i) had a Pol Il TSS peak status of ‘mixed’; (ii) did not
overlap or share RNA-seq reads with any other gene; (iii) had no more than five isoforms; (iv) had
increases or decreases in isoform fragment counts (as compared with RSEM) that corresponded to the
presence or absence of a Pol Il TSS peak, respectively. For each selected gene, we looked for a pair of
isoforms that fit the following criteria: (i) both isoforms had a unique exon region of at least 15
nucleotide for designing primers; (ii) one isoform had a Pol Il TSS peak, had a read count increase of at
least one with pPRSEM, and had abundance = 1 TPM as estimated by pRSEM; (iii) the other isoform did
not have a Pol || TSS peak, had its read count decrease by at least one with pRSEM, had

log, (mﬂ) < —0.95, where TPMgrsem and TPMgsem represent the abundances (in TPM) estimated
RSEM

by pPRSEM and RSEM, respectively, and had TPMgrsem 2 1. Through these selection criteria, when
comparing pPRSEM against RSEM, the candidate genes always had reads transferred between their
own isoforms and the reads were re-allocated from the ‘no peak’ isoform to the ‘with peak’ isoform.
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Also, the differences between the pRSEM and RSEM estimates were large enough such that one
would be definitively closer to the qRT-PCR measurements. For ‘Set |.A’ (Supplemental Data S1), we
required that both isoforms had a GENCODE ‘transcript_type’ defined as ‘protein_coding’ or
‘processed_transcript’, that the selection criteria for pairs of isoforms were met in both of the MEL RNA-
seq replicates, and that the ‘no peak’ isoform’s TPMyrsem Was at least one in both replicates. Under
these strict criteria, expression of both isoforms could be detected by qRT-PCR with high confidence.
For ‘Set I.B’ (Supplemental Data S1), we focused on isoforms that had a GENCODE ‘transcript_type’
defined as ‘protein_coding’. Unlike Set I.A, the selection criteria for pairs of isoforms were only required
to be met in at least one RNA-seq and we required that the ‘no peak’ isoform had 0.1 < TPMpygspy < 1
in at least one MEL RNA-seq replicate. These relaxed criteria allowed us to obtain more candidates.

For validating estimated fold changes between two conditions, we selected isoforms from the
mouse CH12, MEL, and MEL DMSO (MEL cell treated by 2% DMSO for five days) cell lines
(Supplemental Data S3) with the following criteria: (i) the isoform had at least a 15 nucleotide unique
exonic region for designing primers; (ii) its GENCODE ‘transcript_type’ was either ‘protein_coding’ or
‘processed_transcript’; (iii) the ratio between the fold changes estimated by pPRSEM and RSEM across
the two conditions was either at least 2 or at most 0.5, where fold change was computed based on the
average TPM from the two RNA-seq replicates in each condition; (iv) for one condition, the isoform had
an abundance of at least one TPM and a non-zero fragment count as estimated by RSEM and pRSEM
in both RNA-seq replicates. This criterion ensured that the expression of the isoform under this
condition could be detected by qRT-PCR with high confidence; (v) for the other condition, the isoform

had TPMgsew = 1 and log, (”’Mﬂ) > 1 or had TPMyrsen = 1 and log, (—o222) > 1 in both RNA-

TPMpRrsEM TPMRsgm
seq replicates such that the fold changes of the isoform estimated by pPRSEM and RSEM were different
enough to be discriminated between with qRT-PCR measurements; (vi) the isoform had a Pol Il TSS
peak in only one condition.

Measuring isoform expression by qRT-PCR. Mouse erythroleukemia (MEL) and CH12 cells
were maintained in 10% Fetal Bovine Serum containing RPMI 1640 with L-Glutamine, and 1%
penicillin/streptomycin. CH12 cells were additionally supplemented with 1x10°> M B-mercaptoethanol.
Both cell lines were cultured under standard mammalian cell culture conditions, with 5% CO2 in a 37°C
incubator. MEL cells were treated with 2% DMSO for 2 days for MEL DMSO condition.

Total RNA was purified from MEL, DMSO treated MEL, and CH12 cells using TRIzol
(Invitrogen). 2ug RNA was used to synthesize cDNA by Moloney murine leukemia virus reverse
transcription (M-MLV RT) using a random hexamer-oligo dT primer cocktail. All cDNA synthesis
reactions were preceded by a DNasel treatment to remove any DNA contamination and a minus
reverse transcriptase control was used to confirm the specificity. Real-time PCR was performed with
SYBR green master mix (ABI). To compare the expression of different isoforms in MEL cells, the ddCt
method was used. Primer pairs with similar amplification efficiencies were used for the analysis and all
the values were normalized to 18S RNA expression. The Prkci-001 sample was used as reference
standard to generate the plots. Three independent experiments were carried out (Supplemental Data
S2).

Relative expression of isoforms among different samples (MEL, MEL DMSO and CH12) was
determined by a relative standard curve method. Serial dilutions (1:5) of cDNA sample from highest
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expressed samples were used to generate the standard curve and relative expression of each isoform
was determined from the curve using the StepOne plus analysis platform (ABI). All values were
normalized to corresponding 18S values and fold changes were determined. Four independent
experiments were performed (Supplementary Data S4). Isoforms for which primer pairs did not yield
satisfactory amplification curves, had diverse primer efficiencies, or amplified intronic regions were
excluded from the analysis. All primers are listed in Supplemental Table S4.

Supplemental Table S4. A list of primer pairs for qRT-PCR. Primer pairs that did not yield satisfactory
amplification curve, had diverse primer efficiencies, or amplified intron regions are colored in grey.

Set Isoform'’s Primer (5' to 3')
Ensembl 78 ID Forward strand Reverse strand
Prkci-001 ACCAGGTCCGGGTGAAA ATATCTCGAACCTCACTGCAA
Prkci-002 AGCAAAGGCTGTTGTITTTCC CTGCAAAGTCCCTCAAAGGA
Heatr2-001 CGGGTAGCCGTTATCGAA CGACCACCGAGGTCACT
A Heatr2-002 TAACCTTTGTGGTTGGTTCCA TCCTCCACCTCAGCCAGTGT
Dmtn-201 CAAGACCCGAGAGCTTCCAA AAGCCCCAGGAAGCAAAAGG
Dmtn-203 GGAGCTGGCGAAGGA GITCAGGAGGGAGATCAGA
Rtn4ip1-001 TGATGTTACCTATCATACACTATCCAAATG  TGGCTCCATAACCACTTCTCATATT
Rtn4ip1-002 ACCTGCAGAAGTGAATTGTTTGTC ACATGAGCCCCCCATGCT
Etv5-001 GAGTGGCCGCTCAGGAGTATC TGCTTCCAAAGTCTCCGCTATC
'8 Etv5-002 GTTCCTGATGATGAGCAGTTTGTC CACTGCAGTCCCGGCTCTAG
Atf7ip-008 GGGCTCCTTTGGGATTCAG CGAGCCTTGAAGACTTTTTTCTG
Anpep-002 GGGAGGAGGGCTTAGCTGTAA CGGTAATCTACCTGGCACATGA
Limk1-002 GATGGGGAAGCTTAGGCCAG TACACTCGCAGCACTTAGCC
Il Jdp2-202 CCGTCAGGCACATCAGGTT TGCCCAGGCATCATAGCA

Comparison of qRT-PCR measurements with predictions. We compared qRT-PCR
measurements with estimates from five quantification methods: pRSEM, RSEM, RSEM ML, eXpress,
eXpress O1B10, and eXpress O1B100 (for explanations of each method, see section |.A). For the
experiment measuring isoform abundances under the same condition, pPRSEM and two RSEM variants
had strong correlations with qRT-PCR, whereas the three eXpress variants had weak correlations
(Supplemental Figure S9). When comparing the difference of fold changes to qRT-PCR measurements,
pRSEM estimates had the smallest differences for three out of five pairs of isoforms and was always
better than RSEM, RSEM ML, and eXpress with its default settings for all five pairs (Supplemental
Figure S10, A and C; Supplemental Data S2). In qRT-PCR validation of one isoform under two
conditions, pRSEM outperformed all other methods for five out of six cases (Supplemental Figure S10,
B and D; Supplemental Data S4).
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Supplemental Figure S9. pPRSEM and RSEM estimates have stronger correlations with qRT-PCR measurements
than those from eXpress variants. Comparison of expression levels between two isoforms from the same gene under
the same condition. Minimum abundances from eXpress variants were set to 10™° (A) or 10 (B). At the lower right of
each plot are Pearson and Spearman correlation coefficients calculated between log transformed arithmetic averages of
estimated abundances (blue) and log transformed average relative expression levels. The arithmetic averages were
derived from estimates on MEL RNA-seq’s replicate 1 (light yellow) and replicate 2 (red). Error bars denote one standard
deviation. RSEM ML: RSEM maximum likelihood; eXpress O1B10: eXpress run with one round of online EM followed by
ten rounds of batch EM; eXpress O1B100: eXpress run with one round of online EM followed by 100 rounds of batch EM.

20



A — B
metho .
Dmtn—201 vs. Limk1-002 _ i
Dmin_oos -| [E— RREEM @ CH12 vs. MEL DMSO | g
_ B RSEM ML o
Etv5-01 vs BSOS oim10 | B CHizve, MEL NGO T B
! = 200000 ] e preSS VS.
3 Etv5-02 T M eXpress O1B100 8 = method
g S Atf7ip-008 _| pRSEM
E  Preci-001vs. | ML DS vs. ML | RSEM
S Prkci-002 | [ ) Atf7io— B RSEM ML
< e tf7ip—008 _| eXpress
2 ] CH12 vs. MEL | ey | M eXpress 01B10
& Heatr2-001 vs. | i < B eXpress 01B100
Heatr2-002 | g g Anpep-002 _|
S MEL DM 0 vs. CH 12 | | —
o]
Rtn4ip1-001 vs. _| sl 2 Anpep-002
Raidaiclll  Ee— MEL Vs, CH12 T ——
I I I I I I I
0 10 20 0 10 20 30
absolute difference of log,(fold change) absolute difference of log,(fold change)
between prediction and gRT-PCR between prediction and gRT-PCR
q p q
C D
Dmtn-201 vs. _ Limk1-002 [ —
Dmin=203 | | | 2 Cf12vs MELDMSO | ==
Fusoor = Jadp2-202 | e
v5-01vs. | CH12vs. MEL DMSO | s
R0 —— | © e
£ S Atf7ip-008 _| pRSEM
S Prkci-001 vs. S MEL DMSO vs. MEL | RSEM
£ Prkci-002 | . 2 Atf7ip- B RSEM ML
S € tf7ip—008 _| eXpress
L 3 CH12 vs. MEL | | I eXpress O1B10
@ Heatr2-001 vs. _| method c B eXpress 01B100
Hoali2=002 | e RSEN £ MEL DMSgnpepC:g?g 7
L - I —
" e = Anpep-002
Rnt4ip1-002 M eXpress O1B10 —
ni4ip1-002 | | I cXbross O1B100 MEL Vs, CH 12 |
] ] ] ] ] ] ]
0 3 6 9 0 2 4 6

absolute difference of log,(fold change)
between prediction and gRT-PCR

absolute difference of log,(fold change)
between prediction and gRT-PCR

Supplemental Figure S10. pPRSEM estimates are closer to qRT-PCR measurements than those from RSEM
and eXpress variants. (A, C) Comparison of expression levels between two isoforms from the same gene under
the same condition; (B, D) Comparison of an isoform’s expression level in two different cell lines. Minimum
average abundances from two RNA-seq replicates were set to 107° (A, B) or 107 (C, D); Notations for
quantification methods are the same as for Supplemental Figure S9.

I1l.LD. Genome-wide biological implications of pPRSEM abundance estimates

We carried out two genome-wide surveys to determine the biological implications of pPRSEM’s
abundance estimates, given our results suggesting that they are more accurate than those of previous
methods, such as RSEM. Our first survey examined genome-wide TSS activities and the second
identified expressed isoforms for the sixteen cell types in the mouse hematopoietic differentiation study.

Genome-wide active TSSs. We compared transcriptome profiles from pRSEM and RSEM
quantifications. Many TSSs were found to have different ‘on’ or ‘off’ calls between pRSEM and RSEM
(Supplemental Table S5). In all five human and mouse cell lines, more than seven hundred TSSs were
identified to be active by RSEM, but not by pRSEM. This finding is in line with pPRSEM’s strength of
removing false positives, as shown in our gqRT-PCR validations (section I1.C) and data-driven
simulations (section V).
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Supplemental Table S5. Number of active transcription start sites (TSSs) called by RSEM or pRSEM. A
TSS is considered to be ‘active’ if it has abundance = 1 TPM in all RNA-seq samples from the same cell line.

Number of active TSS

Cell line
RSEM pRSEM RSEM only pPRSEM only
K562 36,682 35,576 1,312 206
GM12878 36,193 35,006 1,425 238
CH12 24,242 23,226 1,111 95
MEL 22,675 21,588 1,176 89
MEL DMSO 26,621 25,970 705 54

Expressed genes and isoforms in hematopoietic cells. In our second survey, we applied
pRSEM to sixteen types of primary cells from a mouse hematopoiesis differentiation study. We
examined the extent to which the numbers of genes and isoforms called as expressed by pPRSEM we
different from those obtained from RSEM. Compared to the three ENCODE mouse cell lines used in
the first survey, the primary cells used in this survey more closely resemble physiological states and
data from them are more relevant to living systems. For every cell type, the numbers of expressed
genes and isoforms called by pRSEM were always much smaller than those called by RSEM
(Supplemental Table S6). This is similar to our observation in the first survey and is most likely the
result of pPRSEM’s strength at removing false positives. The sets of expressed genes and isoforms
determined by pRSEM are thus likely to contain less noise, which benefits downstream analyses that
attempt to draw biological insights from such sets.

re

Supplemental Table S6. Number of expressed isoforms and genes called by RSEM and pRSEM for sixteen
cell types from mouse hematopoietic differentiation. An isoform or a gene is defined as ‘expressed’ in a cell
type if it has abundance = 1 TPM in all of the RNA-seq samples for that cell type. Due to limited sequencing depth

for these primary cells, an expressed isoform or gene is also required to have a non-zero RNA-seq read count.

Number of isoforms Number of genes
Cell Is expressed Is expressed

tpe  Total  LSEM  pRSEM Roi'fy“" p';ﬁl'i"" Total  2SEM  pRSEM Roi'fy“" p':ﬁl'i""
LT-HSC 23,408 20,127 3,396 115 11,290 10,409 883 2
ST-HSC 18,659 16,265 2,446 52 9,941 9,433 508 0
MPP 19,792 18,618 1,254 80 10,499 9,766 733 0
CMP 20,168 18,307 1,926 65 10,363 9,756 607 0
GMP 19,209 17,346 1,927 64 10,076 9,495 583 2
Mo 14,625 12,284 2,406 65 8,299 7,958 343 2
Gn 78.754 11,391 9,408 2,015 32 22,019 6,142 5,982 160 0
Mo 19,744 16,721 3,099 76 9,336 9,041 295 0
CLP 15,786 14,425 1,407 46 9,089 8,446 644 1
B 21,883 18,345 3,610 72 9,596 9,175 422 1
CD4 18,349 15,219 3,187 57 8,714 8,406 309 1
CD8 17,896 14,896 3,071 71 8,930 8,483 447 0
NK 22,893 19,222 3,729 58 9,721 9,500 221 0
MEP 18,402 16,963 1,502 63 9,743 9,126 619 2
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Given pRSEM’s strength in reducing the number of false positive isoforms, we examined
whether its estimates would lead to different differential expression (DE) results than those from RSEM
estimates. We employed EBSeq (Leng et al. 2013) to make DE calls based on fragment counts from
RSEM or pRSEM on the three mouse ENCODE cell lines: CH12, MEL, and MEL DMSO. Compared to
alternative methods, EBSeq’s advantage is that it will not only identify DE genes, but also DE isoforms.
This feature allows us to make comparisons at the gene level as well as at the isoform level. We
counted the number of DE genes and isoforms that were only called based on RSEM or pPRSEM
estimates. pPRSEM and RSEM did not differ much in terms of identifying DE genes — the two methods
disagreed on the DE call of 26 to 46 genes per comparison (Supplemental Table S7). In contrast, the
two methods disagreed on the DE call for more than two thousand isoforms per comparison, with
pRSEM estimates resulting in a larger number of DE isoform calls. (Supplemental Table S7). Such a
large difference in the DE isoform calls would most likely lead to different functional characterizations
between each pair of cell lines. Unfortunately, current Gene Ontology analysis is only available at the
gene level and comprehensive functional annotations of isoforms are still lacking. Such limitations
prevent us from performing further functional analysis on these large sets of DE isoforms.

Supplemental Table S7. Number of differentially expressed (DE) genes and isoforms only called based on
RSEM or pRSEM estimates. DE genes or isoforms were controlled at a false discovery rate of 0.05.

Level 1
CH12
gene CH12
MEL
CH12
isoform CH12
MEL

Cell line

2
MEL
MEL DMSO
MEL DMSO
MEL
MEL DMSO
MEL DMSO

RSEM only

15

16

13
748
986
953

Number of DE items
pRSEM only

11

11

33
1,413
1,476
1,294
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Supplemental Figure S11. Comparison of the distribution of transcript abundances estimated
by RSEM, pRSEM, and eXpress. Percentages of isoforms (A) and genes (B) were calculated based
on the two RNA-seq replicates from each of the K562, GM12878, CH12, MEL, and MEL DMSO cell
lines. Error bars represent one standard deviation.
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pRSEM identifies unexpressed genes misclassified by other methods

Supplemental Table S8. RSEM and pRSEM largely agree on the expression states for genes that do not

\°°

overlap with any other gene and share RNA-seq reads. The comparisons were made at three different cutoffs:

0.5, 1.0, and 2.0 TPM, for defining ‘expressed’ genes.
RSEM and pRSEM agree

Replicate
index

Cell line
K562 !
2
GM12878 ;
1
CH12 5
1
MEL 5
MEL DMSO ;

average

1
K562 5
GM12878 ;
1
CH12 5

Number of Percentage of
genes genes
“expressed”: TPM = 0.5
554 96.3
585 96.7
560 96.9
613 97.9
895 97.5
921 98.0
835 95.6
856 97.2
1064 97.5
994 98.1
787.7 97.2
“expressed”: TPM > 1
567 98.6
591 97.7
565 97.8
617 98.6
898 97.8
918 97.7

Number of

genes

21
20
18
13
23
19
38
25
27
19
223

8

14
13
9
20
22

RSEM and pRSEM disagree

Percentage of
genes

3.7
3.3
3.1
2.1
25
2.0
4.4
2.8
25
1.9
2.8

1.4
23

22
1.4
22
23
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1 852 97.6 21 2.4
MEL 2 863 98.0 18 2.0
1 1078 98.8 13 1.2
MEL DMSO 2 1001 98.8 12 1.2
average 795 98.1 15 1.9
“expressed”: TPM > 2
1 566 98.4 9 1.6
K562 2 600 99.2 5 0.8
1 575 99.5 3 0.5
GM12878 2 624 99.7 2 0.3
1 912 99.3 6 0.7
CH12 2 932 99.1 8 0.9
MEL 1 858 98.3 15 1.7
2 872 99.0 9 1.0
1 1085 99.5 6 0.5
MEL DMSO 2 1008 99.5 5 0.5
average 803.2 99.1 6.8 0.9
A expressed: TPM >=0.5 B expressed: TPM >= 2
only by RSEM only by pPRSEM only by RSEM only by pPRSEM
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Supplemental Figure S12. pRSEM eliminates far more false positive genes than false positive or
false negative genes that it introduces under different ‘expressed’ cutoffs. Number of identified
‘expressed’ genes, in which RSEM and pRSEM disagreed, with an ‘expressed’ cutoff of TPM = 0.5 (A)
and TPM = 2 (B). Color code and data generation are the same as in Figure 4B.



At the gene level, we made pairwise comparisons of pPRSEM with two variants of RSEM and
three variants of eXpress. We counted the number of method-specific expressed genes stratified by
their Pol Il TSS peak status. For genes without peaks, the number of pPRSEM-specific expressed genes
was always lower than that of each other method (Supplemental Figure S13). Again, if we assume that
a gene without a Pol Il TSS peak should not be expressed, we can conclude that pPRSEM identifies

misclassified unexpressed genes by other methods.
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(2] (2]
@ 20 - @ 20 -
5 w &
S &15- S &15-
2% 10 2% 10
Eg Eg
c g 5 - c g 57
3 0- X o mm—.m
© 0 I I I I I I © 0 I I I I I I
none mixed all none mixed all none mixed all none mixed all
gene Pol Il TSS peak status gene Pol Il TSS peak status
b ly b E ly b
only by only by
eXpress O1B10 @y o AN eXpress O1B100 only by pRSEM
8 20 - 8 20 -
w5 w &
S &15 - S &5 -
2% 10 2% 10
£4 54
g2 5+ g2 54
o o
?f) [ ——— m— > 0- —

I I I I I I I I I I I I
none mixed all none mixed all none mixed all none mixed all

gene Pol Il TSS peak status gene Pol Il TSS peak status

number of
ed genes O

express

only by eXpress only by pPRSEM

_ a4 N
o o o O
1 1 1 1

o
1

I I I I I I
none mixed all none mixed all

gene Pol Il TSS peak status

Supplemental Figure S13. pRSEM identifies unexpressed genes misclassified by RSEM or eXpress. Expressed genes
called by only one method from pairwise comparison of pPRSEM with RSEM (A); RSEM ML (B); eXpress (C); eXpress O1B10
(D); and eXpress O1B100 (E). The average and standard deviation of the number of genes were calculated from two RNA-

seq replicates of cell lines: K562, GM12878, CH12, MEL, and MEL DMSO. Notations for quantification methods are the same

as for Supplemental Figure S9.
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V. Evaluating pRSEM by data-driven simulations

IV.A. Sub-sampling experiments

We sub-sampled RNA-seq reads from ENCODE K562’s RNA-seq replicate one (Supplemental
Table S1), which had 113.6 million paired-end reads. We took random samples of 10%, 30%, and 50%
of these reads as the input RNA-seq data sets for sub-sampling experiments. All of the remaining
alignment and quantification processes were the same as those for the ENCODE RNA-seq data. There
were 6.8 million, 20.3 million, and 33.8 million fragments aligned to transcripts for each of the sub-
sampling data sets (Supplemental Table S9). We used RSEM ML estimates on K562 replicate one as
the ground truth with which to determine false positives and false negatives. We note that this ground
truth definition gave RSEM ML an advantage over the other methods in terms of quantification on the
sub-sampled RNA-seq data.

IV.B. Simulation at full-sequencing depth

In the simulation at full sequencing depth, the total number of fragments was also based on
ENCODE K562’s RNA-seq replicate one (Supplemental Table S1). This data set had 113.6 million
paired-end reads, 67.4 million of which aligned to transcripts with a noise parameter of 0.156 estimated
by RSEM (Supplemental Table S9). We partitioned all isoforms by their TSS peak status according to
K562 Pol Il ChlP-seq data (Supplemental Table S2). For each partition, we drew each isoform’s
fragment-generating probability (6 in RSEM’s probabilistic model) from the distribution learned from the
training set isoforms. With the fragment-generating probabilities for all isoforms, we calculated their
abundances (TPMs) and took it as the ground truth. Next, we employed RSEM’s simulator (Li and
Dewey 2011) to simulate paired-end reads based on the ground truth, total number of aligned reads,
and the noise parameter.

Supplemental Table S9. Read depth for all RNA-seq data sets used in this work. Shown are the total
numbers of sequenced fragments in RNA-seq data set and the numbers of fragments that aligned to isoforms.
There is a substantial number of unaligned fragments, which can be attributed to fact that all ENCODE RNA-seq
data were from the whole-cell fraction.

Number of fragments (millions)
RNA-seq data set

Total Aligned
sub-sampling at 10.0% read depth of K562 Rep1 114 6.8
sub-sampling at 30.0% read depth of K562 Rep1 34 .1 20.3
sub-sampling at 50.0% read depth of K562 Rep1 56.8 33.8
simulation at full sequencing depth as K562 Rep1 79.5 64.2
ENCODE human K562 Rep1 113.6 67.4
ENCODE human K562 Rep2 119.1 64.3
ENCODE human GM12878 Rep1 117.9 62.1
ENCODE human GM12878 Rep2 131.8 78.1
ENCODE mouse CH12 Rep1 140.2 47.3
ENCODE mouse CH12 Rep2 180.6 51.7
ENCODE mouse MEL Rep1 124.5 38.5
ENCODE mouse MEL Rep2 178.3 59.5
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ENCODE mouse MEL DMSO Rep1 177.5 58.4
ENCODE mouse MEL DMSO Rep2 205.2 80.4

IV.C. Comparison of pPRSEM with alternative quantification methods

In the sub-sampling experiments, RSEM ML had a smaller false positive rate and a smaller
false negative rate than pRSEM at both the isoform- and gene-level for most of the sub-sampling
depths (Supplemental Figure S14, A and B). This is likely because of the fact that RSEM ML at 100%
sampling depth was used as the ground truth. In simulations at full-sequencing depth, RSEM ML was
not used as the truth and its advantage disappeared. pPRSEM had smaller or comparable false positive
rates and smaller false negative rates at both the isoform- and gene-levels (Supplemental Figure S14,
C and D). Compared to all three eXpress variants, pPRSEM generally had favorable false positive rates
and false negative rates in the sub-sampling experiments (Supplemental Figure S14, A and B). In
simulations at full sequencing depth, pPRSEM had a much smaller number of false positives at the
expense of false negatives at the isoform- and gene- levels (Supplemental Figure S14, C and D).

From our simulations, we found that running additional batch EM rounds with eXpress
consistently increased eXpress’s sensitivity and specificity in most of the experiments (Supplemental
Figure S14). However, with respect to these metrics, the relative ranking of pPRSEM compared to
eXpress remained the same for all variants. Furthermore, additional batch EM rounds did not improve
eXpress’s accuracy in our qRT-PCR validations (Supplemental Figure S9; Supplemental Figure S10),
and were time-consuming (Supplemental Table S3) due to eXpress'’s limited parallelization abilities in
its current implementation.

IV.D. Comparison of pPRSEM and RSEM on isoforms with uninformative priors

In our gRT-PCR validations, if one removes the criteria regarding the Pol Il TSS peak status of
the isoforms and the directionality of the difference between pRSEM and RSEM, 41 isoforms become
candidates for validation. Of these, eleven have a Pol Il TSS peak in one condition but not the other.
The remaining isoform candidates do not have Pol Il TSS peak in any of the two conditions. We
decided against validating these isoforms because the Pol Il information could not be explicitly
connected to the difference between the pRSEM and RSEM estimates, leaving the differences difficult
to explain as there are many factors at play including ChlP-seq multi-mapping read allocation, noise in
peak calling, and IDR thresholds. Full validation for these isoforms would have required ChIP-gPCR
experiments, which is beyond the scope of this work.

To circumvent the difficulties of validating isoforms for which the Pol Il peak status was the
same across conditions, we decided to perform data-driven simulations. We treated Pol Il ChiP-seq
peak data as the ground truth, and generated isoform expression levels as well as simulated RNA-seq
reads in the same manner as the full-sequencing-depth simulations described above. We selected
isoforms by the same criteria, but considered fold changes in both directions and did not place
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Supplemental Figure S14. pRSEM has a lower false positive rate than alternative methods in data-
driven simulations. Comparison of sub-sampling simulations at the isoform level (A) and gene level (B);
Comparison of simulations at full sequencing depth at the isoform level (C) and gene level (D). ‘pRSEM no
partition’ denotes a pRSEM run, where a uniform prior parameter was learned from a training set without any
partition. Notations for the other quantification methods are the same as for Supplemental Figure S9.
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conditions on Pol Il TSS peak status. We compared fold change differences between the simulated
truth and RSEM or pRSEM (Supplemental Figure S15). For isoforms that have peaks in only one cell
line, all PRSEM estimates, except one, had smaller difference to the truth than RSEM, which is in line
with our gRT-PCR experiments. For isoforms with the same Pol Il peak status across cell lines, pPRSEM
had better estimates than RSEM in the vast majority of cases. This simulation experiment suggests
that, even for isoforms for which Pol Il information is not explicitly informative, pPRSEM still outperforms
RSEM.

CH12 vs MEL CH12 vs MEL DMSO MEL vs MEL DMSO

isoform Pol Il TSS peak status
@ no peak in either cell line

@ with peak in both cell lines
@ with peak in only one cell line

Supplemental Figure $S15. pPRSEM is more accurate than RSEM with respect to isoform
expression fold change estimation between conditions for all isoform Pol Il TSS peak
status scenarios. drsem and dprsem represent the absolute difference of the log2 fold change
between the truth and RSEM or pRSEM. The truth and simulated reads for each cell line were
generated in the same manner as in the simulation at full sequencing depth in Supplemental
Figure S14. Shown are isoforms that would be selected for gqRT-PCR validation by our selection
criteria when considering Pol |l peak status (red), and those that would additionally fit our
selection criteria if not considering Pol Il TSS peak information (light green and dark green).

IV.E. Comparison of pPRSEM with a naive approach on eliminating false positives

We examined if a naive approach based on fragment counts could deliver results comparable to
those of pPRSEM. We compared the RSEM fragment count distributions for two categories of isoforms:
(i) those called as false positives by RSEM and not called by pRSEM; and (ii) those called as true
positives by RSEM. We found that the two distributions substantially overlap with each other. There are
32% isoforms of category (i) and 53% isoforms of category (ii) that have estimated fragment counts in
the interval (100, 1000] (Supplemental Figure S16A). Under a naive approach, no matter where the
cutoff is drawn, a substantial fraction of isoforms from either category would be misclassified. At the
gene level, we observed a similar degree of overlap in the fragment count distributions. 45% and 21%
genes from the two categories, respectively, have estimated fragment counts in the interval (100,1000]
(Supplemental Figure S16B). Therefore, a naive approach that thresholds on estimated RSEM
fragment counts cannot classify genes and isoforms as accurately as pRSEM.
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Supplemental Figure S16. RSEM fragment count distributions of false positives called
only by RSEM (cyan) overlaps substantially with the one of RSEM true positives (red).

(A) Comparison at the isoform level; (B) Comparison at the gene level. FP: false positive; TN:

true negative; TP: true positive.
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