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I. Processing RNA-seq and ChIP-seq data 

I.A. Processing RNA-seq data 

RNA-seq data were obtained from two sources: (i) five human and mouse cell lines from 
ENCODE (The ENCODE Project Consortium 2012; Stamatoyannopoulos et al. 2012) (Supplemental 
Table S1); (ii) sixteen cell types from a mouse hematopoietic differentiation study (Lara-Astiaso et al. 
2014) (Gene Expression Omnibus accession number GSE60101). 

Supplemental Table S1. ENCODE RNA-seq data sets. All data are from whole-cell fractions. 

Species Cell line Sex Treatment DCC ID1 RNA 
extract 

Run 
type 

Read length 
(nt) Nrep2 

Human 
K562 F No ENCSR000CPH Long 

polyA+ 

Paired-
end 

76 

2 

GM12878 F No ENCSR000COQ 76 

Mouse 

CH12 F No ENCSR000CWD 
Ribo-
Zero-
Gold 

101 
MEL M No ENCSR000CWE 101 

MEL M 2% DMSO 
for 5 days ENCSR000CWF 101 

1 ENCODE DCC metadata database accession ID (https://www.encodeproject.org) 
2 Number of biological replicates 
 

Transcript annotations were taken from GENCODE human version 19 and mouse version 4 
(Harrow et al. 2012). Quantifications were performed on all genes with ‘gene_type’ annotated as 
‘protein_coding’ and all isoforms from those genes. UCSC genome assemblies hg19 and mm10 were 
used for human and mouse, respectively.  

RNA-seq reads were aligned with STAR v2.4.0h (Dobin et al. 2012) and quantified by RSEM 
v1.2.15 (Li and Dewey 2011) with command-line options from ENCODE’s STAR-RSEM pipeline 
(manuscript in preparation; see https://github.com/ENCODE-DCC/long-rna-seq-pipeline for source 
code; the pipeline was implemented in the pRSEM package). Two variants of RSEM estimates were 
used. By ‘RSEM ML’, we refer to the maximum likelihood estimates obtained from RSEM’s 
Expectation-Maximization algorithm. By ‘RSEM’, we refer to the posterior mean estimates obtained 
from Gibbs sampling with the Bayesian version of RSEM’s probabilistic model with an initial pseudo-
count of one for every isoform. ‘RSEM’ is the most comparable variant to pRSEM.   

Two variants of pRSEM were used. ‘pRSEM’ refers to a pRSEM run with the default partition 
model. ‘pRSEM no partition’ refers to a pRSEM run where a single prior parameter is learned from all 
the isoforms in a training set without any partition.  

Three variants of eXpress version 1.5.1 (Roberts and Pachter 2013) were used. ‘eXpress’ 
denotes an eXpress run under its default settings. ‘eXpress O1B10’ and ‘eXpress O1B100’ denote an 
eXpress run with one round of online EM, followed by ten or one hundred rounds of batch EM, 
respectively. All eXpress runs were supplied with command-line option ‘--rf-stranded’ to match the 
orientation of the fragments in the ENCODE RNA-seq data sets we used. The same transcript 
alignments computed by STAR and used by RSEM and pRSEM were given to eXpress as input after 
sorting the alignment BAM files by read name (as required by eXpress). 
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I.B. Distinguishability of isoforms and genes 

The distinguishability of an isoform within an RNA-seq experiment depends on the uniqueness 
of the isoforms’ exon(s) and junction(s) as well as the RNA-seq fragment length. Since all ENCODE 
human and mouse RNA-seq data sets used in this work were paired-end, we first obtained their 
fragment length distributions with RSEM and took the most probable length for each of them 
(Supplemental Figure S1A; Supplemental Figure S2A). We then determined a fragment length for each 
species by taking the average of the most probable length from each data set from that species (170 nt 
for human, 162 nt for mouse). Next, we enumerated all possible fragments of that length from each 
isoform and determined which of these could be uniquely mapped back to its parent isoform. Isoforms 
that were shorter than the fragment length (0.20% of human isoforms; 0.19% of mouse isoforms) were 
ignored because a numeric value characterizing the distinguishability of such an isoform could not be 
calculated. We defined an isoform’s distinguishability as the ratio of the number of its uniquely mapped 
fragments over the total number of its fragments. Under this definition, an isoform with zero 
distinguishability, i.e. an indistinguishable isoform, must have all of its fragments identical to fragments 
from other isoforms. We defined a gene’s distinguishability as the average distinguishability of all of its 
isoforms. Thus, all the isoforms from an indistinguishable gene are also indistinguishable. 

 In human, 20,738 isoforms from protein-coding genes are indistinguishable, accounting for 14% 
of all isoforms (Supplemental Figure S1B). Moreover, there are more than 100,000 isoforms with 
distinguishability of 0.5 or less (Supplemental Figure S1C). At the gene level, more than 45% of 
expressed protein-coding genes contain at least one indistinguishable isoform (Supplemental Figure 
S1D) and almost 15,000 genes have distinguishability of 0.5 or less (Supplemental Figure S1E).  

 In addition to the average of the most probable fragment length (170 nt for human), we also 
used a number of other fragment lengths, ranging from 100 nt to 500 nt, to calculate isoform and gene 
distinguishability. As expected, a longer fragment length led to increased distinguishability at both the 
isoform- and the gene-level (Supplemental Figure S1, B to D). With a fragment length of 500 nt, the 
number of indistinguishable isoforms dropped to 11,478, roughly half the number when a fragment 
length of 170 nt was used (Supplemental Figure S1B). Similarly, the percentage of expressed genes 
with an indistinguishable isoform decreased to roughly 35% (Supplemental Figure S1D). Nevertheless, 
the number of indistinguishable isoforms and genes is sizable, even with large fragment lengths. Note 
that we took 100 nt as the lower bound because a read length of at least 100 nt is common for current 
RNA-seq experiments and the fragment length is typically longer than the read length. We did not use a 
fragment length longer than 500 nt, because there are already 15,100 transcripts (10% of all the 
transcripts) shorter than 500 nt and transcripts shorter than the fragment length were ineligible for the 
distinguishability calculations.   

 We performed the same calculations for the mouse genome. The fraction of isoforms or genes 
having low distinguishability was still substantial (Supplemental Figure S2). With the average of the 
most probable fragment length (162 nt), 9% of all the isoforms were indistinguishable (Supplemental 
Figure S2B) and more than 20% of expressed protein-coding genes had an indistinguishable isoform 
(Supplemental Figure S2D). As we observed in human, increasing the fragment length partially 
alleviates the low distinguishability issue (Supplemental Figure S2 , C and E).   
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Supplemental Figure S1. Distinguishability of human isoforms and genes defined by different fragment 
lengths. (A) Fragment length distributions of ENCODE human paired-end RNA-seq data sets estimated by RSEM; 
(B) Fractions of indistinguishable isoforms; (C) Cumulative distributions of distinguishability for all human isoforms; 
(D) Fractions of expressed genes with at least one indistinguishable isoform; (E) Cumulative distributions of 
distinguishability for all human genes. 

D E 
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I.C. Processing ChIP-seq data 

ChIP-seq data sets were from the same sources as the RNA-seq data. For each ENCODE 
RNA-seq data set, we obtained ChIP-seq reads for both Pol II and its control (Supplemental Table S2). 
To test whether Pol II data from unmatched samples could provide an informative prior, we downloaded 

Supplemental Figure S2. Distinguishability of mouse isoforms and genes defined by different fragment 
lengths. (A) Fragment length distributions of ENCODE mouse paired-end RNA-seq data sets estimated by RSEM; 
(B) Fractions of indistinguishable isoforms; (C) Cumulative distributions of distinguishability for all mouse isoforms; (D) 
Fractions of expressed genes with at least one indistinguishable isoform; (E) Cumulative distributions of 
distinguishability for all mouse genes. 
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Pol II ChIP-seq peak data for four other human cell lines (Supplemental Table S2). For the mouse 
hematopoietic differentiation data, for each cell type with an RNA-seq data set, we retrieved four types 
of histone modification ChIP-seq data sets: H3K4me1, H3K4me2, H3K4me3, and H3K27ac (Gene 
Expression Omnibus accession number GSE59636). 

ChIP-seq reads were aligned with Bowtie v1.0.1 (Langmead et al. 2009) with command-line 
options ‘-q -v 2 -a --best --strata -m 1’. These options resulted in the reporting of only the best uniquely 
mapped reads. Since ENCODE Pol II ChIP-seq data sets all have controls, peaks were called by 
ENCODE’s SPP and IDR pipeline (Landt et al. 2012) with an IDR threshold of 0.05. The ChIP-seq 
signal for a genomic interval was calculated in the same manner as in dPeak (Chung et al. 2013) and 
normalized by interval length. Due to the lack of ChIP-seq controls for the mouse hematopoietic 
differentiation samples, peaks were called by HOMER as described previously (Lara-Astiaso et al. 
2014). For these samples, the ChIP-seq signal for a genomic interval was computed by counting the 
number of reads falling within that interval and then normalizing by interval length and read depth so 
that signals for different histone marks could be integrated. To avoid PCR artifacts resulted from the 
relatively low-input nature of the primary cell ChIP-seq data, the number of reads aligned to the same 
genomic interval was kept at a maximum of five per ChIP-seq replicate. 

Supplemental Table S2. ENCODE ChIP-seq data sets for human and mouse.  
ChIP-seq reads 

Species Cell line Sex Treatment DCC ID1 Target Nrep2 DCC ID1 Target Nrep2 

Human 
K562 F No ENCSR000BMR POLR2A 

2 

ENCSR000BLJ RevXlink-
Chromatin 2 

GM12878 F No ENCSR000BIF POLR2A-
phosphoS5 ENCSR000BGH RevXlink-

Chromatin 5 

Mouse 

CH12 F No ENCSR000ERQ POLR2A ENCSR000ERT IgG-mus 1 

MEL M No ENCSR000EUC POLR2A ENCSR000EUF IgG-mus 1 

MEL M 2% DMSO for 5 
days ENCSR000ETG POLR2A ENCSR000ETD IgG-rat 1 

ChIP-seq peaks 

Human 

A549 M 
100 nM 

dexamethasone 
for 1 hour 

ENCFF002CFW POLR2A     

H1-hESC M No ENCFF002CJE POLR2A     
HeLa-S3 F No ENCFF002CJZ POLR2A     
HepG2 M No ENCFF002CKX POLR2A     1 ENCODE DCC metadata database accession ID (https://www.encodeproject.org) 

2 Number of biological replicates 
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II. The pRSEM method 

II.A. An overview of pRSEM 

The framework of pRSEM is built on RSEM, which employs a generative model and an EM 
algorithm to estimate gene and isoform expression levels (Li and Dewey 2011; Li et al. 2010). 
Specifically, RSEM models the RNA-seq read sequencing process by taking into account transcript 
abundances, sequencing error, fragment length variation, read length variation, and read start position 
non-uniformity. RSEM’s implementation also provides a Bayesian version of this model, in which 
transcript expression levels are modeled as latent variables from a Dirichlet distribution. By default, the 
prior parameters for the Dirichlet distribution are uniformly set to one (an uninformative prior) so that the 
maximum a posteriori estimates are equal to RSEM’s maximum likelihood estimates. The framework of 
pRSEM takes advantage of this design and learns informative parameters for the Dirichlet prior using a 
training set of isoforms partitioned based on an external data set. In this way, pRSEM can leverage 
external information to supervise the allocation of multi-mapping reads and estimate transcript 
abundances. A single shared prior parameter is learned for each partition through maximization of the 
likelihood of a Dirichlet-multinomial model to fit the distributions of the read counts of the training set 
isoforms. In what follows, we use the derivation of a Pol II ChIP-seq prior as an example to describe 
these two steps. In addition to Pol II ChIP-seq, other data types, such as histone modification ChIP-seq, 
can also be used for deriving a prior. As described later in section II.F, pRSEM provides a testing 
procedure to determine if a given external data set can be used to derive an informative prior. This 
procedure also computes a score to rank multiple informative external data sets. 

II.B. Building and partitioning a training set of isoforms 

Given Pol II ChIP-seq data, a training set of isoforms is constructed by first selecting those 
isoforms that (i) are from single-isoform genes with a genomic span of at least 1,003 nucleotides, which 
ensures that the ‘TSS region’, ‘body region’, and ‘TES region’ of a gene do not overlap (see below for 
definitions of ‘TSS region’, ‘body region’, and ‘TES region’); (ii) have TSSs that are more than 500 
nucleotides from the TSS of any other isoform; and (iii) have genomic spans that do not overlap with 
the span of any other isoform on either strand. These criteria prevent any ambiguity in assigning ChIP-
seq peaks and signals to isoforms. We further filter the training set by requiring isoforms to have an 
average mappability ≥ 0.8 for their TSS regions, body regions, and TES regions, where a ‘TSS region’ 
is defined as the 500 nucleotide flanking region of a TSS (5’ end), a ‘TES region’ is defined as the 500 
nucleotide flanking region of a transcription end site (TES, i.e. 3’ end), and a ‘body region’ is defined as 
the genomic span of an isoform excluding its TSS and TES regions. With this filter, we can have high 
confidence in each segment’s Pol II peak calls and signals by using uniquely mapped ChIP-seq reads. 
Mappability is defined as the alignability of 36-mers calculated by GEM (Derrien et al. 2012). 

We have implemented six partition models in pRSEM. Models I-V are based on a single 
complementary data set and Model VI was developed to utilize information from multiple external data 
sets. Below we use Pol II ChIP-seq data as the complementary data set to describe Models I to V and 
use multiple histone modification ChIP-seq data sets to illustrate Model VI. 
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Model I, uses a binary partition established by the presence or absence of a Pol II peak overlapping 
with an isoform’s TSS region, i.e., a Pol II TSS peak.  

Model II. Isoforms are first partitioned as in Model I with the resulting ‘no peak’ set further partitioned 
into two subsets via a logistic regression model. This partition scheme was motivated by the bimodal 
distribution of the fragment counts of ‘no peak’ isoforms (red line in Figure 2B). The logistic regression 
model is specified by the predictive equation: 

ln
𝑝!!"_!"#$

1 − 𝑝!!"_!"#$
= 𝛽! + 𝛽!𝑙𝑜𝑔!" 𝑅!" + 𝛽!𝑙𝑜𝑔!" 𝐿!"" + 𝛽!𝑙𝑜𝑔!" 𝑆!"" + 𝛽!𝐼!"#$ + 𝛽!𝐼!"#$𝑙𝑜𝑔!" 𝑆!"#$
+ 𝛽!(1 − 𝐼!"#$)𝑙𝑜𝑔!" 𝑆!"#$ + 𝛽!𝐼!"# + 𝛽!𝐼!"#𝑙𝑜𝑔!" 𝑆!"# + 𝛽!(1 − 𝐼!"#)𝑙𝑜𝑔!" 𝑆!"#  

where phas_read  is the probability of an isoform having a non-zero RNA-seq read count; RGC is the ratio of 
an isoform’s GC content over the mean GC content of all isoforms in the training set; Leff is an isoform’s 
effective length; STSS, Sbody, and STES are the means of the Pol II ChIP-seq signal within an isoform’s 
TSS region, body region, and TES region, respectively; Ibody and ITES are Boolean variables 
representing whether an isoform has a Pol II peak overlapping with its body region and TES region, 
respectively. The β0 to β9 are the intercept and coefficients obtained from fitting the logistic regression 
model to the training set. After fitting, isoforms in the ‘no peak’ set are divided based on whether or not 
their estimated phas_read is less than 0.5. 

Model III. This model is very similar to Model II with the difference being that instead of logistic 
regression, a linear regression model of the same form is used to divide the ‘no peak’ set. Instead of 
phas_read, the model predicts an isoform’s log read count. Isoforms in the ‘no peak’ set are binned based 
on their predicted read count with the upper bound of bin i given by: 

𝑏! =
𝑖
𝑛
𝑙𝑜𝑔!"

𝑐!"#

𝑐!"#
+ 𝑙𝑜𝑔!" 𝑐!"#  

where n is a user-defined number of bins, and cmax and cmin are the largest and smallest predicted read 
count, respectively. The interval for each bin is half-closed, (bi-1, bi], except the interval for the first bin, 
which is [log10(cmin), b1]. 

Model IV. This model is the same as Model III, except that the ‘with peak’ set is further subdivided 
instead of the ‘no peak’ set. 

Model V. Like Models III and IV, Model V uses a linear regression model to bin the isoforms, but unlike 
all other models, it does not initially partition by Pol II TSS peak. The predictive equation for this model 
is: 

𝑙𝑜𝑔!" 𝑐 = 𝛽! + 𝛽!𝑙𝑜𝑔!" 𝑅!" + 𝛽!𝑙𝑜𝑔!" 𝐿!"" + 𝛽!𝐼!"" + 𝛽!𝐼!""𝑙𝑜𝑔!" 𝑆!"" + 𝛽!(1 − 𝐼!"")𝑙𝑜𝑔!" 𝑆!""
+ 𝛽!𝐼!"#$ + 𝛽!𝐼!"#$𝑙𝑜𝑔!" 𝑆!"#$ + 𝛽!(1 − 𝐼!"#$)𝑙𝑜𝑔!" 𝑆!"#$ + 𝛽!𝐼!"#
+ 𝛽!"𝐼!"#𝑙𝑜𝑔!" 𝑆!"# + 𝛽!!(1 − 𝐼!"#)𝑙𝑜𝑔!" 𝑆!"#  

where c is an isoform’s read count; ITSS is a Boolean variable representing whether or not an isoform 
has a Pol II TSS peak; the β0 to β11 are the intercept and coefficients to be fitted; and all the other 
variables are the same as in the Model II equation. 
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Model VI. This model was developed to combine signals from multiple external data sets. Assuming we 
would like to utilize n types of histone modification ChIP-seq data, we use a logistic regression model 
specified by the predictive equation: 

ln
𝑝!"#$!%%!&

1 − 𝑝!"#$!%!"#
= 𝛽! + 𝛽!𝑙𝑜𝑔!" 𝑆!!""

!

!!!

 

where pexpressed denotes the probability of an isoform being expressed, 𝑆!!"" is the ith type of histone 
modification signal for isoform’s TSS region, and the β0  to βn are the intercept and coefficients obtained 
by fitting the model to the training set. After fitting, all isoforms are partitioned by whether pexpressed is 
higher than 0.5 or not. 

II.C. Learning prior parameters through a Dirichlet-multinomial model 

Given a training set and partitioning of the isoforms, we use a Dirichlet-multinomial model and 
RSEM’s posterior mean estimates to learn prior parameters for the partitions. Let T be the training set 
of isoforms, and nT = |T|. Let ci be the initial RNA-seq read count estimate for the ith isoform and 
𝑛! =  𝑐!

!!
!!!  be the total number of reads initially assigned to isoforms in T. Let nA denote the number 

of partitions and 𝑓: 1, 𝑛! → [1, 𝑛!] denote the mapping from transcript indices to partition indices. The 
kth partition is associated with the Dirichlet parameter αk, which is shared by all nTk isoforms in that 
partition. The parameters α={αk | k ∈ [1, nA]}, are what we learn from the training set.  

Let pi denote the prior probability that a read originates from the ith isoform. We assume that the 
probabilities p={pi | i ∈ [1, nT]} follow a Dirichlet distribution parameterized by α  and the partition 
function f. The read count c={ci | i ∈ [1, nT]} then follows a multinomial distribution parameterized by p 
and nc. Given read counts c for T, the log likelihood is: 

ln 𝑃𝑟 𝒄 𝜶 = ln 𝑃𝑟 𝒄 𝒑 𝑃𝑟 𝒑 𝜶 𝑑𝒑  

= ln
𝚪 𝑛! + 1
𝚪 𝑐! + 1

!!
𝒊!𝟏

𝑝!
!!

𝒏𝑻

!!!

𝚪( 𝛼! ! )
!!
!!!

𝚪 𝛼! !
!!
!!!

𝑝!
!! ! !!

!!

!!!
𝑑𝒑  

= ln
𝚪 𝑛! + 1 𝚪 𝛼! !

!!
!!!

𝚪 𝑐! + 1 𝚪 𝛼! !
!!
!!!

𝑝!
!!!!! ! !!

!!

!!!
𝑑𝒑  

= ln
𝚪 𝑛! + 1 𝚪 𝛼! !

!!
!!!

𝚪 𝑛! + 𝛼! !
!!
!!!

𝚪 𝑐! + 𝛼! !

𝚪 𝑐! + 1 𝚪 𝛼! !

!!

!!!
 

= ln
𝚪 𝑛! + 1 𝚪 𝑛!"𝛼!

!!
!!!

𝚪 𝑛! + 𝑛!"𝛼!
!!
!!!

𝚪 𝑐! + 𝛼! !

𝚪 𝑐! + 1 𝚪 𝛼! !

!!

!!!
 

where 𝚪(𝑥) is the gamma function and dp denotes integrating {pi | i ∈ [1, nT]} over the simplex. 

We learn α  via maximum likelihood estimation. For this optimization we employ a bound 
constrained BFGS algorithm to search over positive values of α. The algorithm requires the gradient of 
the log-likelihood, which is given by: 
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𝜕
𝜕𝛼!

ln 𝑃𝑟 𝒄 𝜶 =
𝜕
𝜕𝛼!

ln
𝚪 𝑛!"𝛼!

!!
!!!

𝚪 𝑛! + 𝑛!"𝛼!
!!
!!!

𝚪 𝑐! + 𝛼! !:! ! !!

𝚪 𝛼!
𝒏!"  

= 𝑛!" 𝚿 𝑛!"𝛼!
!!

!!!
−𝚿 𝑛! + 𝑛!"𝛼!

!!

!!!
−𝚿 𝛼! + 𝚿(𝑐! + 𝛼!)
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where 𝚿 𝑥  is the digamma function. 

II.D. Comparison of partition models for a single complementary data set 

We evaluated the first five models described in section II.B. on the K562 and GM12878 
datasets. Models were compared in terms of: (i) the number of isoforms that had fragment count 
changes in agreement with their Pol II TSS peak status; and (ii) the number of genes that had 
expression status prediction changes in concordance with their Pol II TSS peak status. In the 
evaluation for the first metric, isoform TSS groups were selected in the same way as for Figure 3A. 
Based on their Pol II TSS peak status and change of counts, isoform TSS groups were classified into 
four categories: (i) with TSS peak and have fragment count increased (‘with, increased’); (ii) without 
TSS peak and have fragment count decreased (‘without, decreased’); (iii) without TSS peak and have 
fragment count increased (‘without, increased’); (iv) with TSS peak and have fragment count decreased 
(‘with, decreased’). After using a Pol II prior, we assumed that ‘with peak’ isoform TSS groups would 
have counts increased, whereas ‘no peak’ isoform TSS groups were more likely to have counts 
decreased. Thus, a good partition model would have a large number of isoform groups in (i) and (ii) and 
a small number in (iii) and (iv). No model was found to be overwhelmingly better than the others 
(Supplemental Figure S3A). 

For the second metric, evaluation methods and gene selection were similar to those used for 
Figure 4B. We classified genes into four categories: (i) estimated as ‘expressed’ by RSEM, but not by 
pRSEM (‘expr, not expr’); (ii) estimated as ‘not expressed’ by RSEM, but as ‘expressed’ by pRSEM 
(‘not expr, expr’); (iii) estimated as ‘expressed’ by both RSEM and pRSEM (‘expr, expr’); (iv) estimated 
as ‘not expressed’ by both RSEM and pRSEM (‘not expr, not expr’). All comparisons were carried out 
on the first replicate of the K562 and GM12878 RNA-seq data sets. Model I and II have two and three 
partitions by definition, respectively. For Model III, four numbers of bins (2, 3, 4, 5) were applied to the 
‘no peak’ set. For Model IV, we only divided the ‘with peak’ set into two bins, because larger numbers of 
bins resulted in one bin containing just a single isoform. For Model V, there were four numbers of bins 
(3, 4, 5, 6) applied on the whole training set. No model was found to be overwhelmingly better than the 
others with regard to this metric as well (Supplemental Figure S3B). 

Therefore, we chose to use the simplest partition model (Model I, by Pol II TSS peak) as the 
default in pRSEM and for the remainder of the experiments in this work. Although the presented 
partition models were designed with Pol II ChIP-seq data in mind, they may be applicable to other types 
of external data that are informative regarding isoform abundances. For example, we expect that 
transcription factor ChIP-seq data, as well as other types of transcript sequencing data, e.g. 
RAMPAGE, can be used with these models to partition the training set of isoforms. 
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II.E. Learning priors from ENCODE human and mouse data 

 We applied pRSEM to five human and mouse cell lines from ENCODE. Every cell line had both 
RNA-seq and Pol II ChIP-seq data available (Supplemental Table S1 and Supplemental Table S2). We 
partitioned training set isoforms by whether they had a Pol II TSS peak or not (Model I). The pRSEM-
learned prior fit the training set data well for all cell lines (Supplemental Figure S4).  
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Supplemental Figure S3. No partition model was found to outperform the others. (A) Partition models 
were compared in terms of the number of isoform TSS groups that had a change of fragment count agree 
or disagree with their Pol II TSS peak status. (B) Partition models were compared by the number of genes 
that had their expression states changed after using pRSEM.  
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II.F. A testing procedure to select and compare complementary data sets 

Investigators may not always have a Pol II ChIP-seq data set from the same condition as their 
RNA-seq data. In such cases, users may wish to know whether an unmatched external data set could 
be used for RNA-seq quantification with pRSEM. In pRSEM, we have implemented a testing procedure 
that provides users with two metrics regarding: (i) whether an external data set can provide an 
informative prior; and (ii) among multiple external data sets, which one is most informative. The first 
metric is a p-value indicating whether external information can significantly separate high read-count 
isoforms from low or zero read-count isoforms in the training set based on a Mann-Whitney test. The 
second metric is a log-likelihood calibrating how well the prior derived from a complementary data set 
fits the training set data. 

To demonstrate the use of these two metrics, we first considered ENCODE Pol II ChIP-seq data 
from six human cell lines (Supplemental Table S2) and applied them to the four RNA-seq data sets 
from the K562 and GM12878 cell lines (Supplemental Table S1). pRSEM’s testing procedure resulted 
in p-values lower than 10-50  for all six Pol II data sets (Supplemental Figure S5) and indicated that they 
are all informative regardless of whether they are from the same condition or not. Comparison of log- 
likelihoods showed that Pol II data from the same cell line as the RNA-seq data always fit the training 
set the best (Figure 6A). For each of the two K562 RNA-seq replicates, the prior derived from K562 
ChIP-seq data gave the highest log-likelihood compared to priors from the other five ChIP-seq data 
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Supplemental Figure S4. Pol II TSS peak 
data are informative for deriving pRSEM 
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Empirical and fitted distributions of fragment 
counts for pRSEM training set isoforms, 
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human and mouse cell lines. Plots were 
generated in the same manner as Figure 
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sets, which were collected from cell lines other than K562 (the two panels on the left of Figure 6A). 
Similarly, priors derived from GM12878 Pol II ChIP-seq data have the highest log-likelihood for each of 
the two GM12878 RNA-seq replicates (the two panels on the right of Figure 6A). We noticed that there 
was a large difference in the log-likelihoods for the two GM12878 RNA-seq replicates. This is most 
likely because the second replicate had 25% more aligned RNA-seq fragments than the first replicate 
(78 million vs. 62 million) and the log-likelihood scales with the number of aligned RNA-seq fragments. 
In contrast, the two K562 RNA-seq replicates had similar read depth (67 million vs. 64 million). As a 
result, the log-likelihoods for the two K562 replicates are relatively close to each other. We would like to 
point out that pRSEM’s testing procedure was developed for comparing different sources of prior on the 
same RNA-seq data set. For a given RNA-seq data set, the number of aligned RNA-seq fragment is a 
constant regardless of which source was used for the prior. Therefore, the fact that the log-likelihood 
scales with the number of aligned RNA-seq fragments is not an issue. In cases where RNA-seq data 
sets from multiple biological replicates are available and pRSEM users would like to select the best 
source of prior, our tests on the GM12878 and K562 RNA-seq data demonstrated that pRSEM’s testing 
procedure would provide consistent results between RNA-seq replicates.   

  

Next, we applied pRSEM to 52 RNA-seq data sets from the sixteen mouse hematopoiesis cell 
types (Lara-Astiaso et al. 2014). Each cell type had four types of histone modification ChIP-seq data 
sets available, allowing us to evaluate if histone data could inform RNA-seq quantification and, of the 
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Supplemental Figure S5. Pol II ChIP-seq 
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divided into two groups based on their Pol II 
TSS peak status. Fragment counts were 
quantified on the two RNA-seq replicates from 
each of the K562 and GM12878 data sets. 
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four marks, which was most informative. All four marks had p-values lower than 10-100 (Supplemental 
Figure S6A), indicating that they are all informative for RNA-seq multi-read allocation. The log- 
likelihoods obtained from using H3K4me3 and H3K27ac data were systematically better than those 
from the other histone marks (Supplemental Figure S6B), suggesting that these two marks are more 
informative. In addition, we developed a logistic model that utilizes information from all four types of 
histone modifications. A partition derived from the four marks combined resulted in a lower p-value and 
better log-likelihood (Supplemental Figure S6, A and B). For 48 out of 52 RNA-seq data sets, the 
combined model provided the highest log-likelihood (Figure 6B), suggesting that it is the most 
informative one. In summary, our testing procedure indicated that histone modification ChIP-seq data 
can be used to derive a prior for pRSEM and that integrating multiple histone mark data results in a 
prior that is generally better than one derived from a single mark.  

II.G. Computational requirements 

We performed experiments to measure the computational requirements for pRSEM, RSEM 
(PME), RSEM maximum likelihood, and three eXpress variants (Supplemental Table S3). The relative 
ordering of pRSEM and the RSEM variants in terms of running time was: RSEM ML < RSEM < 
pRSEM. RSEM is slower than RSEM ML because it additionally runs ten thousand rounds of Gibbs 
sampling. pRSEM is slower because it has to learn the prior parameters and run an additional set of 
Gibbs sampling rounds compared to RSEM. When using three CPUs on the human K562 data, 
RSEM’s standard Gibbs sampling requires 9.3 hours of computing time (Supplemental Table S3, 19.5 
vs. 10.2). Under the same settings, pRSEM’s prior-learning and additional Gibbs sampling takes 9.4 
hours to complete (Supplemental Table S3, 28.9 vs. 19.5), indicating that the prior-learning process is 
very fast and most of pRSEM’s extra running time is spent on Gibbs sampling. Benefitting from RSEM’s 
highly parallelized Gibbs sampling, this extra time can be reduced by half (4.5 hours) when running on 
eight CPUs (Supplemental Table S3, 14.1 vs. 9.6). Note that the running times for ChIP-seq peak 
calling were not included here because we assume that users will have peaks called once they 
obtained their ChIP-seq data. Also, we did not include the computational requirements for aligning 
RNA-seq reads since these will be the same for all methods shown here.  

 Compared to pRSEM and RSEM, eXpress with its default settings runs markedly faster 
(Supplemental Table S3). Running an additional ten rounds of batch EM with eXpress is still quicker 
than pRSEM if same number of CPUs were used. However, eXpress has limited parallelization abilities 
and can only use up to three CPUs in its current implementation. As a result, running an additional 
hundred rounds of batch EM on the human K562 data set required about a week. In contrast, running 
on eight CPUs—a very common configuration for workstations nowadays, pRSEM completes faster 
than eXpress with ten rounds of batch EM. Moreover, given that the three eXpress variants performed 
poorly in our qRT-PCR validations (Supplemental Figure S9 and Supplemental Figure S10 in section 
III.C), pRSEM compares favorably when considering both time-cost and accuracy. 

Supplemental Table S3. Comparison of computational requirements for pRSEM, two variants of RSEM, 
and three variants of eXpress. All jobs ran on AMD 2.1GHz CPUs. Pol II TSS peak data was used to provide a 
prior for pRSEM. 

Method Number of 
CPUs 

Mouse MEL1 Human K562* 
Time (hours) Memory (Gbytes) Time (hours) Memory (Gbytes) 
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pRSEM 3 13.1 2.9 28.9 9.0 
RSEM 3 9.3 2.9 19.5 9.0 

RSEM ML 3 5.3 2.9 10.2 8.5 
eXpress 3 0.9 2.7 1.8 4.2 

eXpress O1B10 3 7.3 2.7 17.4 4.2 
eXpress O1B100 3 63.4 2.7 158.7 4.2 

pRSEM 8 6.9 3.4 14.1 9.0 
RSEM 8 5.2 3.4 9.6 9.0 

RSEM ML 8 3.4 3.0 5.3 7.7 
1 RNA-seq data for mouse MEL cell line is 101 nt paired-end with 38.5 million reads aligned to transcripts. 
* RNA-seq data for human K562 cell line is 76 nt paired-end with 67.4 million reads aligned to transcripts. 
 

II.H. Software availability 

The source code of pRSEM is available in the Supplemental Material. The latest version of 
pRSEM and a demo can be found at https://github.com/pliu55/RSEM/tree/pRSEM and 
https://github.com/pliu55/pRSEM_demo, respectively. 
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III. Quantification of human and mouse RNA-seq data by pRSEM 

III.A. Allocating multi-mapping reads between isoform TSS groups 

 

 

 

III.B. Validation of pRSEM estimates by RAMPAGE 

An isoform’s RAMPAGE signal was defined by first counting the number of reads that had their 
5’ ends map within the 100 nucleotide flanking region of the isoform’s TSS, and then dividing that 
number by the total number (in millions) of RAMPAGE reads in that data set. An isoform group’s 
RAMPAGE signal was defined similarly, except that the interval in which reads were counted was 
[TSSmin - 100, TSSmax + 100], where TSSmin and TSSmax were the lowest and highest coordinates of 
TSSs, respectively, for isoforms within that group. 

Supplemental Figure S7. pRSEM more accurately allocates multi-mapping reads between isoform TSS 
groups in both human and mouse data sets. Distributions of the change of fragment count between 
estimates from pRSEM and RSEM. Data shown are from the two replicates of each of five human and mouse 
cell line RNA-seq samples. The p-value from a Kolmogorov-Smirnov test is shown in the top left of each 
panel. Color code and data generation are the same as Figure 3A. 
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III.C. Validation of pRSEM estimates by qRT-PCR 

Isoform selection. Two sets of isoforms were selected for the validation of fold changes 
between two isoforms of the same gene in the MEL mouse cell line (Supplemental Data S1). First, we 
screened for genes that met the following criteria: (i) had a Pol II TSS peak status of ‘mixed’; (ii) did not 
overlap or share RNA-seq reads with any other gene; (iii) had no more than five isoforms; (iv) had 
increases or decreases in isoform fragment counts (as compared with RSEM) that corresponded to the 
presence or absence of a Pol II TSS peak, respectively. For each selected gene, we looked for a pair of 
isoforms that fit the following criteria: (i) both isoforms had a unique exon region of at least 15 
nucleotide for designing primers; (ii) one isoform had a Pol II TSS peak, had a read count increase of at 
least one with pRSEM, and had abundance ≥ 1 TPM as estimated by pRSEM; (iii) the other isoform did 
not have a Pol II TSS peak, had its read count decrease by at least one with pRSEM, had 

𝑙𝑜𝑔!
!"#!"#$%

!"#!"#$
≤ −0.95, where TPMpRSEM and TPMRSEM represent the abundances (in TPM) estimated 

by pRSEM and RSEM, respectively, and had TPMRSEM ≥ 1. Through these selection criteria, when 
comparing pRSEM against RSEM, the candidate genes always had reads transferred between their 
own isoforms and the reads were re-allocated from the ‘no peak’ isoform to the ‘with peak’ isoform. 
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Supplemental Figure S8. Allocation of multi-mapping reads by pRSEM is supported by RAMPAGE signals. Distribution 
of K562 (A) and GM12878’s (B) RAMPAGE signals for isoform TSS groups that have fragment counts decreased by at least 
one and increased by at least one after using pRSEM instead of RSEM. Color code, line styles, and data generation are the 
same as in Figure 3C. Calculations were based on each cell line’s two RNA-seq replicates and two RAMPAGE replicates. 
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Also, the differences between the pRSEM and RSEM estimates were large enough such that one 
would be definitively closer to the qRT-PCR measurements. For ‘Set I.A’ (Supplemental Data S1), we 
required that both isoforms had a GENCODE ‘transcript_type’ defined as ‘protein_coding’ or 
‘processed_transcript’, that the selection criteria for pairs of isoforms were met in both of the MEL RNA-
seq replicates, and that the ‘no peak’ isoform’s TPMpRSEM was at least one in both replicates. Under 
these strict criteria, expression of both isoforms could be detected by qRT-PCR with high confidence. 
For ‘Set I.B’ (Supplemental Data S1), we focused on isoforms that had a GENCODE ‘transcript_type’ 
defined as ‘protein_coding’. Unlike Set I.A, the selection criteria for pairs of isoforms were only required 
to be met in at least one RNA-seq and we required that the ‘no peak’ isoform had 0.1 ≤  𝑇𝑃𝑀!"#$% < 1 
in at least one MEL RNA-seq replicate. These relaxed criteria allowed us to obtain more candidates. 

 For validating estimated fold changes between two conditions, we selected isoforms from the 
mouse CH12, MEL, and MEL DMSO (MEL cell treated by 2% DMSO for five days) cell lines 
(Supplemental Data S3) with the following criteria: (i) the isoform had at least a 15 nucleotide unique 
exonic region for designing primers; (ii) its GENCODE ‘transcript_type’ was either ‘protein_coding’ or 
‘processed_transcript’; (iii) the ratio between the fold changes estimated by pRSEM and RSEM across 
the two conditions was either at least 2 or at most 0.5, where fold change was computed based on the 
average TPM from the two RNA-seq replicates in each condition; (iv) for one condition, the isoform had 
an abundance of at least one TPM and a non-zero fragment count as estimated by RSEM and pRSEM 
in both RNA-seq replicates. This criterion ensured that the expression of the isoform under this 
condition could be detected by qRT-PCR with high confidence; (v) for the other condition, the isoform 

had TPMRSEM ≥ 1 and 𝑙𝑜𝑔!
!"#!"#$
!"#!"#$%

≥ 1 or had TPMpRSEM ≥ 1 and 𝑙𝑜𝑔!
!"#!"#$%

!"#!"#$
≥ 1 in both RNA-

seq replicates such that the fold changes of the isoform estimated by pRSEM and RSEM were different 
enough to be discriminated between with qRT-PCR measurements; (vi) the isoform had a Pol II TSS 
peak in only one condition. 

Measuring isoform expression by qRT-PCR. Mouse erythroleukemia (MEL) and CH12 cells 
were maintained in 10% Fetal Bovine Serum containing RPMI 1640 with L-Glutamine, and 1% 
penicillin/streptomycin. CH12 cells were additionally supplemented with 1x10-5 M β-mercaptoethanol. 
Both cell lines were cultured under standard mammalian cell culture conditions, with 5% CO2 in a 370C 
incubator. MEL cells were treated with 2% DMSO for 2 days for MEL DMSO condition.   

Total RNA was purified from MEL, DMSO treated MEL, and CH12 cells using TRIzol 
(Invitrogen). 2µg RNA was used to synthesize cDNA by Moloney murine leukemia virus reverse 
transcription (M-MLV RT) using a random hexamer-oligo dT primer cocktail. All cDNA synthesis 
reactions were preceded by a DNaseI treatment to remove any DNA contamination and a minus 
reverse transcriptase control was used to confirm the specificity. Real-time PCR was performed with 
SYBR green master mix (ABI). To compare the expression of different isoforms in MEL cells, the ddCt 
method was used. Primer pairs with similar amplification efficiencies were used for the analysis and all 
the values were normalized to 18S RNA expression. The Prkci-001 sample was used as reference 
standard to generate the plots. Three independent experiments were carried out (Supplemental Data 
S2).  

Relative expression of isoforms among different samples (MEL, MEL DMSO and CH12) was 
determined by a relative standard curve method. Serial dilutions (1:5) of cDNA sample from highest 
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expressed samples were used to generate the standard curve and relative expression of each isoform 
was determined from the curve using the StepOne plus analysis platform (ABI). All values were 
normalized to corresponding 18S values and fold changes were determined. Four independent 
experiments were performed (Supplementary Data S4). Isoforms for which primer pairs did not yield 
satisfactory amplification curves, had diverse primer efficiencies, or amplified intronic regions were 
excluded from the analysis. All primers are listed in Supplemental Table S4. 

Supplemental Table S4. A list of primer pairs for qRT-PCR. Primer pairs that did not yield satisfactory 
amplification curve, had diverse primer efficiencies, or amplified intron regions are colored in grey. 

Set Isoform's 
Ensembl 78 ID 

Primer (5' to 3') 
Forward strand Reverse strand 

I.A 

Prkci-001 ACCAGGTCCGGGTGAAA  ATATCTCGAACCTCACTGCAA 

Prkci-002 AGCAAAGGCTGTTGTTTTCC CTGCAAAGTCCCTCAAAGGA 

Heatr2-001 CGGGTAGCCGTTATCGAA  CGACCACCGAGGTCACT 

Heatr2-002 TAACCTTTGTGGTTGGTTCCA TCCTCCACCTCAGCCAGTGT 

Dmtn-201 CAAGACCCGAGAGCTTCCAA  AAGCCCCAGGAAGCAAAAGG 

Dmtn-203 GGAGCTGGCGAAGGA GTTCAGGAGGGAGATCAGA 

I.B 

Rtn4ip1-001 TGATGTTACCTATCATACACTATCCAAATG TGGCTCCATAACCACTTCTCATATT 

Rtn4ip1-002 ACCTGCAGAAGTGAATTGTTTGTC ACATGAGCCCCCCATGCT 

Etv5-001 GAGTGGCCGCTCAGGAGTATC TGCTTCCAAAGTCTCCGCTATC 

Etv5-002 GTTCCTGATGATGAGCAGTTTGTC CACTGCAGTCCCGGCTCTAG 

Dcun1d3-001 GAACCTCTGGAGCAGCTGTTG GAGTGGACCCCTCTGGATCA 

Dcun1d3-005 GGAATTAGAGTTGCCAGTCTGTGA GCCACTGGCCCATGTACTTC 

II 

Atf7ip-008 GGGCTCCTTTGGGATTCAG CGAGCCTTGAAGACTTTTTTCTG 

Anpep-002 GGGAGGAGGGCTTAGCTGTAA CGGTAATCTACCTGGCACATGA 

Limk1-002 GATGGGGAAGCTTAGGCCAG TACACTCGCAGCACTTAGCC 

Jdp2-202 CCGTCAGGCACATCAGGTT TGCCCAGGCATCATAGCA 

Ehd1-002 GCACTAGCTCAGTAGCCTGAACTG GGCCTGGAACTTGCTGAAGTC 

Pafah1b3-007 ACATCCTCCTCCTCACCTAGCA CTACTTCGGGTTCCTTGTCTTTG 

Ubald2-002 CTGCGTCCCGTATTTTGTCC ATCAGGGAAGTTGGGTGGTG 

 

Comparison of qRT-PCR measurements with predictions. We compared qRT-PCR 
measurements with estimates from five quantification methods: pRSEM, RSEM, RSEM ML, eXpress, 
eXpress O1B10, and eXpress O1B100 (for explanations of each method, see section I.A). For the 
experiment measuring isoform abundances under the same condition, pRSEM and two RSEM variants 
had strong correlations with qRT-PCR, whereas the three eXpress variants had weak correlations 
(Supplemental Figure S9). When comparing the difference of fold changes to qRT-PCR measurements, 
pRSEM estimates had the smallest differences for three out of five pairs of isoforms and was always 
better than RSEM, RSEM ML, and eXpress with its default settings for all five pairs (Supplemental 
Figure S10, A and C; Supplemental Data S2). In qRT-PCR validation of one isoform under two 
conditions, pRSEM outperformed all other methods for five out of six cases (Supplemental Figure S10, 
B and D; Supplemental Data S4). 
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Supplemental Figure S9. pRSEM and RSEM estimates have stronger correlations with qRT-PCR measurements 
than those from eXpress variants. Comparison of expression levels between two isoforms from the same gene under 
the same condition. Minimum abundances from eXpress variants were set to 10-10 (A) or 10-2 (B). At the lower right of 
each plot are Pearson and Spearman correlation coefficients calculated between log transformed arithmetic averages of  
estimated abundances (blue) and log transformed average relative expression levels. The arithmetic averages were 
derived from estimates on MEL RNA-seq’s replicate 1 (light yellow) and replicate 2 (red). Error bars denote one standard 
deviation. RSEM ML: RSEM maximum likelihood; eXpress O1B10: eXpress run with one round of online EM followed by 
ten rounds of batch EM; eXpress O1B100: eXpress run with one round of online EM followed by 100 rounds of batch EM. 
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III.D. Genome-wide biological implications of pRSEM abundance estimates 

We carried out two genome-wide surveys to determine the biological implications of pRSEM’s 
abundance estimates, given our results suggesting that they are more accurate than those of previous 
methods, such as RSEM. Our first survey examined genome-wide TSS activities and the second 
identified expressed isoforms for the sixteen cell types in the mouse hematopoietic differentiation study. 

Genome-wide active TSSs. We compared transcriptome profiles from pRSEM and RSEM 
quantifications. Many TSSs were found to have different ‘on’ or ‘off’ calls between pRSEM and RSEM 
(Supplemental Table S5). In all five human and mouse cell lines, more than seven hundred TSSs were 
identified to be active by RSEM, but not by pRSEM. This finding is in line with pRSEM’s strength of 
removing false positives, as shown in our qRT-PCR validations (section III.C) and data-driven 
simulations (section IV). 	

Supplemental Figure S10. pRSEM estimates are closer to qRT-PCR measurements than those from RSEM 
and eXpress variants. (A, C) Comparison of expression levels between two isoforms from the same gene under 
the same condition; (B, D) Comparison of an isoform’s expression level in two different cell lines. Minimum 
average abundances from two RNA-seq replicates were set to 10-10 (A, B) or 10-2 (C, D); Notations for 
quantification methods are the same as for Supplemental Figure S9. 
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Supplemental Table S5. Number of active transcription start sites (TSSs) called by RSEM or pRSEM. A 
TSS is considered to be ‘active’ if it has abundance ≥ 1 TPM in all RNA-seq samples from the same cell line. 

Cell line 
Number of active TSS 

RSEM pRSEM RSEM only pRSEM only 
K562 36,682 35,576 1,312 206 

GM12878 36,193 35,006 1,425 238 
CH12 24,242 23,226 1,111 95 
MEL 22,675 21,588 1,176 89 

MEL DMSO 26,621 25,970 705 54 
 

Expressed genes and isoforms in hematopoietic cells. In our second survey, we applied 
pRSEM to sixteen types of primary cells from a mouse hematopoiesis differentiation study. We 
examined the extent to which the numbers of genes and isoforms called as expressed by pRSEM were 
different from those obtained from RSEM. Compared to the three ENCODE mouse cell lines used in 
the first survey, the primary cells used in this survey more closely resemble physiological states and 
data from them are more relevant to living systems. For every cell type, the numbers of expressed 
genes and isoforms called by pRSEM were always much smaller than those called by RSEM 
(Supplemental Table S6). This is similar to our observation in the first survey and is most likely the 
result of pRSEM’s strength at removing false positives. The sets of expressed genes and isoforms 
determined by pRSEM are thus likely to contain less noise, which benefits downstream analyses that 
attempt to draw biological insights from such sets. 

Supplemental Table S6. Number of expressed isoforms and genes called by RSEM and pRSEM for sixteen 
cell types from mouse hematopoietic differentiation. An isoform or a gene is defined as ‘expressed’ in a cell 
type if it has abundance ≥ 1 TPM in all of the RNA-seq samples for that cell type. Due to limited sequencing depth 
for these primary cells, an expressed isoform or gene is also required to have a non-zero RNA-seq read count. 

Cell 
type 

Number of isoforms Number of genes 

Total 
Is expressed 

Total 
Is expressed 

RSEM pRSEM RSEM 
only 

pRSEM 
only RSEM pRSEM RSEM 

only 
pRSEM 

only 
LT-HSC 

78,754 

23,408 20,127 3,396 115 

22,019 

11,290 10,409 883 2 
ST-HSC 18,659 16,265 2,446 52 9,941 9,433 508 0 

MPP 19,792 18,618 1,254 80 10,499 9,766 733 0 
CMP 20,168 18,307 1,926 65 10,363 9,756 607 0 
GMP 19,209 17,346 1,927 64 10,076 9,495 583 2 
Mϕ 14,625 12,284 2,406 65 8,299 7,958 343 2 
Gn 11,391 9,408 2,015 32 6,142 5,982 160 0 
Mo 19,744 16,721 3,099 76 9,336 9,041 295 0 

CLP 15,786 14,425 1,407 46 9,089 8,446 644 1 
B 21,883 18,345 3,610 72 9,596 9,175 422 1 

CD4 18,349 15,219 3,187 57 8,714 8,406 309 1 
CD8 17,896 14,896 3,071 71 8,930 8,483 447 0 
NK 22,893 19,222 3,729 58 9,721 9,500 221 0 

MEP 18,402 16,963 1,502 63 9,743 9,126 619 2 
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EryA 9,900 9,417 533 50 7,116 5,927 1,190 1 
EryB 4,171 4,126 69 24 3,377 3,054 323 0 

 

III.E. Differential expression 

Given pRSEM’s strength in reducing the number of false positive isoforms, we examined 
whether its estimates would lead to different differential expression (DE) results than those from RSEM 
estimates. We employed EBSeq (Leng et al. 2013) to make DE calls based on fragment counts from 
RSEM or pRSEM on the three mouse ENCODE cell lines: CH12, MEL, and MEL DMSO. Compared to 
alternative methods, EBSeq’s advantage is that it will not only identify DE genes, but also DE isoforms. 
This feature allows us to make comparisons at the gene level as well as at the isoform level. We 
counted the number of DE genes and isoforms that were only called based on RSEM or pRSEM 
estimates. pRSEM and RSEM did not differ much in terms of identifying DE genes — the two methods 
disagreed on the DE call of 26 to 46 genes per comparison (Supplemental Table S7). In contrast, the 
two methods disagreed on the DE call for more than two thousand isoforms per comparison, with 
pRSEM estimates resulting in a larger number of DE isoform calls. (Supplemental Table S7). Such a 
large difference in the DE isoform calls would most likely lead to different functional characterizations 
between each pair of cell lines. Unfortunately, current Gene Ontology analysis is only available at the 
gene level and comprehensive functional annotations of isoforms are still lacking. Such limitations 
prevent us from performing further functional analysis on these large sets of DE isoforms.   

Supplemental Table S7. Number of differentially expressed (DE) genes and isoforms only called based on 
RSEM or pRSEM estimates. DE genes or isoforms were controlled at a false discovery rate of 0.05. 

Level 
Cell line Number of DE items 

1 2 RSEM only pRSEM only 

gene 
CH12 MEL 15 11 
CH12 MEL DMSO 16 11 
MEL MEL DMSO 13 33 

isoform 
CH12 MEL 748 1,413 
CH12 MEL DMSO 986 1,476 
MEL MEL DMSO 953 1,294 
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III.F. Isoform abundance profiles 

 

III.G. pRSEM identifies unexpressed genes misclassified by other methods 

Supplemental Table S8. RSEM and pRSEM largely agree on the expression states for genes that do not 
overlap with any other gene and share RNA-seq reads. The comparisons were made at three different cutoffs: 
0.5, 1.0, and 2.0 TPM, for defining ‘expressed’ genes. 

Cell line Replicate 
index 

RSEM and pRSEM agree RSEM and pRSEM disagree 
Number of 

genes 
Percentage of 

genes 
Number of 

genes 
Percentage of 

genes 
“expressed”: TPM ≥  0.5 

K562 1 554 96.3 21 3.7 
2 585 96.7 20 3.3 

GM12878 1 560 96.9 18 3.1 
2 613 97.9 13 2.1 

CH12 1 895 97.5 23 2.5 
2 921 98.0 19 2.0 

MEL 1 835 95.6 38 4.4 
2 856 97.2 25 2.8 

MEL DMSO 1 1064 97.5 27 2.5 
2 994 98.1 19 1.9 

average 787.7 97.2 22.3 2.8 
“expressed”: TPM ≥  1 

K562 
1 567 98.6 8 1.4 

2 591 97.7 14 2.3 

GM12878 1 565 97.8 13 2.2 
2 617 98.6 9 1.4 

CH12 1 898 97.8 20 2.2 
2 918 97.7 22 2.3 
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Supplemental Figure S11. Comparison of the distribution of transcript abundances estimated 
by RSEM, pRSEM, and eXpress. Percentages of isoforms (A) and genes (B) were calculated based 
on the two RNA-seq replicates from each of the K562, GM12878, CH12, MEL, and MEL DMSO cell 
lines. Error bars represent one standard deviation.  
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MEL 1 852 97.6 21 2.4 
2 863 98.0 18 2.0 

MEL DMSO 1 1078 98.8 13 1.2 
2 1001 98.8 12 1.2 

average 795 98.1 15 1.9 
“expressed”: TPM ≥  2 

K562 1 566 98.4 9 1.6 
2 600 99.2 5 0.8 

GM12878 1 575 99.5 3 0.5 
2 624 99.7 2 0.3 

CH12 1 912 99.3 6 0.7 
2 932 99.1 8 0.9 

MEL 1 858 98.3 15 1.7 

2 872 99.0 9 1.0 

MEL DMSO 1 1085 99.5 6 0.5 
2 1008 99.5 5 0.5 

average 803.2 99.1 6.8 0.9 
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Supplemental Figure S12. pRSEM eliminates far more false positive genes than false positive or 
false negative genes that it introduces under different ‘expressed’ cutoffs. Number of identified 
‘expressed’ genes, in which RSEM and pRSEM disagreed, with an ‘expressed’ cutoff of TPM ≥ 0.5 (A) 
and TPM ≥ 2 (B). Color code and data generation are the same as in Figure 4B.   
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 At the gene level, we made pairwise comparisons of pRSEM with two variants of RSEM and 
three variants of eXpress. We counted the number of method-specific expressed genes stratified by 
their Pol II TSS peak status. For genes without peaks, the number of pRSEM-specific expressed genes 
was always lower than that of each other method (Supplemental Figure S13). Again, if we assume that 
a gene without a Pol II TSS peak should not be expressed, we can conclude that pRSEM identifies 
misclassified unexpressed genes by other methods. 
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Supplemental Figure S13. pRSEM identifies unexpressed genes misclassified by RSEM or eXpress. Expressed genes 
called by only one method from pairwise comparison of pRSEM with RSEM (A); RSEM ML (B); eXpress (C); eXpress O1B10 
(D); and eXpress O1B100 (E). The average and standard deviation of the number of genes were calculated from two RNA-
seq replicates of cell lines: K562, GM12878, CH12, MEL, and MEL DMSO. Notations for quantification methods are the same 
as for Supplemental Figure S9. 
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IV. Evaluating pRSEM by data-driven simulations 

IV.A. Sub-sampling experiments 

 We sub-sampled RNA-seq reads from ENCODE K562’s RNA-seq replicate one (Supplemental 
Table S1), which had 113.6 million paired-end reads. We took random samples of 10%, 30%, and 50% 
of these reads as the input RNA-seq data sets for sub-sampling experiments. All of the remaining 
alignment and quantification processes were the same as those for the ENCODE RNA-seq data. There 
were 6.8 million, 20.3 million, and 33.8 million fragments aligned to transcripts for each of the sub-
sampling data sets (Supplemental Table S9). We used RSEM ML estimates on K562 replicate one as 
the ground truth with which to determine false positives and false negatives. We note that this ground 
truth definition gave RSEM ML an advantage over the other methods in terms of quantification on the 
sub-sampled RNA-seq data. 

IV.B. Simulation at full-sequencing depth 

In the simulation at full sequencing depth, the total number of fragments was also based on 
ENCODE K562’s RNA-seq replicate one (Supplemental Table S1). This data set had 113.6 million 
paired-end reads, 67.4 million of which aligned to transcripts with a noise parameter of 0.156 estimated 
by RSEM (Supplemental Table S9). We partitioned all isoforms by their TSS peak status according to 
K562 Pol II ChIP-seq data (Supplemental Table S2). For each partition, we drew each isoform’s 
fragment-generating probability (θ in RSEM’s probabilistic model) from the distribution learned from the 
training set isoforms. With the fragment-generating probabilities for all isoforms, we calculated their 
abundances (TPMs) and took it as the ground truth. Next, we employed RSEM’s simulator (Li and 
Dewey 2011) to simulate paired-end reads based on the ground truth, total number of aligned reads, 
and the noise parameter.  

Supplemental Table S9. Read depth for all RNA-seq data sets used in this work. Shown are the total 
numbers of sequenced fragments in RNA-seq data set and the numbers of fragments that aligned to isoforms. 
There is a substantial number of unaligned fragments, which can be attributed to fact that all ENCODE RNA-seq 
data were from the whole-cell fraction. 

RNA-seq data set 
Number of fragments (millions) 

Total Aligned 
sub-sampling at 10.0% read depth of K562 Rep1 11.4 6.8 
sub-sampling at 30.0% read depth of K562 Rep1 34.1 20.3 
sub-sampling at 50.0% read depth of K562 Rep1 56.8 33.8 
simulation at full sequencing depth as K562 Rep1 79.5 64.2 
ENCODE human K562 Rep1 113.6 67.4 
ENCODE human K562 Rep2 119.1 64.3 
ENCODE human GM12878 Rep1 117.9 62.1 
ENCODE human GM12878 Rep2 131.8 78.1 
ENCODE mouse CH12 Rep1 140.2 47.3 
ENCODE mouse CH12 Rep2 180.6 51.7 
ENCODE mouse MEL Rep1 124.5 38.5 
ENCODE mouse MEL Rep2 178.3 59.5 
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ENCODE mouse MEL DMSO Rep1 177.5 58.4 
ENCODE mouse MEL DMSO Rep2 205.2 80.4 

 

IV.C. Comparison of pRSEM with alternative quantification methods 

In the sub-sampling experiments, RSEM ML had a smaller false positive rate and a smaller 
false negative rate than pRSEM at both the isoform- and gene-level for most of the sub-sampling 
depths (Supplemental Figure S14, A and B). This is likely because of the fact that RSEM ML at 100% 
sampling depth was used as the ground truth. In simulations at full-sequencing depth, RSEM ML was 
not used as the truth and its advantage disappeared. pRSEM had smaller or comparable false positive 
rates and smaller false negative rates at both the isoform- and gene-levels (Supplemental Figure S14, 
C and D). Compared to all three eXpress variants, pRSEM generally had favorable false positive rates 
and false negative rates in the sub-sampling experiments (Supplemental Figure S14, A and B). In 
simulations at full sequencing depth, pRSEM had a much smaller number of false positives at the 
expense of false negatives at the isoform- and gene- levels (Supplemental Figure S14, C and D). 

 From our simulations, we found that running additional batch EM rounds with eXpress 
consistently increased eXpress’s sensitivity and specificity in most of the experiments (Supplemental 
Figure S14). However, with respect to these metrics, the relative ranking of pRSEM compared to 
eXpress remained the same for all variants. Furthermore, additional batch EM rounds did not improve 
eXpress’s accuracy in our qRT-PCR validations (Supplemental Figure S9; Supplemental Figure S10), 
and were time-consuming (Supplemental Table S3) due to eXpress’s limited parallelization abilities in 
its current implementation. 

 

IV.D. Comparison of pRSEM and RSEM on isoforms with uninformative priors 

In our qRT-PCR validations, if one removes the criteria regarding the Pol II TSS peak status of 
the isoforms and the directionality of the difference between pRSEM and RSEM, 41 isoforms become 
candidates for validation. Of these, eleven have a Pol II TSS peak in one condition but not the other. 
The remaining isoform candidates do not have Pol II TSS peak in any of the two conditions. We 
decided against validating these isoforms because the Pol II information could not be explicitly 
connected to the difference between the pRSEM and RSEM estimates, leaving the differences difficult 
to explain as there are many factors at play including ChIP-seq multi-mapping read allocation, noise in 
peak calling, and IDR thresholds. Full validation for these isoforms would have required ChIP-qPCR 
experiments, which is beyond the scope of this work. 

 To circumvent the difficulties of validating isoforms for which the Pol II peak status was the 
same across conditions, we decided to perform data-driven simulations. We treated Pol II ChIP-seq 
peak data as the ground truth, and generated isoform expression levels as well as simulated RNA-seq 
reads in the same manner as the full-sequencing-depth simulations described above. We selected 
isoforms by the same criteria, but considered fold changes in both directions and did not place 
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Supplemental Figure S14. pRSEM has a lower false positive rate than alternative methods in data-
driven simulations. Comparison of sub-sampling simulations at the isoform level (A) and gene level (B); 
Comparison of simulations at full sequencing depth at the isoform level (C) and gene level (D). ‘pRSEM no 
partition’ denotes a pRSEM run, where a uniform prior parameter was learned from a training set without any 
partition. Notations for the other quantification methods are the same as for Supplemental Figure S9. 
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conditions on Pol II TSS peak status. We compared fold change differences between the simulated 
truth and RSEM or pRSEM (Supplemental Figure S15). For isoforms that have peaks in only one cell 
line, all pRSEM estimates, except one, had smaller difference to the truth than RSEM, which is in line 
with our qRT-PCR experiments. For isoforms with the same Pol II peak status across cell lines, pRSEM 
had better estimates than RSEM in the vast majority of cases. This simulation experiment suggests 
that, even for isoforms for which Pol II information is not explicitly informative, pRSEM still outperforms 
RSEM. 

 

IV.E. Comparison of pRSEM with a naïve approach on eliminating false positives 

 We examined if a naive approach based on fragment counts could deliver results comparable to 
those of pRSEM. We compared the RSEM fragment count distributions for two categories of isoforms: 
(i) those called as false positives by RSEM and not called by pRSEM; and (ii) those called as true 
positives by RSEM. We found that the two distributions substantially overlap with each other. There are 
32% isoforms of category (i) and 53% isoforms of category (ii) that have estimated fragment counts in 
the interval (100, 1000] (Supplemental Figure S16A). Under a naive approach, no matter where the 
cutoff is drawn, a substantial fraction of isoforms from either category would be misclassified. At the 
gene level, we observed a similar degree of overlap in the fragment count distributions. 45% and 21% 
genes from the two categories, respectively, have estimated fragment counts in the interval (100,1000] 
(Supplemental Figure S16B). Therefore, a naive approach that thresholds on estimated RSEM 
fragment counts cannot classify genes and isoforms as accurately as pRSEM. 
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Supplemental Figure S15. pRSEM is more accurate than RSEM with respect to isoform 
expression fold change estimation between conditions for all isoform Pol II TSS peak 
status scenarios. dRSEM and dpRSEM represent the absolute difference of the log2 fold change 
between the truth and RSEM or pRSEM. The truth and simulated reads for each cell line were 
generated in the same manner as in the simulation at full sequencing depth in Supplemental 
Figure S14. Shown are isoforms that would be selected for qRT-PCR validation by our selection 
criteria when considering Pol II peak status (red), and those that would additionally fit our 
selection criteria if not considering Pol II TSS peak information (light green and dark green). 
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the false positives called by RSEM and not called by pRSEM lie in that region of overlap under 
the pink and blue curves.) 

We appreciate Reviewer 2’s understanding that ‘every fraction of a percent of 
improvement is a hard-earned victory’. As suggested by Reviewer 2, we examined if a 
naive approach could deliver a comparable results as pRSEM. We compared the RSEM 
fragment count distributions for two categories of isoforms: (i) those called as false 
positives by RSEM and not called by pRSEM; and (ii) those called as true positives by 
RSEM. We found that the two distributions substantially overlaps with each other. There 
are 32% isoforms of category (i) and 53% isoforms of category (ii) fall into the fragment 
count interval of 100 to 1000 (Figure L5A). Under a naive approach, no matter where 
the cutoff is drawn, a substantial amount of isoforms from either category would be mis-
classified. At the gene level, we observed a similar degree of overlapping. 45% and 
21% genes from the two categories, respectively, fall into the 100 to 1000 fragment 
count interval (Figure L5B). Therefore, a naive approach by using RSEM fragment 
count cannot achieve the same level of specificity as pRSEM. 

"Orthogonal" in a paper is easily construed to mean statistical independence, and here, ChIP-
seq data is not orthogonal to the RNA-seq data: peaks corresponding to TSSes are highly 
correlated with gene expression, precisely a desired feature in the training set for deriving a 
pRSEM. I would use the word "complementary" instead. 

We have made changes in the manuscript as suggested by Reviewer 2. All the places 
with word ‘orthogonal’ were replaced by ‘complementary’. 
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Figure L5. RSEM fragment count distribution of false positives called only by RSEM 
(cyan) overlaps substantially with the one of RSEM true positives (red). (A) Comparison 
at the isoform level; (B) Comparison at the gene level. FP: false positive; TN: true negative; 
TP: true positive.

Supplemental Figure S16. RSEM fragment count distributions of false positives called 
only by RSEM (cyan) overlaps substantially with the one of RSEM true positives (red). 
(A) Comparison at the isoform level; (B) Comparison at the gene level. FP: false positive; TN: 
true negative; TP: true positive. 
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