[bookmark: _GoBack]Supplemental Information

This file contains:			

		I-Supplemental table S1-S6 legends (Excel documents attached):
Supplemental_Table_S1. Differentially expressed genes in haploid embryos. 
Supplemental_Table_S2. ChIP-seq experiments list and relative number of reads
Supplemental_Table_S3. Pearson correlation values between replicates for ChIP-seq analysis on sperm and spermatids.
Supplemental_Table_S4. Number and percentage of genes with at least one peak in its promoter region.
Supplemental_Table_S5. KS-test p-values for ECDFs of histone methylation levels.
Supplemental_Table_S6. List of differentially expressed genes in IVM-ICSI experiment.

		II- Supplemental gene annotation file description (gtf file attached)

		III- Supplemental experimental procedures
		IV-Supplemental references


Supplemental tables
Supplemental_Table_S1. Differentially expressed genes in haploid embryos. 
Sheet1. List of transcripts with corresponding FDR; Sheet2. List of transcripts with FDR < 0.05, Sheet3. List of misregulated transcripts (consistently up- or downregulated in at least 6/7 experiments)
Supplemental_Table_S2. ChIP-seq experiments list and relative number of reads
Supplemental_Table_S3. Pearson correlation values between replicates for ChIP-seq analysis on sperm and spermatids.
Supplemental_Table_S4. Number and percentage of genes with at least one peak in its promoter region. Sheet1 (Summary). Upper table reports the actual numbers of peaks in the promoter region ([TSS -10kb; TSS+2kb] for H3K4me2 and H3K4me3)/promoter region + gene body ([TSS -10kb; TSS + gene body] for H3K27me3 and H3K9me3); intermediate table shows the same information in terms of percentages; lower table reports proportions and p-values for different comparisons (chi-square test). Sheet2 (Peaks_around_TSS). Table reporting genes (rows) and promoter regions for the different histone marks (columns). Values in the table are 1 or 0: 1 represents the presence of at least one peak in the region around TSS of the histone mark, 0 represents the absence of any. Promoter regions are defined as before.
Supplemental_Table_S5. KS-test p-values for ECDFs of histone methylation levels. Comparison (p-value from KS-test) between histone methylation levels in various scenarios: 1) histone methylation in sperm at misregulated genes versus sperm genome-wide; 2) histone methylation in spermatid at misregulated genes versus spermatid genome-wide; 3) histone methylation in sperm at misregulated versus the same in spermatid.
Supplemental_Table_S6. List of differentially expressed genes in IVM-ICSI experiment. Differentially expressed genes between Kdm5b and control mRNA injected embryos derived from sperm (Kdm5b-sperm), or spermatid (Kdm5b-spermatid), and between Kdm6b and control mRNA injected embryos derived from sperm (Kdm6b-sperm) or spermatid (Kdm6b-spermatid).


Supplemental Gene annotation: Xenopus laevis genome version 6.1 based transcripts annotation used in this study. GTF file containing the transcript annotation used for the RNA-seq analysis in this study. This file is designed for use with the version 6.1 of the Xenopus genome that can be found at: ftp://ftp.xenbase.org/pub/Genomics/JGI//Xenla6.1




Supplemental experimental procedures
Xenopus laevis transcriptome
The 553,960 assembled transcripts were provided by the International Xenopus Genome Project (http://www.marcottelab.org/index.php/Xenopus_Genome_Project) in October 2012. This assembly was augmented with Xenopus laevis sequences from the NCBI RefSeq database downloaded in Feburary 2012 (30,611 sequences). The combined transcript sequences were filtered with cd-hit-est 4.5.7 (Li and Godzik 2006) with a similarity score of 95% to remove redundant sequences. This resulted in a final set of 39,384 transcripts. To provide gene names, orthologs were found against the M. musculus proteome (downloaded in January 2013 – NCBI RefSeq) using Inparanoid 4 (Alexeyenko et al. 2006) on predicted ORFs from the Trinity Suite (Grabherr et al. 2011). The sequences were further annotated using InterProScan 4.8 (Zdobnov and Apweiler 2001) to provide both InterPro Domains (Release 35) and Panther 7.2 ontology terms (Thomas et al. 2003). Xenopus laevis NCBI Descriptions were provided for transcripts that originated at the NCBI.
Filtering sequencing data
Fastq files were filtered for low quality reads (<Q20) using sickle (https://github.com/najoshi/sickle) and low quality bases were trimmed from the ends of the reads (<Q20). Reads of good quality were kept. Adaptors were removed from both pairs using cutadapt (Version 1.0) (Martin 2011).
Genome based RNA-seq mapping 
Xenopus laevis draft genome (JGI version 6.1) from the International Xenopus Genome Project was used as a reference genome (ftp://ftp.xenbase.org/pub/Genomics/JGI/Xenla6.1/). Transcript sequences obtained from the assembly were assigned to genome using BLAT (Kent 2002). The resulting mappings were filtered by a maximal mismatch threshold (2%) as well as requiring 90% of the transcript to match the genome and all exons to match a single scaffold.  To prevent spurious matching, the genome was filtered to only include scaffolds with length > 100kb. This resulted in 34,373 transcripts mapping to the genome. This mapping was used as genome annotation file for Tophat 2.0.6 (Trapnell et al. 2009; Kim et al. 2013) which was used to map the RNA-seq reads to the genome. 
Differential expression analysis
For the expression profiling of haploid embryos, read counts were generated for each of the transcripts. RPKMs (reads per kilobase per million) were calculated by normalizing read counts for each transcript by the transcript length and the total number of reads in the corresponding sample. Zeros were replaced with values obtained by randomly sampling from all RPKM values greater than zero and less than 0.2. These were converted back to raw counts, rounding up to the nearest integer, and then normalized using the Bioconductor package EdgeR (Robinson et al. 2010). Transcripts were kept in the analysis if they had at least one count per million in all of the sperm-derived embryo samples or all of the spermatid-derived embryo samples, leaving 18,340 transcripts post-filtering. Differentially expressed transcripts were then called using EdgeR, taking into account the pairing of sperm and progenitor in the design matrix of the model. Gene ontology terms over-represented among the differentially expressed genes were found using topGO (Alexa et al. 2006).
For the expression profiling in the different demethylase assays (KDM5B/KDM6B), aligned reads were counted using htseq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html). Cpm (counts per million) were calculated and genes having at least one count in a minimum of two experiments were kept and normalized. The function glmFit from EdgeR was used to identify differentially expression of genes (log fold change – logFC) and statistical significance (false discovery rate – FDR) keeping into account the pairing of any two conditions in the design matrix.
Heatmaps for differentially expressed genes in haploid embryos
For each differentially expressed gene, log2 fold changes spermatid/sperm were calculated. Genes were filtered out if they were not consistently upregulated  (or downregulated) in at least 6 of 7 pairs. For each kept gene, the log2 fold change values were plotted and rows were sorted by mean fold change (mean across experiments). For heatmap plotting we used heatmap.2 from the gplots library in R.
Genome based ChIP-seq mapping 
ChIP-seq data deprived of adaptor sequences was mapped against the Xenopus laevis draft genome (JGI version 6.1) using BWA (version 0.6.2, (Li and Durbin 2009)) algorithm with the default options. Duplicate reads were then removed. 
Estimation of histone methylation levels from ChIP-seq data
For each ChIP-seq experiment, the genome was binned into 200bp-wide windows. The coverage was computed as the number of reads in each window normalized by the total number of aligned reads in the experiment and scaled by a factor of 106 (i.e. values represent cpm).
For each mark in each cell type, the reproducibility was evaluated by estimating the Pearson correlation coefficient between coverage vectors of the ChIP-seq replicates.
The methylation level was computed as:
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where IP is the immunoprecipitation experiments, input is the control;  NIP is the total number of aligned reads in the IP experiment and Ninput is the total number of aligned reads in the input experiment. 
For H3K4me2/3 the methylation level was computed in a window around the TSS [TSS-10kb, TSS+2kb]. For H3K27me3 and H3K9me3 the window considered for estimating the methylation level included the 10kb upstream region together with the gene body. Methylation levels across replicates were averaged. Heatmaps for methylation levels at misregulated genes were generated plotting only values above zero (where input is not exceeding the IP) with the function heatmaps.2
Peak calling for histone marks
The detection of highly methylated histone regions (peaks) was performed with MACS2 2.0.9 (Zhang et al. 2008) using the broad-region option and a q-value <0.01. The list of confirmed peaks for each histone mark analysed consisted of the peaks with a p-value <0.01 detected in at least two out of three replicates. 
Statistical analysis of DNA and histone methylation levels between sperm and spermatid
Statistical analysis was conducted in R (http://www.R­project.org). The comparison of the methylation levels between promoter regions of 100 misregulated genes and promoter regions in the entire genome (genome-wide) was performed using Kolmogorov-Smirnov test (R function ks.test()). The difference between methylation levels of promoter regions between cell types (sperm, spermatids) was tested in the same way. 

Statistical testing of proportions of genes
We tested differences in proportions (i.e. misregulated genes positive for H3K27me3 and H3K4me3/2 in sperm and spermatid) with the non-parametric chi-squared test for proportions and in the manuscript we refer to it as simply chi-square test (R function prop.test()). Analogously, all proportions of genes compared across the different experimental data (RNA-seq with demethylase enzymes) are compared using the non-parametric Chi-squared test for proportions.
Processing of Nucleosome occupancy and Nucleosome positioning (MNase-Seq)
Three different replicates were generated for the nucleosomal fraction (fragments size: ~ 150bp long, Supplemental Table S2). Samples were prepared as for the input fraction in ChIP-seq analysis. As with ChIP-seq data, sequencing data (fastq) were filtered for low quality reads and only good quality reads were kept. Adaptors were removed with cutadapt and then reads were aligned to X. laevis draft genome (JGI version 6.1) with BWA. Duplicate reads were removed from the alignments and the resulting BAM files were indexed. Alignments of the different replicates were merged, sorted and indexed (samtools, version 0.1.8, (Li et al. 2009)). Coverage around TSSs (TSS±1kb) was computed in 10bp windows generating bedgraph files then converted into bigwig files. The obtained density of tags was then normalized by the total number of mapped reads and multiplied by a scaling factor 1×109. The normalized and scaled tag density represents the nucleosome density and it was used to generate the density plots around TSSs with 10bp resolution. 
Putative positions of nucleosomes were estimated using NucHunter on cell-specific merged bam files (Mammana et al. 2013) (-fLen = 150, -wrad 146).  The weighted fraction of nucleosome in different genomic features (TSS, exons, introns, intergenic) was computed as the fraction of nucleosome overlapping the feature divided by the size of the genomic feature under analysis. 

Processing of DNA methylation data (MBD-seq)
Data were processed similarly to ChIP-seq data. After checking and removing low quality reads, data were mapped to X. laevis. As with ChIP-seq data, DNA methylation levels were computed as reported in formula (1) in the 1kb window centred around TSS (TSS ± 1kb). DNA methylation levels across replicates were averaged and all the comparisons between sperm and spermatid were performed on the resulting values above zero.

Partial-correlation analysis
To explore the association between all epigenetic features measured in sperm and spermatid and expression levels in haploid embryos derived from injection of sperm and spermatid, we used the partial correlation framework. The rationale is that changes in expression in the haploid embryos are not caused by a single factor but they are more likely to be influenced by many factors simultaneously. The partial correlations among parameters constitute a generalized model of the system we are investigating. In order to build it, we used more permissive criteria on the genes differentially expressed in the haploid embryo. We selected those with an FDR ≤ 0.4 and |logFC| ≥ 0.2. Although such extended set of differentially expressed genes is intrinsically noisier, it provided a more generous estimation of the relationships among the epigenetic features under consideration.
The input data used is the matrix of genes satisfying the criteria on FDR and logFC where rows are the genes and columns represent the parameters. We used one matrix representing information of sperm-derived embryos and one matrix for the spermatid-derived one leading to the estimation of two partial correlation matrices, one for each cell-type. 
Given the input data, the inverse  of the covariance matrix was computed using glasso function from R package glasso. This matrix was then normalized row- and column-wise so that diagonal is 1 and negated to obtain an estimate of the partial correlation matrix . Therefore:
  (2)
where i and j iterate across each of the n variables considered.
The partial correlations matrix representing the pairwise relationships among epigenetic features was visualized as a network using Cytoscape software (Shannon et al. 2003). Nodes in the network represents features, edges represent the association; edges colour and thickness codify the sign and the strength of each partial correlation value respectively. 
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