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Supplemental Fig S1: Web-logos of position weight matrices for 23 TFs investigated.
Each weblogo is labeled with the TF name and TRANSFAC id.

Supplemental Fig S2: (A-B). Part of a sub-model taken from the Interaction model for
CEBPB in H1hesc and Helas3 respectively. Each node in the tree is labeled with the
TRANSFAC id, corresponding gene name and the threshold at which the feature is split.
In each tree, one binding rule is highlighted: they are identical with respect to leading or
increasing the probability of leading the binding probability of CEBPB.

(C). Accuracy (ROC-AUC) distribution for 6 choices of EMT feature sets. “<*” (“>*”)
denotes significant difference (one sided Wilcoxon p-value < 0.05) between the two sets
of performances and the direction (greater or less). The plot has same color coding as in
Fig 1C-D, i.e. same color is used to denote the models using same features.

(D-F). ROC-AUC (D), number of sub-models (E), and fraction of sub-models (F) that
included reference TFs, for different interaction depth of the models. Interaction depth
defines maximum allowable features in a sub-model. The same colors denote model
interaction depth for plots D-F.

(G-H). ROC-AUC (G), and number of sub-models (H) for different n.minobsinnode of the
models. ‘n.minobsinnode’ denotes minimum number of observations made at each
node while building the decision tree. Plots G and H use same the colors to indicate
models using ‘n.minobsinnode’.

(I-K). ROC-AUC (1), number of sub-models (J), and clustering consistency (K) of the
sequences (percentage of sequence-pairs that fall in same clusters) for different values
of the shrinkage parameter. Shrinkage indicates the learning rate of the model. Plots I-K
the use same colors to denote models using same learning rate.

(L-M). Comparison of ubiquitous and cell type-specific sub-models: (L) Number of
relevant features (i.e. features with non-zero importance in any cell type-specific
model), (M) Standard deviation of feature importance for each sub-model, (N) Skewness
of gene expression in each cells for the co-factors. Yellow and brown colors denote
ubiquitous and cell type-specific sub-models respectively.

Supplemental Fig S3: Cluster membership matrix for k-nearest neighbor (KNN)
clustering for k = 16. In each matrix, a row represents a cluster and a column
represents a cell type. Elements in the matrix denote the number of sub-models in the
cluster belonging to a specific cell type.

Supplemental Fig S4: Fraction of overlapped and non-overlapped sequences which
fall in the same or different clusters. Dark orange represents the fraction of overlapped
sequences falling in the same cluster, whereas light orange represents non-overlapped
sequences. Dark purple represents the fraction of overlapped sequences falling in
different clusters, with light purple non-overlapped sequences.

Supplemental Fig S5: Weblogos of the TRANSFAC ids with 85% similar to any zinger
motifs.
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Supplemental Fig S6: (A) Normalized within-cluster sum of squares stabilizes when the
number of cluster is between 10 to 25; we choose k=16 (denoted by the vertical line in
the closer view) as a representative for all TFs.

(B-C) Boxplot of dh-ratio (B), and Hopkins statistic (C) for 135 TF-cell pairs based on
their sub-models, and pooled sub-models by TF. In (B), the horizontal line at Y=1
denotes the maximum limit of dh-ratio. In (C), the horizontal line at Y=0.6 denotes,
current lowest value of Hopkins statistic.

(D) Same plot as in Fig 2C, except the sub-models are clustered by XY-Fused (XYF)
self-organizing map. In plot (D-F), the ‘blue’ horizontal line denotes the coherence in 5%
of the total multi-clusters.

(E-F) Functional and Expression coherence of sub-model clusters with expression
threshold of log2CPM>=5, i.e. a gene is considered as on when the log2CPM>=5.
~40% (~18%) multi-cell clusters show higher expression-coherence (pathway-
coherence). Dual coherence denotes both expression and pathway coherence. (E) is
drawn for KNN (K-Nearest Neighbor) and (F) is drawn for XYF (XY fused network).

(G) Distance between binding sites and their nearest gene. (H) Distribution of
enrichment scores of all relevant co-factor motifs (with nonzero feature importance), for
each TF separately. The horizontal line at Y=1 denotes no enrichment/depletion, and
the upper and lower dotted horizontal line denotes enrichment and depletion of 1.2
respectively.

Supplemental Fig S7: Cross-cell type performance matrix for Interaction and
Noninteraction models. In each matrix, row represents the cell line used to build the
model and column represents the cell line from which the test data is used. Diagonal
elements are within cell type performance and only diagnal elements are colored
according to the ROC-AUC to show the difference between Interaction and
Noninteraction models.

Supplemental Fig S8: Relationship between model accuracy and sequence size. In
each plot, color is used to indicate models from different cell lines.

Supplemental Fig S9: Same as Supplemental Fig S7, except the matrix is color coded
according to the extent of symmetry of the non-diagonal elements. The symmetry is
calculated by normalizing each row by the reference model (diagonal element).

Supplemental Fig S10: Motif usage for the reference TF in different cell types for the
Nonlinteraction model. Y-axis denotes the feature importance of motif usage in the
Nonlinteraction model. The sequence logos for the PWMs can be accessed from
Supplemental Fig S1.

Supplemental Note 1. A model is built using Adaboost method where multiple classifiers are
combined to represent the final output of the composite boosted classifier. In this approach,
for each weighted bootstrap sample, a new sub-model (in our case a decision tree) is built and

added to the model until no further improvement can be made.
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In the Interaction model, the composite boosted model includes multiple decision trees, each
of which captures a set of binding rules based on co-occurring motifs (potential interaction
partners or co-factors) in the weighted training sequences bound by the reference TF. Each
path from root to leaf in an estimated decision tree sub-model captures one such binding rule,
asserting how a combination of motifs and along with their binding affinities relative to
thresholds defined by the sub-model contribute to the target TF’s binding. As an illustrative
example, Fig 1B shows an arbitrarily selected sub-model of CEBPB in the Gm12878 cell line.
Two of the binding rules are “presence of IRF8 with score greater than 2.08 and presence of
NFATC4 with score of less than 2.3” - when these rules are met by the reference TF, CEBPB, is
likely to bound. Whereas “presence of IRF8 with score greater than 2.08 and presence of
NFATC4 with score of greater than 2.3” hinders CEBPB binding. While a general binding rule
may be difficult to state concisely, it can be operationally defined in terms of a collective
ensemble of cell type-specific binding rules. Each decision tree (a sub-model) operationally
defines a binding rule, in terms of presence of specific motifs above/below a certain binding
score. Furthermore, in general, the relative importance of features decrease with increasing
depth of the node in the decision tree, with the first few levels contributing a substantial portion
of the decision. Although a decision tree represents a statistical model for TF binding, by
applying strict thresholds for motif scores and considering only the top few layers, in principal,
a concise ‘binding rule’ can be derived, albeit, at a loss of information.

Each sub-model is built allowing interaction (tree) depth of 15. We found that 79% of all sub-
models include the reference motif. However, this percentage increases up to 85% with
increasing interaction depth (Supplemental Fig S2F) and no performance loss (Supplemental
Fig S2D). The sub-models without a reference motif may be explained by the possible absence
of the reference motif sequence from the training set due a sequence-length restriction, PWM
match threshold, indirect binding, or by other unknown confounders. Notably, by virtue of
physical space, the number of non-overlapping features fit in the sequence of restricted length
should be limited, e.g. with average size (8bp) of PWM the 15 features need at least 120bp.
However, we have ascertained that only 0.8% of all possible single paths (encompassing only
~13% of all the sub-models) have more than 12 features. Thus, in almost all cases, the features
fitin a 100bp physical space (12*8=96).

We clustered the sub-models based on feature importance, meaning the contribution of each
co-factor in the set of binding rules specified by each decision tree. Therefore, by design, sub-
models, common across cell types, will have increased similarity in the set of co-factors and
the weight of their contribution whereas cell type-specific sub-models will either have different
sets of co-factors, or similar sets of co-factors but with different contribution. For example,
none of the CEBPB sub-models have the rule: “presence of IRF8 and presence of NFATC4
leads to the binding of CEBPB” (highlighted in Fig 1B) except in Gm12878. On the other hand,
the following rule exists in multiple sub-models of all cell types except Gm12878 generated
sub-models: “presence of CEPBE and one of the reference PWM of CEBPB increases the
binding probability of CEBPB”. In Supplemental Fig S2A-B the corresponding rules are
highlighted. Overall, when we looked at the ubiquitous sub-models and cell-specific sub-
models, we found that ubiquitous sub-models contribute more co-factors than cell type-
specific sub-models (Supplemental Fig S2L). This leads to cell-specific sub-models having a
more skewed feature importance than ubiquitous sub-models (Supplemental Fig S2M).
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Furthermore, the co-factors contributed by cell-specific sub-models exhibit a slightly more
skewed gene expression across cell types than those contributed by ubiquitous sub-models
(Supplemental Fig S2N, see Methods for details).

Supplemental Note 2. Each cluster of sub-models can itself serve as a composite, or
ensemble, classifier. We determined a cluster-specific score for each TF-bound sequence
based on these new cluster-based ensemble classifiers and assigned each sequence to one or
more sub-model clusters based on this score (see Methods). Independently, for each TF, we
partitioned all bound sequences into those that are bound uniquely in a cell type and those that
are bound in multiple cell types. In general, if the clustering of sub-models in different cell types
is simply due to sequence sharing then we expect to see a large fraction of overlapping
sequence pairs, and not the cell type-specific sequence pairs, assigned to same cluster. We
trained EMT using 75% of the sequences in each cell type dataset followed by clustering, and
assessed the aforementioned fractions for the remaining 25% of the sequences to avoid
training bias. As shown in Supplemental Fig S4, we expect pairs of overlapping sequences to
be assigned to the same cluster and hence the size of dark orange box (same cluster) is
greater than dark purple box (different cluster). However, many pairs of non-overlapping
sequences are also assigned to the same cluster (light orange). We conducted a chi-squared
test to assess whether the proportion of non-overlapped sequence pairs assigned to the same
cluster is smaller than expected, indicating that co-clustering is driven by sequence overlap.
For each cluster, we obtain the proportion of overlapping and non-overlapping sequence pairs
and computed the expected proportion from the overall proportion of overlapping vs. non-
overlapping sequence pairs. We conducted one chi-squared test per TF using data pooled
from all clusters and all cell types, there was no evidence for depletion of non-overlapped
sequence pairs assigned to the same cluster (all P-values > 0.05). These results suggest that
co-clustering of sub-models across cell types are not simply due to sequence overlap, but
rather, represent shared binding rules.

Supplemental Note 3. In clustering the sub-models, our goal was not to find the precise
number of distinct binding rules, but rather to assess the modularity and sharing of binding
rules across cell types. That’s why we decided to choose k in such a way that the coherence
among the sub-models in the same clusters is still detectable (i.e. k, not too high) while still
revealing the cross-cell type sharing (i.e., k not too low). We checked the value of within-cluster
sum of squares (normalized by the cluster-size) for different cluster sizes (Supplemental Fig
S6A) (Wien 2002). For some TFs the suggested clusters seem ~15 (e.g. CTCF), for others ~20
(e.g. FOS), and in extreme cases the desired number of clusters seems to be more than 30
(e.g. ATF3, MYC). Based on these results a cluster size ranging from 15 to 25 seemed a
reasonable choice. As a compromise across TFs and to make the analyses comparable we
selected k=16 for all TFs.

Supplemental Note 4. We collected 22 position frequency matrices for the zinger motifs
reported in (Worsley Hunt & Wasserman 2014). We identified the corresponding TRANSFAC id
by matching the PWM-similarity by TFBSTools R package (Lenhard & Wasserman 2002).
Allowing 90% (85%) PWM-similarity gave us 16 (42) TRANSFAC ids as zinger motifs;
Supplemental Fig S5 lists all the zinger TRANSFAC ids. We found that only 5.5% (14%) of the
identified the co-factors are zinger motifs suggesting that these motifs have little impact on the
models. Moreover, we checked the clustering pattern of the sub-models after removing the
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zinger motifs and found that the sparsity of the cluster-membership matrix is highly correlated
with the original clustering pattern (spearman correlation = 0.96, p.value = 2.4 x 107"°). This
suggests that our overall findings are not affected by the zinger motifs.

Supplemental Note 5. It is possible that EMTs can falsely yield multiple sub-models, even in
absence of heterogeneity, and those sub-models can be falsely clustered. We ascertained
heterogeneity across sub-models for a TF from multiple cell types using a Duda-Hart test
(Duda et al. 2001) and assessed the clustering tendency of the sub-models in the d-
dimensional feature space using Hopkins statistics (Jain & Dubes 1988). The Duda-Hart test
verifies whether or not a set of data points should be split into two clusters from the estimate of
within-cluster sum of squares for all pairs of clusters versus overall sum of squares; the ratio of
the two sum of squares is quantified as the dh-ratio; the smaller the value, the greater the
clustering. On the other hand, the Hopkins statistic (H) compares the nearest neighbor
distribution for a random set of points to the same distribution for the clustered sub-models
(see Methods). A value close to 0.5 indicates the sub-models are random sets of points with no
clustering, a value close to 1 indicates that they form cohesive clusters. Supplemental Fig S6B-
C summarize the dh-ratio and Hopkins statistic respectively for 135 TF-cell pairs based on sub-
models of TF-cell type pair, and for each TF after gathering all sub-models under a TF. We
found that in all cases the dh-ratio is less than 1, and the Hopkins statistic > 0.5, consistent
with heterogeneity; all tests rejected homogeneity (p.value <0.001). Together, the Duda-Hart
test and Hopkins statistic strongly suggest that the sub-models are distinct and cluster-able,
i.e., TF binding rules are heterogeneous and partly shared across cell types.

Supplemental Note 6. Supplemental Fig S6H shows the distribution of enrichment scores for
the co-factors identified per TF. Except CTCF, the minimum of median enrichment score is
~1.2. If we choose a cutoff greater than 1.2, we might lose true positive co-factors for TFs like
NRF1, REST, TBP etc. On the other hand, a lower threshold will likely yield many false positive
co-factors for the other TFs.

Supplemental Note 7. The enriched GO terms (only biological processes at <=10% false
discovery rate) for the cell type-specific co-factors are listed in Supplemental Table 9. Here we
discuss the literature evidence supporting the TF functionality in different tissues related to the
enriched terms for some of the TFs studied. For other TF’s, based on our limited literature
survey, we did not find a compelling support for tissue-specific functions of the TF. The
following should be considered a selected sampling and an absence of support below should
not necessarily be considered as a contradiction.

1. BHLHE40 - BHLHEA40 is known to be associated with many biological processes including
circadian rhythm (Nakashima et al. 2008; Honma et al. 2002), chondrogenesis (Shen et al.
1997), cell growth, cell differentiation (Sun & Taneja 2000), immune response, and
apoptosis (Li et al. 2002). Our enrichment analysis of Hepg2 co-factors is consistent with
the link between Bhlhe40 expression and hepatic clock and metabolic functions of the liver
(Shen et al. 2014; Noshiro et al. 2009). Gm12878 co-factors are enriched for cell
differentiation, and signaling pathway which are related to inhibition of cell growth and
immune response. Enrichment of with BMP response in leukemia cell line is consistent with
stimulation of BMP response in certain kinds of leukemia (Crispino & Le Beau 2012).
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2. CEBPB - The enrichment analysis of Gm12878 co-factors supports the known roles of

CEBPB in the “regulation of genes involved in immune and inflammatory responses”
(Chinery et al. 1997), “binding to the IL-1 response element in the IL-6 gene, as well as to
regulatory regions of several acute-phase and cytokine genes” (Akira et al. 1990), high
induction of CEBPB in blood leukocytes to strengthen muscle (Harries et al. 2012) etc.
Association of CEBPB in AML (Acute myeloid leukemia) (Gery et al. 2005) is known, where
encouragingly coagulation is enriched among the co-factor functions. Studies have found
metastasis in Helas3 via ER stress of unfolded protein response (Brem et al. 2013; Muijcic
et al. 2013) and GO analysis shows that the Helas3 co-factors are enriched for ER and
unfolded protein response, strongly supporting CEBPB’s role. The function of liver and lung
depend of the circadian cycle (Sukumaran et al. 2011; Volimers et al. 2009).

EP300 - EP300 is acetyl-transferase gene involved in tumor suppression (Campbell et al.
2004; Gayther et al. 2000), cell proliferation specially in myeloproliferative disorders
(Steensma et al. 2006), enhance beta-catenin activity (Kimbrel & Kung 2009), chromatin
modelling (Campbell et al. 2004), alu-expression (Dieci et al. 2013), induction of epithelial
and mesenchymal proteins and cell-adhesion (Krubasik et al. 2006) etc. These are broadly
consistent with the enrichment analysis. Enrichment of cell signaling, cell communication in
epithelial cancer, limb bud formation in H1hesc, different type of immune and cellular
response in normal blood and liver cancer etc. Co-factors identified in Sknsh (brain cancer)
are enriched for cortex related hormone-secretion and stimulus, drug response etc. In
literature also, there are many evidence about involvement of EP300 with neuronal disease
and its potential as drug for neuronal disorders (Salisbury et al. 1998; Drake Jr. et al. 1993;
Kutcher et al. 1987; Kalayam & Alexopoulos 1999). Not surprisingly, EP300 co-factors in
liver are involved in response to alcohol and several other metabolic processes.
Interestingly, enrichment of several hormone-mediated processes is consistent with the
role of EP300 in hepatic encephalopathy (Kigler et al. 1992).

FOS - FOS processes many extracellular signals via NOTCH signaling (Henken et al. 2012),
or stimulating transcription of AP-1 responsive genes (Chiu et al. 1988). Therefore, it is not
surprising to see enrichment of various type cell-signaling terms among FOS co-factors.
FOS is also involved in other cellular events like differentiation and survival, hypoxia and
EMT (epithelial-mesenchymal-transition) (Tulchinsky 2000), metastatis growth in mammary
epithelial cells (Langer et al. 2006; Fialka et al. 1996). Furthermore, FOS is a predictor for
decreased survival rate in breast cancer (Bland et al. 1995) and is induced by VEGF which
plays an important role in the neovascularization in primary breast cancer (Hoeben et al.
2004). We found that breast-specific co-factors are enriched for organ regeneration.
GABPA - GABPA is known for maintaining homeostasis (Giguere 2008), mitochondrial
respiration (Yang et al. 2014), and cellular oxidative stress (Yueh & Tukey 2007; Zhang
2006; Nguyen et al. 2003). The enrichment analysis revealed homeostasis in Gm12878,
oxygen-containing compound in Hepg2, and DNA replication in H1hesc, which are
consistent with literature. In addition, ETS TF family pays role in the development of
vasculature in endothelial cell and its progenitor (Sato 2001) and we find similar evidence of
the role of GABPA, an Ets-family member, in K562.

JUN - AP-1 (JUN/FOS) complex modulates apoptosis in blood cells (Liebermann et al.
1998), controls cell proliferation, cell cycle progression (Behrens et al. 1999; Wisdom et al.
1999), and is involved in angiogenesis (Vleugel et al. 2006; Vasilevskaya & O’Dwyer 1999).
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10.

11.

This gene is the putative transforming gene of avian sarcoma virus. We find enrichment of
defense mechanism, immune response, homeostasis, estrogen response etc. in blood cells
(Gm12878, Huvec, K562). There is also some evidence of involvement of JUN in the
development of liver tumor (Eferl et al. 2003), and cervical cancer (Naumann et al. 1998) via
co-factors.

MAFK - MAFK regulates globin genes and plays significant role in coagulation system
during embryonic growth and placental development (Isermann & Nawroth 2006). In
addition to that, perturbation in MAFK function is highly associated with carcinogenesis,
especially leukemia (Kannan et al. 2012; Igarashi et al. 1995; Shyu et al. 2005; Hwang et al.
2013; Lu et al. 1994). Consistently, we found enrichment of mitotic cell cycle in stem cells,
meiosis in liver cancer cell, and response to various metal ion in K562 cell.

MAZ - MAZ regulates MMP genes, gamma fibrinozen, and serum amyliod A (Ray et al.
2003; Ray et al. 2004) which are consistent with the enriched terms among K562 co-
factors, blood coagulation, and hemostasis. Immune and viral response functions among
Gm12878 co-factors are supported by the study that MAZ plays functional role in CD4
expression (Duncan et al. 1995).

MYC - MYC is an oncogene, and in Huvec and Gm12878, we found enrichment of cell
cycle check points, DNA damage consistent with its role as oncogene. We found that MYC
co-factors of H1hesc are enriched for spinal cord development, glial cell fat regulation, limb
bud formation, consistent with its role in determining growth size (Zhong et al. 2006),
controlling glial cell in stem cells (Kim et al. 2008; Yokoyama et al. 2014), developing limb
link with skeletal size (Ota et al. 2007). Gonadotropin up-regulates myeloid protein
leukemia-1 (Chen et al. 2010) and is induced by MYC expression (Delidow et al. 1990). In
addition to that, MYC regulates intestinal intraepithelial lymphocytes and is involved in the
homeostasis of adult intestinal epithelium (Bettess et al. 2005; Jiang et al. 2010).
Consistently, K562 co-factors show enrichment of gonadotropin protein, intestinal epithelial
cell differentiation along with cell cycle and cell-cell signaling. MCF co-factors were found
to be enriched for viral transcription. It has been shown that knockdown of MYC inhibits
breast tumor growth by RNA interference which treats cancer by viral infection (Milner
2003; Wang et al. 2005) which is consistent with our findings that breats tumor (Mcf7) cell
co-factors are enriched with viral transcription and high RNA production by carbon
catabolite.

NRF1 - NRF1 activates the expression of key metabolic genes regulating cellular growth
and nuclear genes required for mitochondrial respiration (Li et al. 1999; Evans & Scarpulla
1989; Choi et al. 2004; Vercauteren et al. 2006). We found an enrichment of terms related
to mitochondrial respiration and biosynthetic process in most cell lines. Interestingly, the
enrichment is evident even though cell specific co-factors are used. Interestingly, in K562
NRF1 shows enrichment of a diverse set of terms, several of which are consistent with
literature, e.g. association with neurite outgrowth in rodent (Chang et al. 2005), oxidative
stress response (Biswas & Chan 2010), mitochondrial biogenesis (Carew et al. 2004) etc.
REST - REST acts as a repressor neuronal genes in non-neuronal cell types, and has
activation role in neuronal functions (Kuwabara et al. 2004; Huang et al. 1999; Naruse et al.
1999). In the enrichment analysis of REST co-factors, gliblastoma cell line shows cognition,
memory, pattern recognition etc. Furthermore, Pancreas cell line shows enrichment for cell
differentiation which is consistent with the role of NRSF/REST in pancreas via induction of
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Pax4 gene (Kemp et al. 2003). We see extremely high enrichment (>93) of intestinal
epithelial cell differentiation among K562 co-factors. We did not find any direct support for
this, however, there is evidence that lung and colon epithelial cells show abnormal
expression of NRSF in respective cancers (Su et al. 2006).

RFX5 - A lack of MHC-II expression results in a severe immunodeficiency syndrome called
MHC-II deficiency, or the bare lymphocyte syndrome (Villard et al. 2000). Helas3 co-factors
are enriched for immune response related terms. RFX5 regulates collagen gene expression
(Xu et al. 2003), which in turn modulate angiogenesis (Twardowski et al. 2007).
Consistently, K562 co-factors are enriched with positive regulation of angiogenesis. RFX5
is found to be up-regulated in primary lung budding and mesenchymal cells of branchial
arches and stomach in sub-epithelial layer of mouse (Millien et al. 2008). Consistently,
Hepg2 co-factors are enriched with epithelial tube branching involved in lung
morphogenesis. RFX5 complex interacts with the collagen in human fibroblasts (Sengupta
et al. 2002) and consistently, regulation of fibroblast proliferation is enriched in Gm12878.
USF1 - Upstream regulatory factor 1 is known for regulating multiple genes of glucose and
lipid metabolism (Naukkarinen et al. 2005; Pajukanta et al. 2004). In almost all cell lines, the
USF1 co-factors are enriched with hormone mediated signaling pathway; especially
epithelium cancer cell line (A549) shows enrichment of lipid metabolism related terms. In
addition, ovulation, reproductive process, female pregnancy are significantly enriched in
A549 co-factors which is consistent with suppression of Follicle-stimulating hormone
receptor activity by USF1 (Putowski et al. 2004).

YY1 - YY1 is known as ubiquitous TF. Still the co-factor enrichment analysis shows some
of its cell-specific roles. For example, enrichment of epithelial cell maturation in prostate
gland development in Gm12878 co-factors (Kashyap & Bonavida 2014), various
biosynthetic process in K562 and Hct116 (Bennett et al. 1999; Villagra et al. 2007) are
consistent with literature. Other ontology associated with YY1 co-factors are cell cycle/DNA
damage (Rizkallah & Hurt 2009; Affar et al. 2006). Nt2d1 and Hepg?2 co-factors are enriched
with cell cycles and DNA metabolic process respectively.

ZNF143 - ZNF143 plays role as one of the key components of three-dimensional chromatin
structure (Bailey et al. 2015; Heidari et al. 2014), regulates dna-replication and cell-cycle-
associated genes (Lu et al. 2012; Izumi et al. 2010). Among the co-factors, we found
enrichment of cell-adhesion and cell-proliferation in 3 out of 4 cells.

Supplemental Note 8. We have detailed lists of cell type-specific co-factors for all TFs that we
can provide as supplementary online material, and which can serve as a resource for others.
Here we discuss a few cases which demonstrate that the co-factors revealed by TRISECT are
supported by previous experimental research. Recall that P300 is not a typical TF with a DNA
binding motif. It nevertheless is expected to interact with other DNA-binding co-factors to
achieve specificity. TRISECT revealed TEAD as one of the most influential co-factors of P300 in
multiple cell types. Indeed, TEAD is known to form a complex with P300 providing locus-
specificity to P300 (Fuijii et al. 2012). Likewise, CEBP is known to recruit P300 (Schwartz et al.
2003) and ATF interacts with P300’s HAT domain (Karanam et al. 2007), and both were
detected as P300’s ubiquitous co-factors. NR2F2 (also known as COUP-TF2) has a liver-
specific function (Zhang et al. 2002) and is known to interact with P300, although this was
shown in a different context (Bailey et al. 1998). It is this interesting that our method detects
NR2F2 as Hepg2-specific co-factor of P300. Likewise, members of GATA family are core
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regulators in liver. We found that in many (but not all) cell lines, and notably in HepG2,
members of GATA family are co-factors of P300, consistent with (Dai & Markham 2001). Serum
response factor (SRF) is a ubiquitous protein and with a specific function in liver (Sun et al.
2009). FOXA TFs are critical for liver development and function (Lee et al. 2005). Our analysis
reveals FOXA TFs as HepG2-specific co-factors of SRF. On the other hand, we found ELK4 to
be broadly used co-factor of SRF, consistent with their broad expression and known physical
interaction with SRF (Shore & Sharrocks 1994). As yet another example, PAX1 and SOX4 are
key TFs in embryogenesis, and both are revealed as co-factors of the core promoter factor
Tata Binding Protein (TBP) specifically in hESC.
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