

## Supplementary Materials

Andreas J. Gruber<sup>1</sup>, Ralf Schmidt<sup>1</sup>, Andreas R. Gruber<sup>1</sup>, Georges Martin<sup>1</sup>, Souvik Ghosh<sup>1</sup>, Manuel Belmadani<sup>1,2</sup>, Walter Keller<sup>1</sup> & Mihaela Zavolan<sup>1\*</sup>

**1 Biozentrum, University of Basel, Klingelberstrasse 50-70, CH-4056 Basel, Switzerland**

**2 Current address: University of British Columbia, 177 Michael Smith Laboratories, 2185 East Mall Vancouver BC V6T 1Z4**

\* To whom correspondence should be addressed (mihaela.zavolan@unibas.ch)

### 1 3' end sequencing protocols

#### 1.1 2P-Seq

In the 2P-Seq protocol, reverse transcription is accomplished by an anchored oligo(dT) primer. The products of reverse transcription and PCR amplification are expected to have 20 As preceding the 3' adapter. Libraries are sequenced in anti-sense direction with a custom primer. Reads should be reverse complemented [1, 2].

#### 1.2 3'-Seq

In the 3'-Seq protocol of Mayr and colleagues, reverse transcription is accomplished by an anchored oligo(dT) primer. The products of reverse transcription and PCR amplification are expected to have 17 As preceding the 3' adapter. Libraries are sequenced in sense direction requiring removal of the 3' adapter sequence and preceding As to pinpoint the 3' end [3].

#### 1.3 3P-Seq

In the 3P-seq protocol, a biotinylated adapter is ligated to the end of the poly(A) tail via splint-ligation. After partial digestion, poly(A) regions are captured with streptavidin and reverse transcription is carried out only with dTTP. Most of the poly(A) tail is then removed through RNase H digestion. Adapter ligation, reverse transcription and PCR amplification follow before the library is sequenced in anti-sense direction. Consequently, pinpointing the 3' end requires the reads to be reverse complemented [4, 5].

#### 1.4 3'READS

3' region extraction and deep sequencing (3'READS) is a protocol that utilizes a special primer (45 thymidines followed by 5 uridines) to capture poly(A) containing RNA fragments. RNase H digestion releases transcripts 3' ends from the most of the poly(A) tail. Subsequently, the fragments are subjected to adapter ligation, reverse transcription, and PCR amplification before they are sequenced in anti-sense direction. The cleavage site is inferred as the first non-A of the 3' end of the read's reverse complement [6, 7].

#### 1.5 A-seq

In the A-seq protocol, reverse transcription is accomplished by an anchored oligo-dT primer. The products of reverse transcription and PCR amplification are expected to have six As preceding the 3' adapter. Libraries are sequenced in sense direction requiring removal of the 3' adapter sequence and preceding As to pinpoint the 3' end [8].

## 1.6 A-seq (version 2)

The second version of the A-seq protocol has the following changes: (1) The steps of the protocol are conducted such that the generation of adapter dimers is minimized. (2) Libraries are sequenced in anti-sense direction and the mRNA cleavage site is inferred as the first nucleotide after a stretch of 4 random nucleotides and 3 Ts [9].

## 1.7 DRS

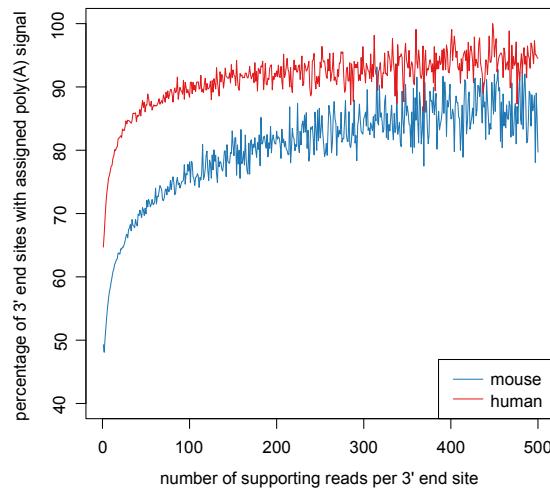
In the direct RNA sequencing (DRS) protocol, 3' ends of transcripts are hybridized to poly(dT)-coated flow cell surfaces where antisense strand synthesis is initiated. This has the advantage that no prior reverse transcription or cDNA amplification is needed [10–13].

## 1.8 PAS-seq

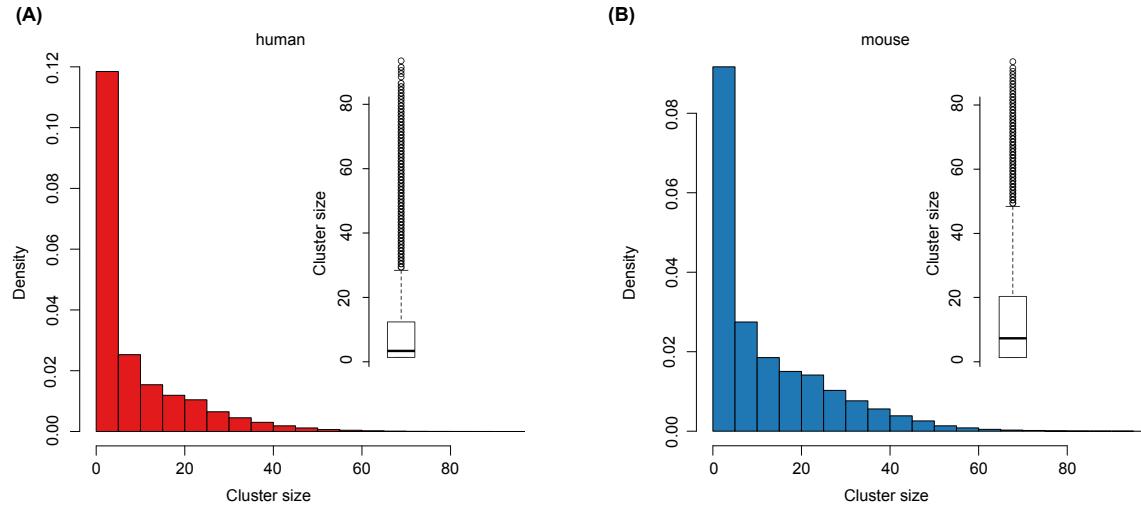
In the PAS-Seq protocol, reverse transcription is accomplished with an anchored oligo-dT primer. The products of reverse transcription and PCR amplification are expected to have 20 As preceding the 3' adapter. Libraries are sequenced in anti-sense direction with a custom primer requiring the reverse complement of the reads to pinpoint the 3' end [14].

## 1.9 PolyA-seq

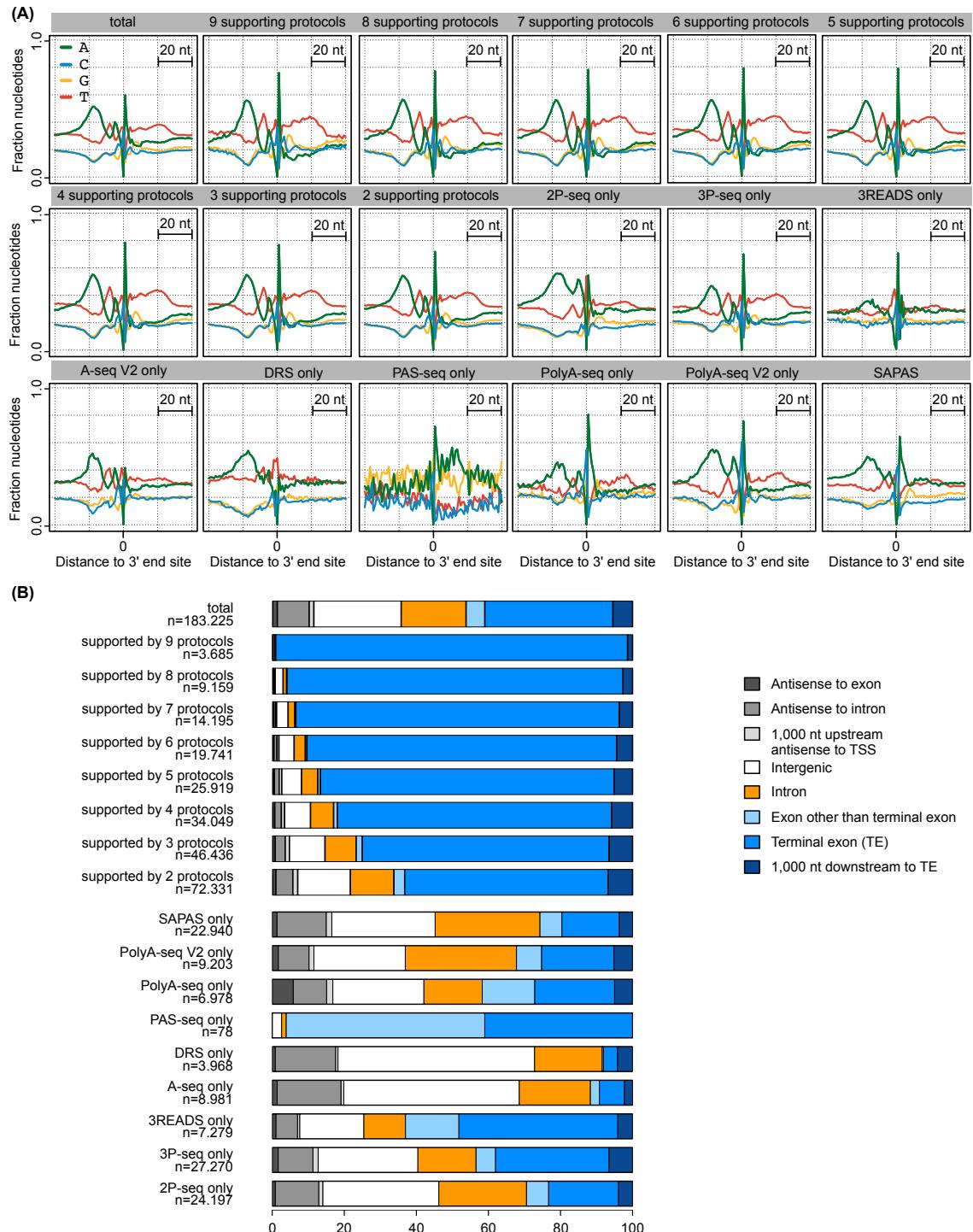
Library preparation for the PolyA-seq protocol includes the following steps: (1) Reverse transcription, primed with an oligo-dT sequence, (2) second strand synthesis with random hexamers linked to a second PCR primer, and (3) PCR amplification. Sequencing is accomplished in anti-sense orientation with a primer ending in 10 Ts and the resulting reads need to be reverse complemented to pinpoint the pre-mRNA cleavage site [15, 16].


## 1.10 SAPAS

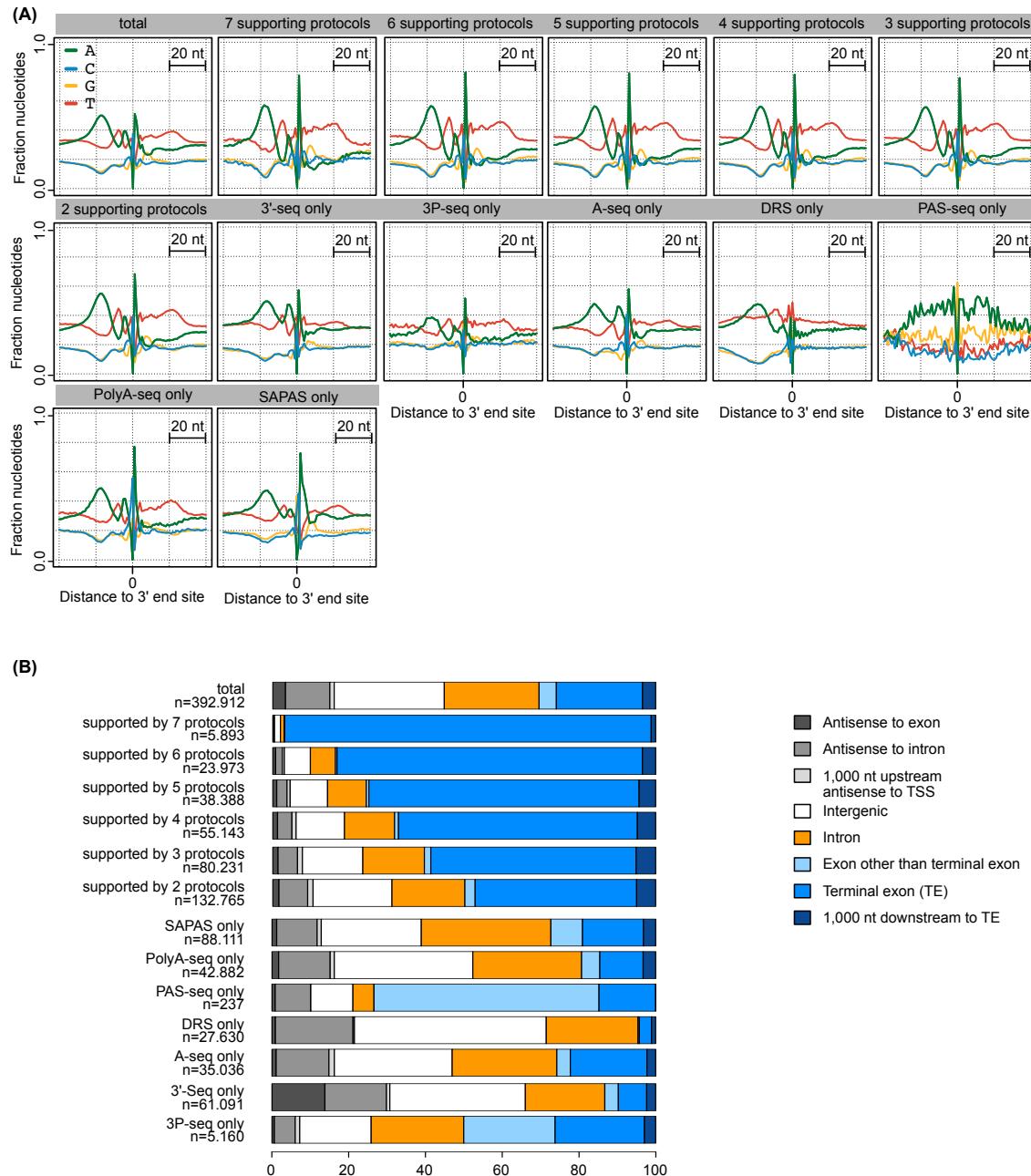
In the SAPAS protocol, reverse transcription is accomplished by an anchored oligo-dT primer. The products of reverse transcription and PCR amplification are expected to have the sequence AAAAAGAAAAAGAAAA preceding the 3' adapter. Libraries are sequenced in anti-sense direction with a regular primer requiring to trim 20 nucleotides from the 5' end of reads and to reverse complement reads to pinpoint the 3' end [17, 18].


## 2 Supplementary Figures

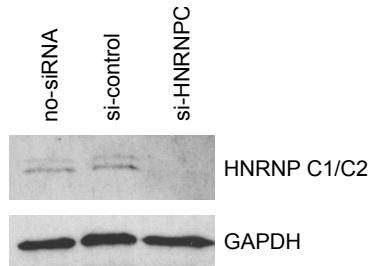



**Supplementary Figure 1.** Frequency profiles of the poly(A) signals that have been identified only in human (red) or mouse (blue).

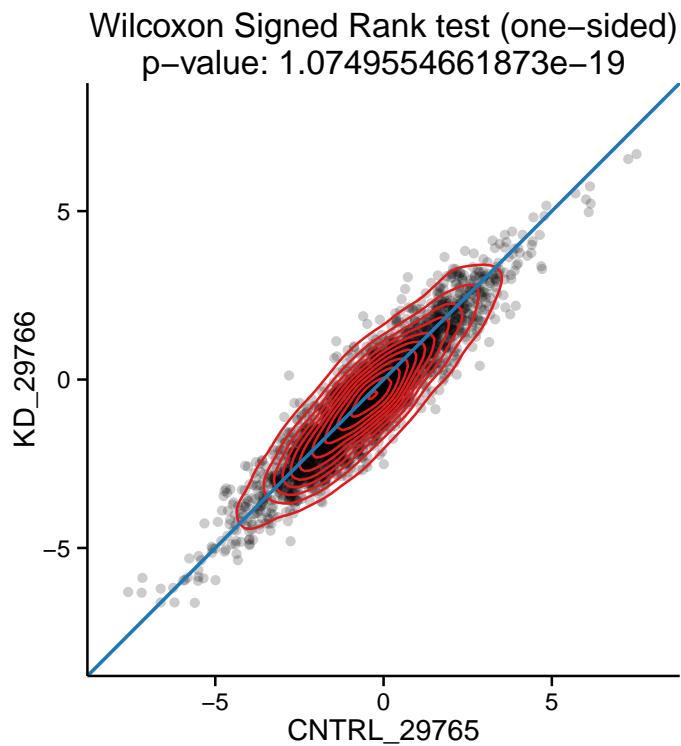



**Supplementary Figure 2.** Fraction of the putative 3' end sites with an assigned poly(A) signal in their upstream region (60 to 10 nucleotides upstream) as a function of the number of supporting reads per site (summed reads over all considered samples).

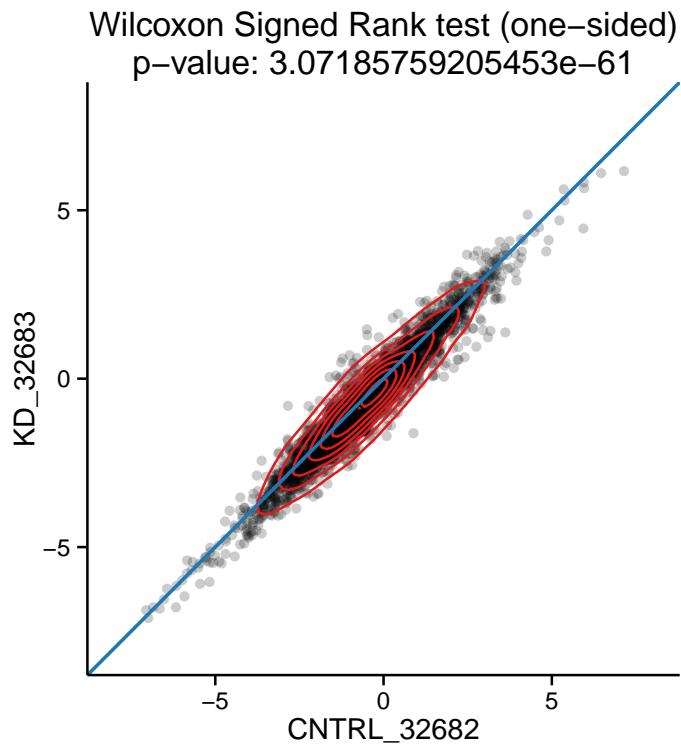



**Supplementary Figure 3.** Distribution of cluster sizes **(A)** human catalog **(B)** mouse catalog. The large majority of clusters has a short span (less than 20 nt) in both human and mouse.

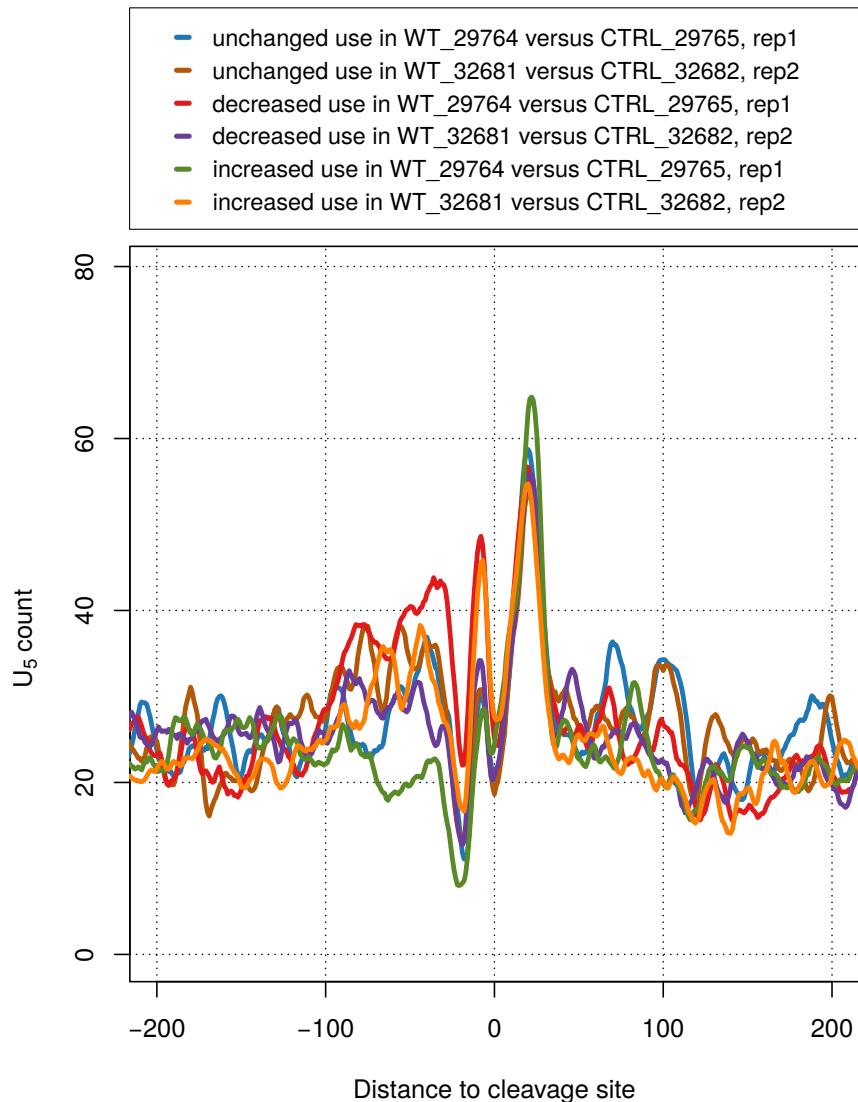



**Supplementary Figure 4.** Characteristics of mouse poly(A) clusters. **(A)** Nucleotide composition around cleavage sites supported by the indicated number of protocols or the name of the protocol for clusters that had a single protocol support. **(B)** Annotation of clusters supported by various types of protocols (n - number of poly(A) clusters in the indicated category).

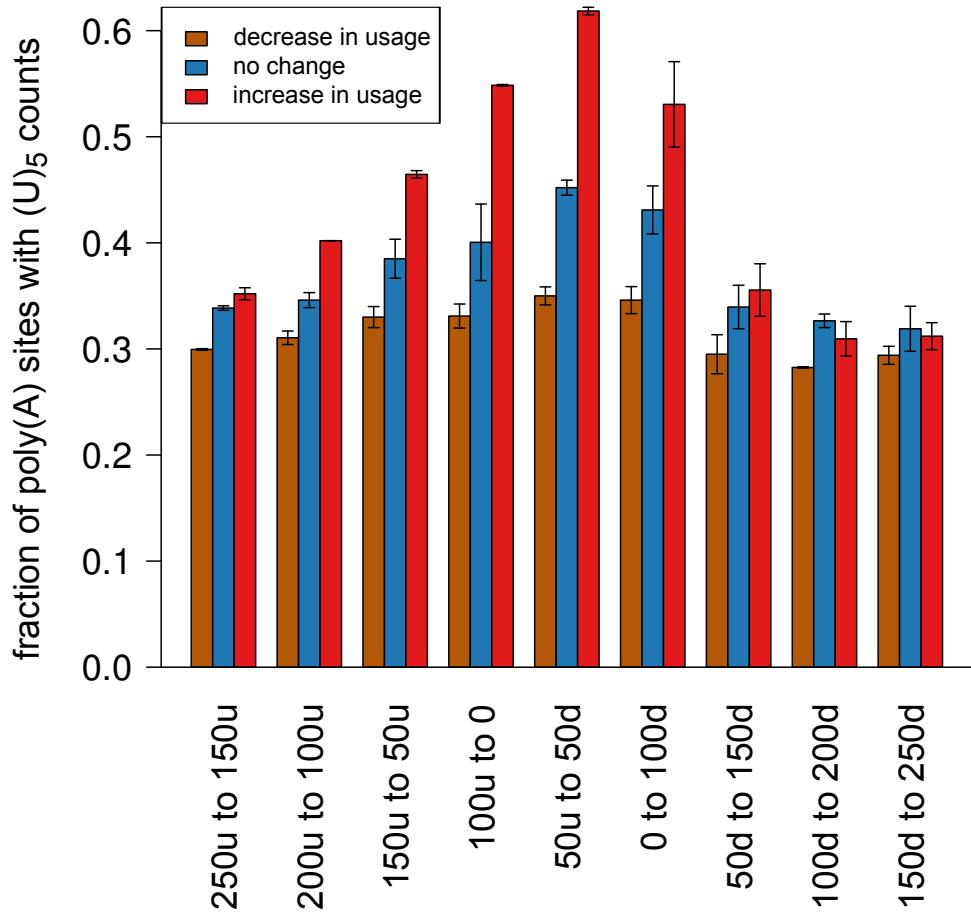



**Supplementary Figure 5.** Characteristics of human poly(A) clusters. **(A)** Nucleotide composition around cleavage sites supported by the indicated number of protocols or the name of the protocol for clusters that had a single protocol support. **(B)** Annotation of clusters supported by various types of protocols (n - number of poly(A) clusters in the indicated category).

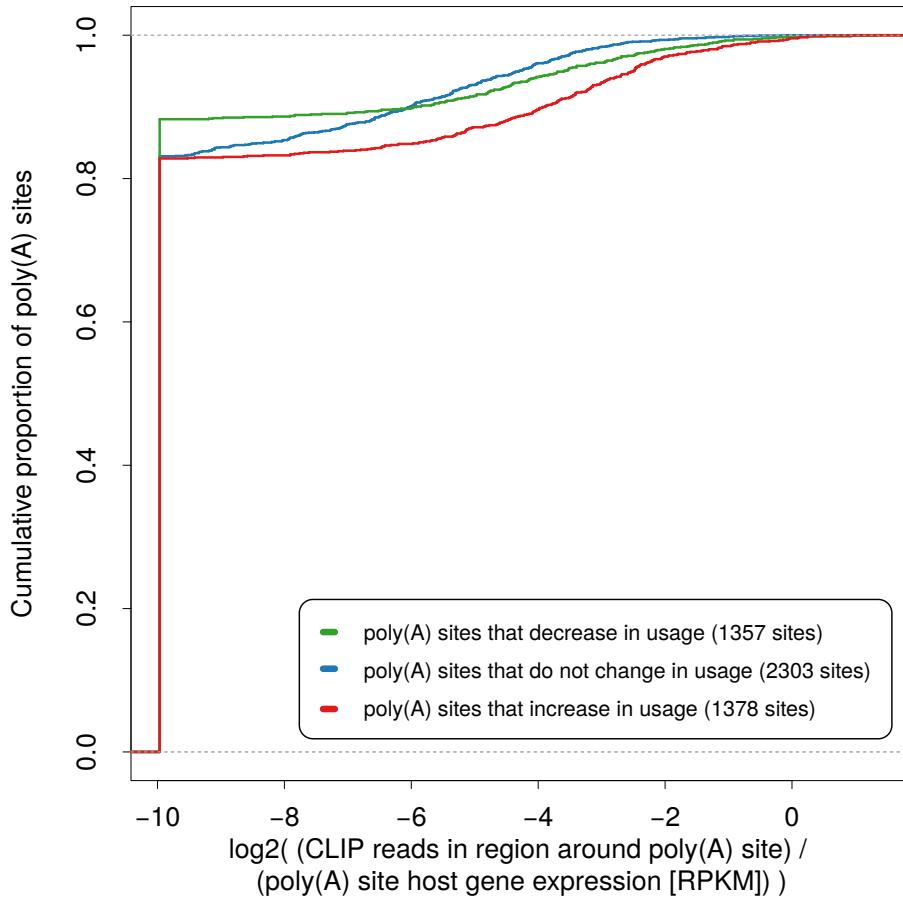



**Supplementary Figure 6.** Western blot showing the expression levels of HNRNP C1/C2 and GAPDH in cells that were either untreated, or treated with either a control siRNA or with si-HNRNPC (50 picomoles siRNA per well of a 6-well plate).

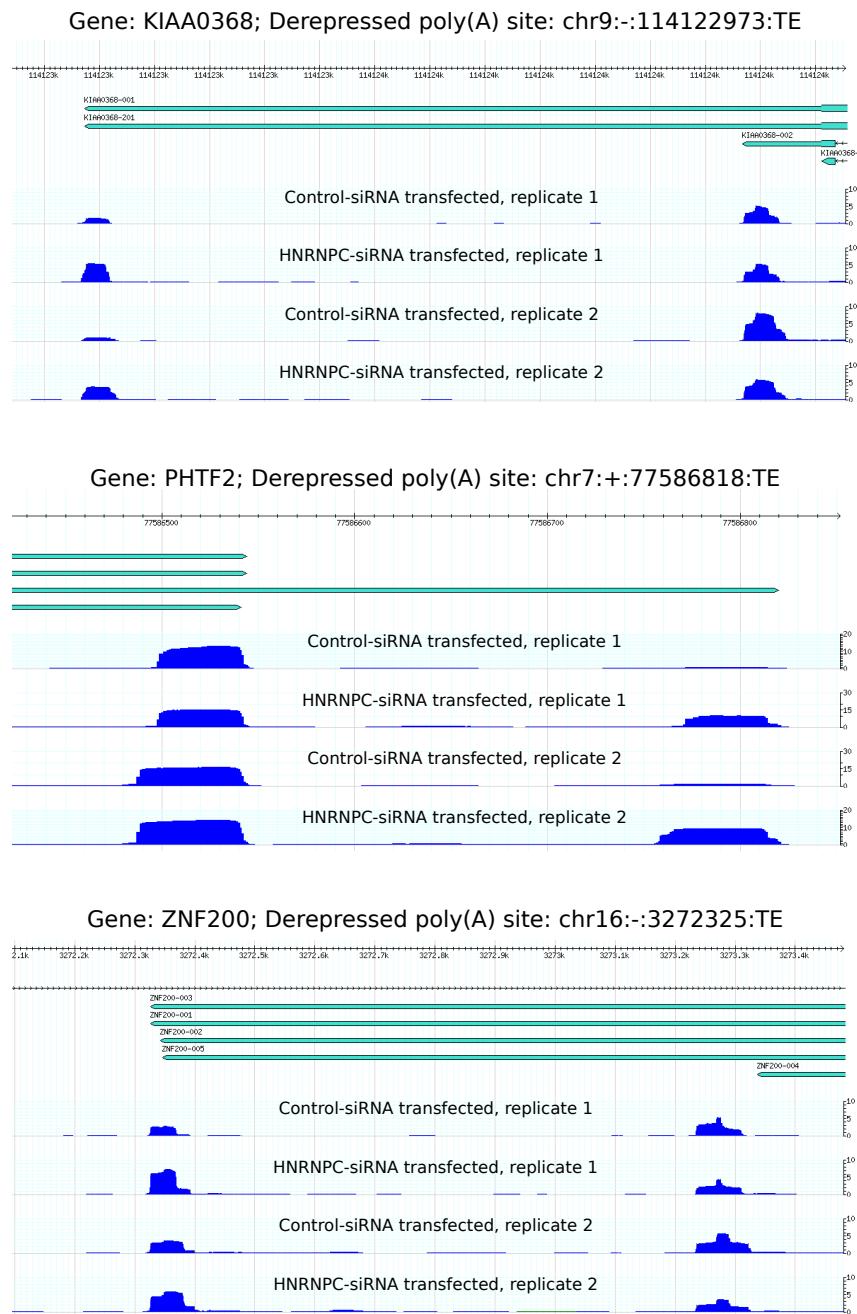



**Supplementary Figure 7.** Contour plot of the proximal-to-distal poly(A) site usage ratios in si-HNRNPC transfected versus si-Control transfected HEK 293 cells in replicate 1. For each plot only exons having exactly two expressed poly(A) sites were considered (2607 exons in total). The proximal-to-distal ratio is significantly higher in cells treated with the control siRNA indicating that on average 3'UTRs tend to be elongated, rather than shortened, upon knockdown of hnRNP C.

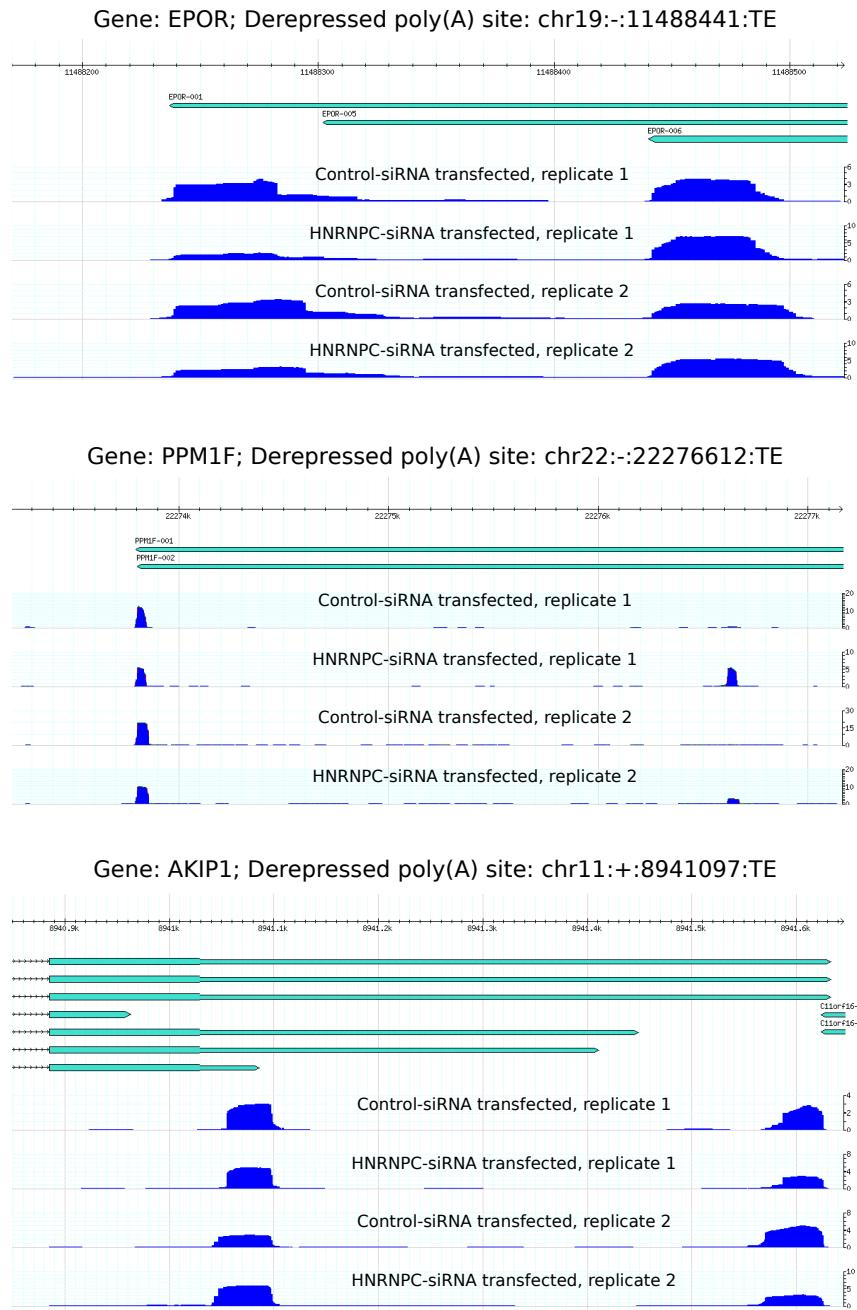



**Supplementary Figure 8.** Contour plot of the proximal-to-distal poly(A) site usage ratios in si-HNRNPC transfected versus si-Control transfected HEK 293 cells in replicate 2. For each plot only exons having exactly two expressed poly(A) sites were considered (2607 exons in total). The proximal-to-distal ratio is significantly higher in cells treated with the control siRNA indicating that on average 3'UTRs tend to be elongated, rather than shortened, upon knockdown of hnRNP C.



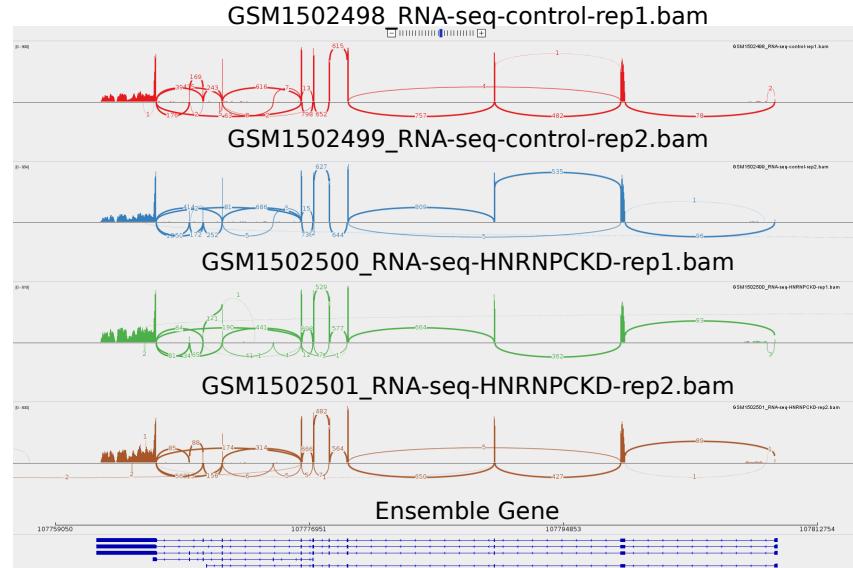

**Supplementary Figure 9.** Smoothened (+/-5 nt) density of non-overlapping (U)<sub>5</sub> tracts in the vicinity of sites with a consistent behavior (increased, unchanged, decreased use) in untransfected (wild type, WT) compared to the si-Control transfected (CTRL) HEK 293 cells.



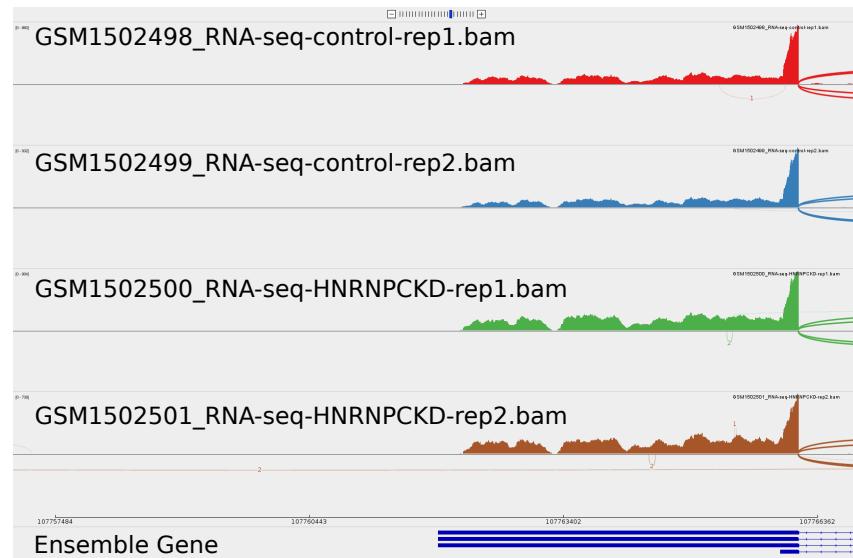

**Supplementary Figure 10.** Relationship between the (U)<sub>5</sub> content around poly(A) sites and their behavior upon HNRNPC knock-down. 1000 poly(A) sites that increased most, decreased most or changed least (and reproducibly, between the two replicate experiments) in usage upon HNRNPC knock-down were extracted, and the fractions of each of these types of sites that had at least one occurrence of the (U)<sub>5</sub> motif at the indicated distance from the poly(A) site were calculated. 'u' and 'd' indicate upstream and downstream of poly(A) sites and the numbers indicate the boundaries (in nt) of the windows relative to poly(A) sites.



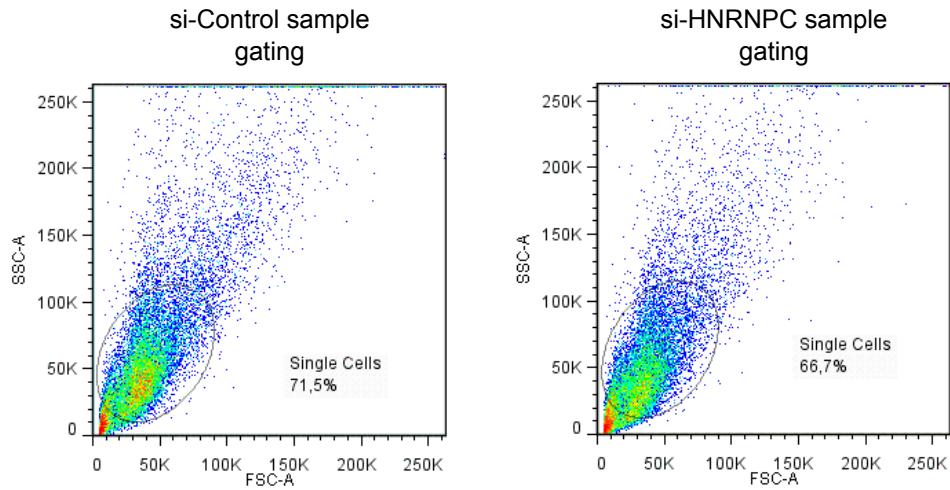
**Supplementary Figure 11.** Number of HNRNPC CLIP reads that intersect with a region of +/-50 nucleotides around poly(A) sites belonging to different categories (consistently decreased/unchanged/increased poly(A) site usage upon HNRNPC knock-down). The number of HNRNPC CLIP reads was normalized by the expression ([RPKM]) of each poly(A) site's host gene. Poly(A) sites that increase in usage have a significantly higher CLIP read support compared to poly(A) sites that do not change in usage upon HNRNPC knock-down (p-value < 0.0007, two-sided Kolmogorov-Smirnov test).



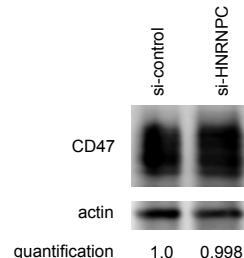

**Supplementary Figure 12.** Browser shots of A-Seq read densities within 3' UTRs with **distal** poly(A) sites that are derepressed upon knock-down of HNRNPC. The y-axis shows library size normalized read counts per nucleotide.



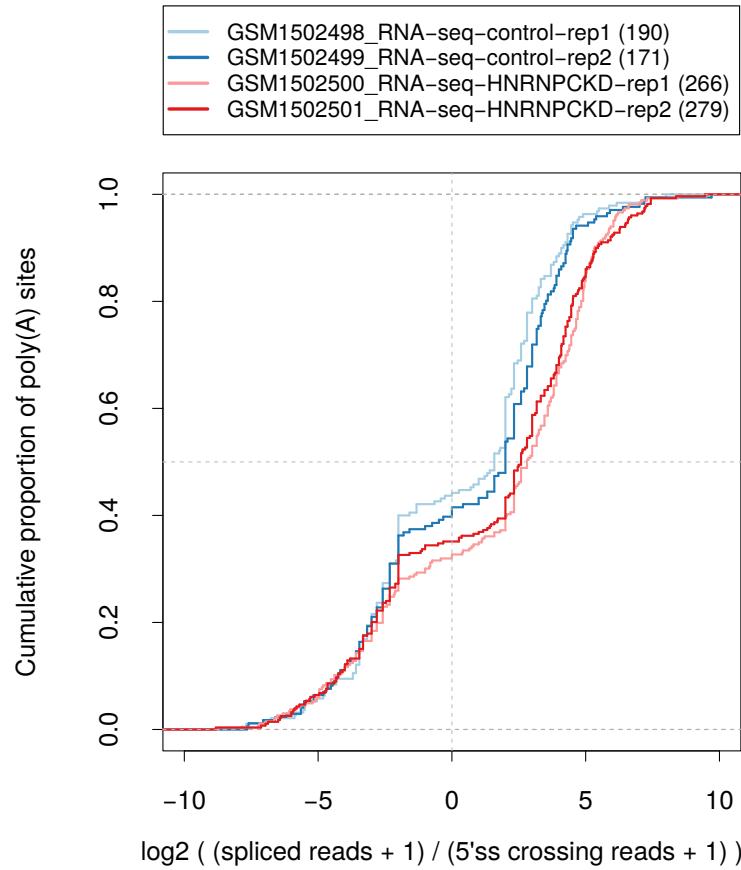

**Supplementary Figure 13.** Browser shots of A-Seq read densities within 3' UTRs with **proximal poly(A)** sites that are derepressed upon knock-down of HNRNPC. The y-axis shows library size normalized read counts per nucleotide.


(A) Sashimi plots of the CD47 locus as derived from mRNA-Seq data region: chr3:107756068-107815808 (human genome version hg19)

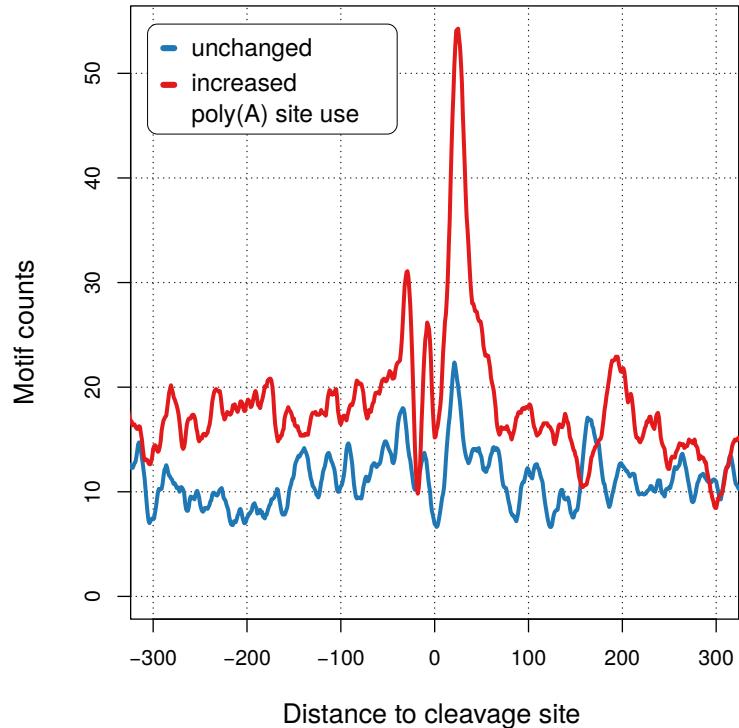



(B) Sashimi plots of the CD47 3'UTR locus as derived from mRNA-Seq data region: chr3:107756992-107766867 (human genome version hg19)

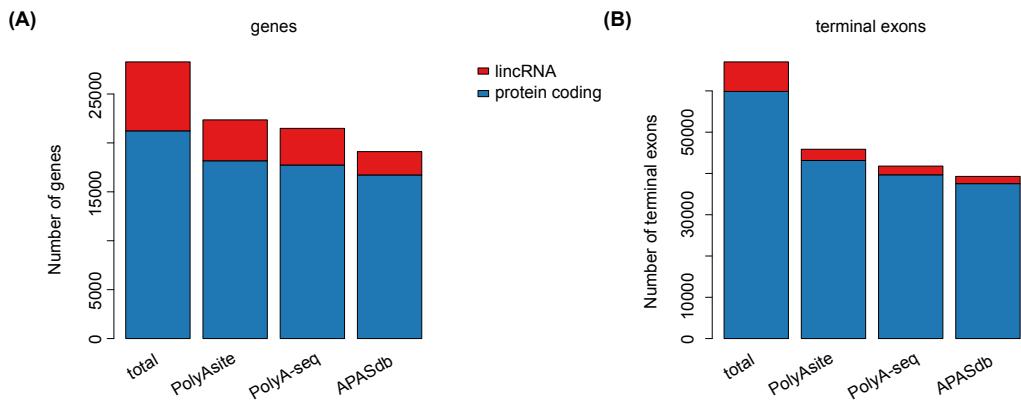



**Supplementary Figure 14.** "Sashimi" plots constructed from previously published (see [19]) mRNA-Seq data (2 replicates of 2 experiments) obtained from HEK 293 cells that have been transfected with si-Control or si-HNRNPK, respectively. After adaptor removal, paired-end reads were mapped applying the STAR aligner with default settings [20]. The mappings were visualized (Sashimi plots) using the Integrative Genomics Viewer (IGV) software [21].

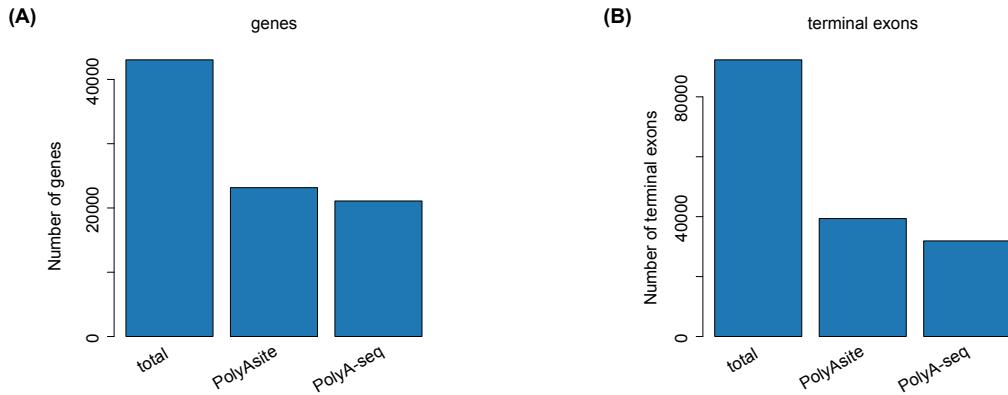



**Supplementary Figure 15.** For indirect immunophenotyping of membrane CD47 levels in HEK 293 cells that were either treated with a control siRNA (left panel) or with si-HNRNPC (right panel) a minimum of 10000 gated events was considered. The gate is indicated.

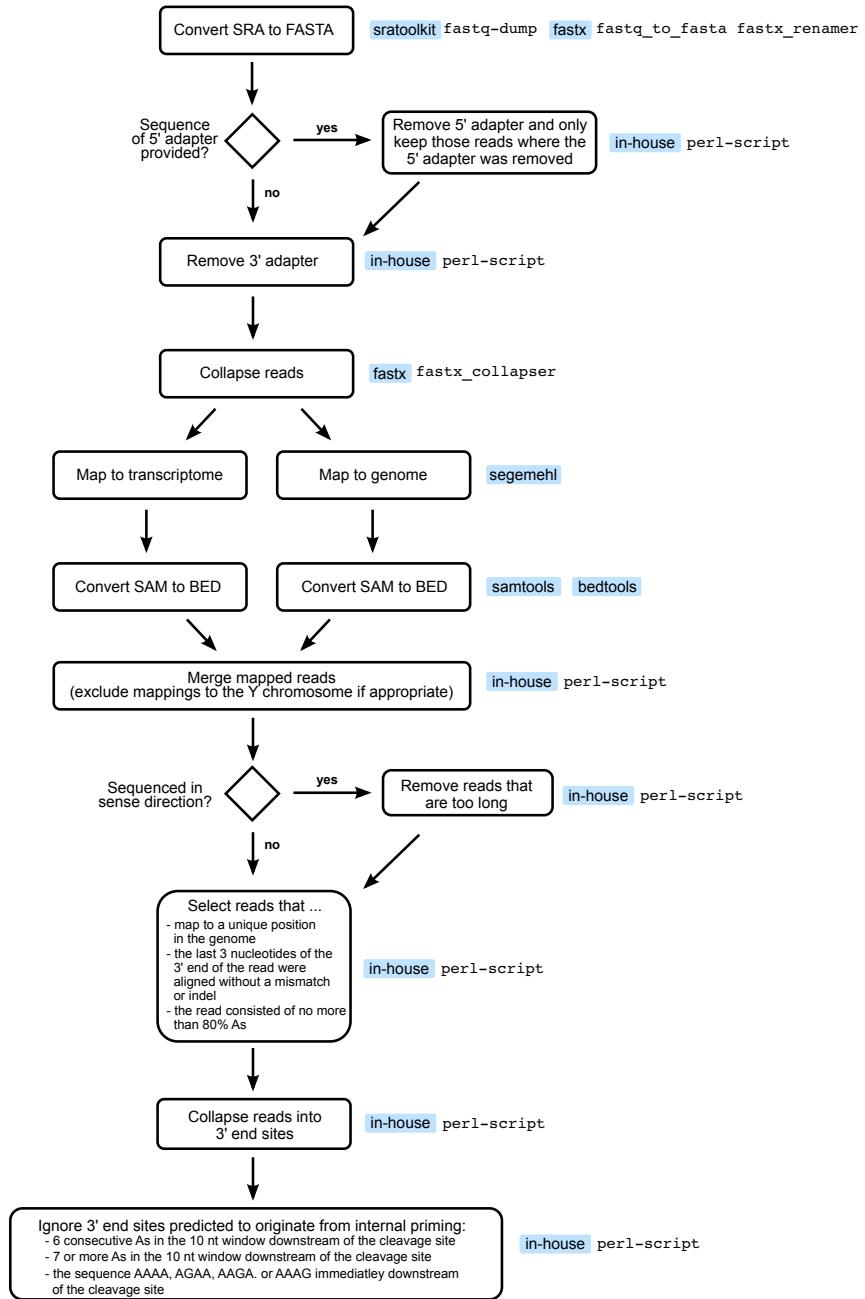



**Supplementary Figure 16.** Western blots of CD47 and actin proteins in cells treated with either a control siRNA or with si-HNRNPC for 72 hrs. Signals were quantified with the ImageJ software and relative CD47 levels are reported with respect to actin and control siRNA = 1.

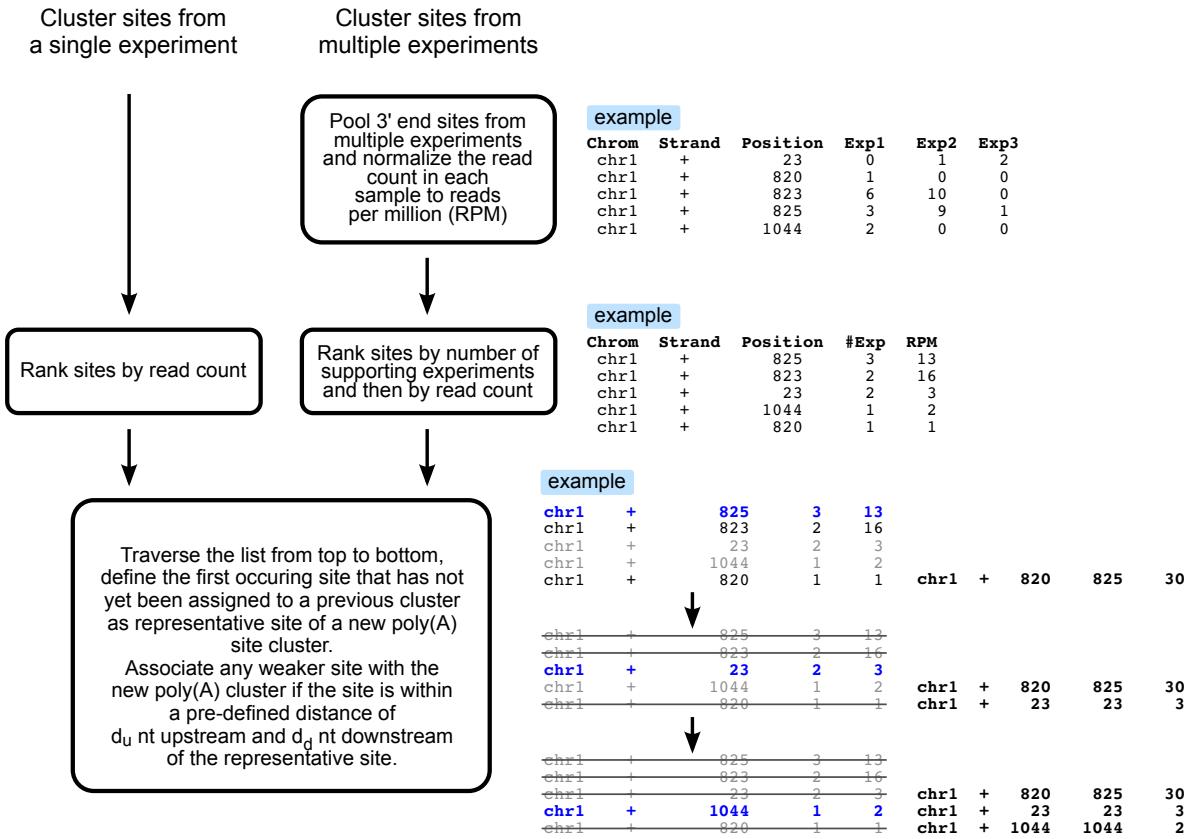



**Supplementary Figure 17.** Cumulative distribution functions of the log2 ratios of spliced reads to reads that map beyond the 5' splice site (5'ss) of the closest, upstream located exon of each consistently derepressed, intronic poly(A) site. Intronic poly(A) sites are associated predominantly with the emergence of new exons relative to the extension of internal exons, in both si-Control and si-HNRNPCKD transfected cells. The HNRNPCKD knock-down causes a further significant shift towards novel terminal exons created by splicing rather than by internal exon extension (replicate 1 p-value: 4.0e-06, replicate 2 p-value: 8.6e-03, two-sided Mann-Whitney U test). The numbers shown in the legend (written in brackets) indicate the number of intronic poly(A) sites that were used to construct this plot (for more details, see the Methods section).

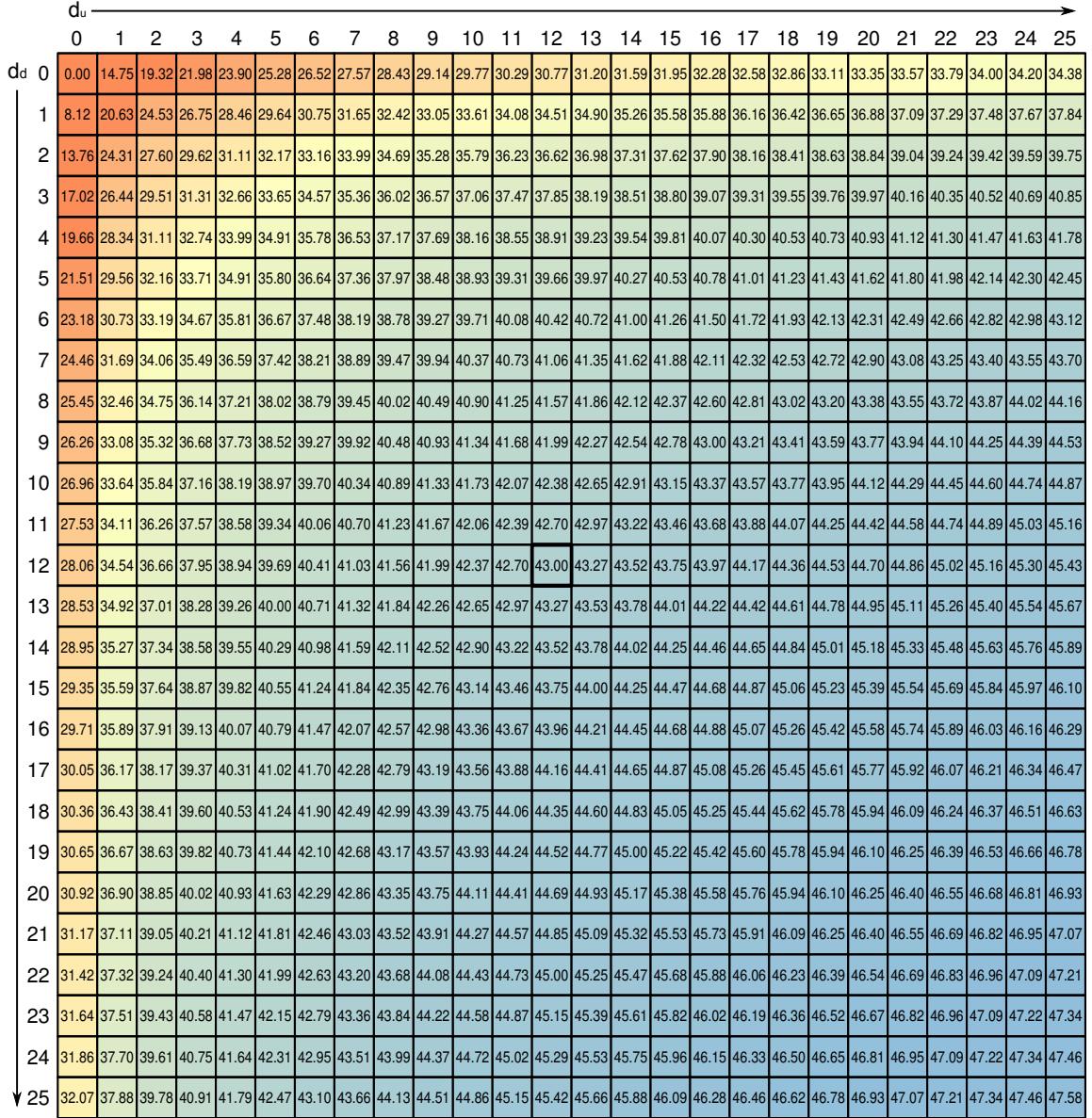



**Supplementary Figure 18.** Smoothened (+/-5 nt) density of non-overlapping (U)<sub>5</sub> tracts in the vicinity of intronic poly(A) sites with a consistent behavior (increased or unchanged use) in the two HNRNPC knock-down A-seq2 experiments.

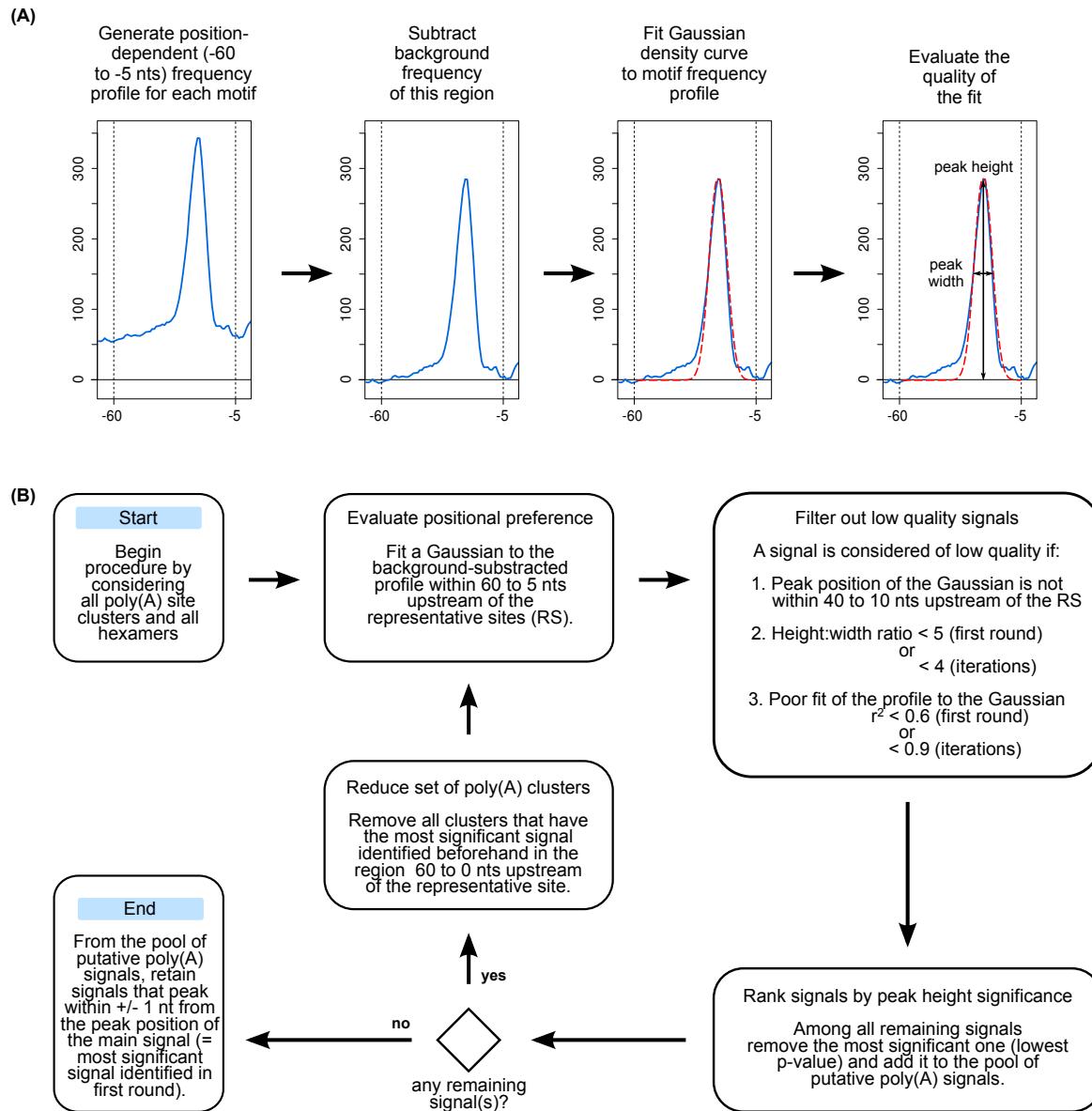



**Supplementary Figure 19.** Number of annotated features (based on the UCSC Basic Table of the GENCODE v19 human (hg19) annotation) that are covered by sites from different atlases. **(A)** Coverage of genes by sites from PolyAsite (present manuscript), PolyA-seq [15] and APASdb [18]. A gene was considered covered if the genomic position of at least one poly(A) site was within the genomic range of the gene. **(B)** Same as **(A)** but for the terminal exons from the annotation.

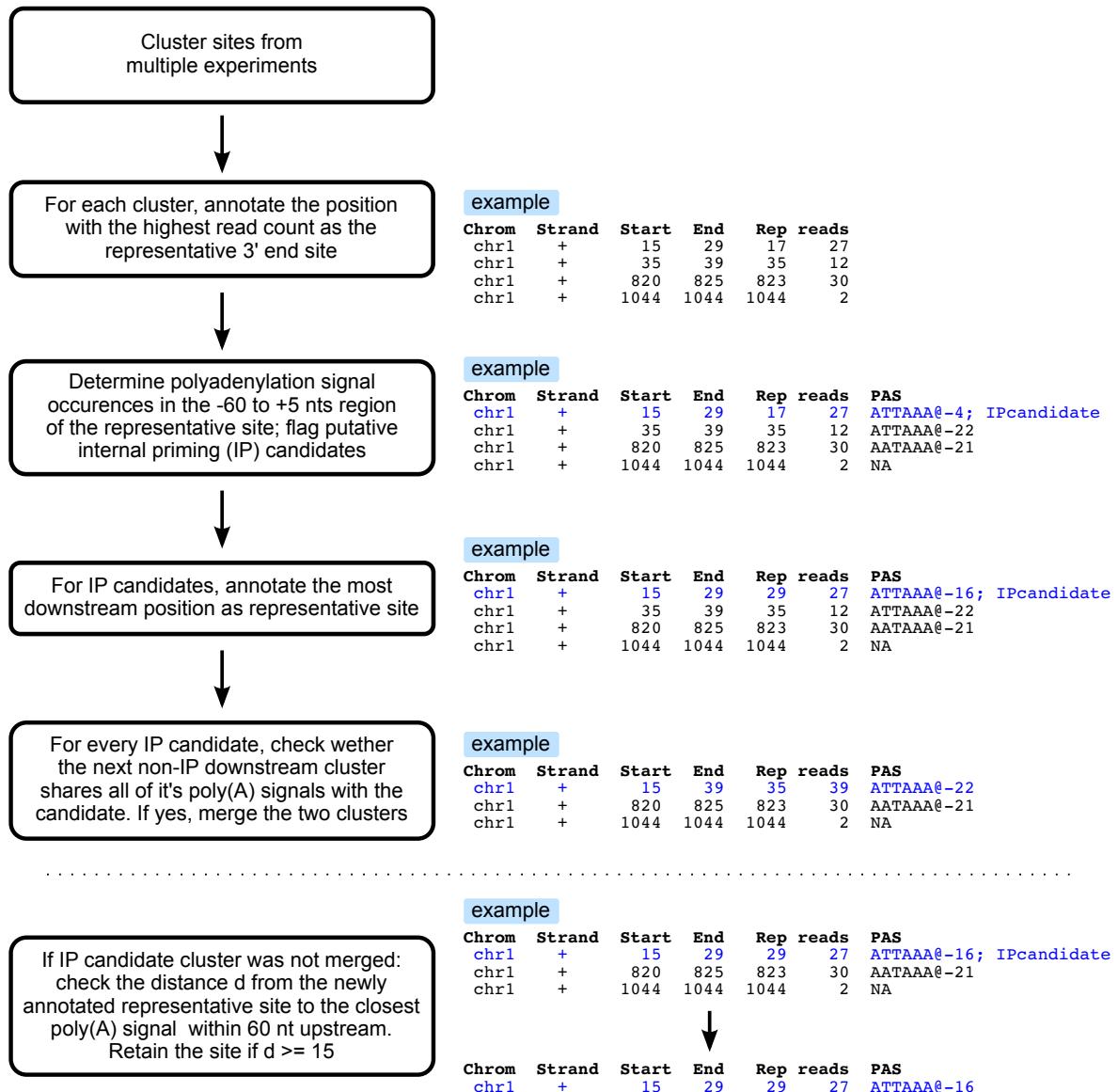



**Supplementary Figure 20.** Number of annotated features (based on the ENSEMBL mouse (mm10) annotation from UCSC) that are covered by sites from different atlases. **(A)** Coverage of genes by sites from PolyAsite and PolyA-seq [15]. A gene was considered to be covered if the genomic position of at least one poly(A) site was within the genomic range of the gene. **(B)** Same as **(A)** but for the terminal exons from the annotation.

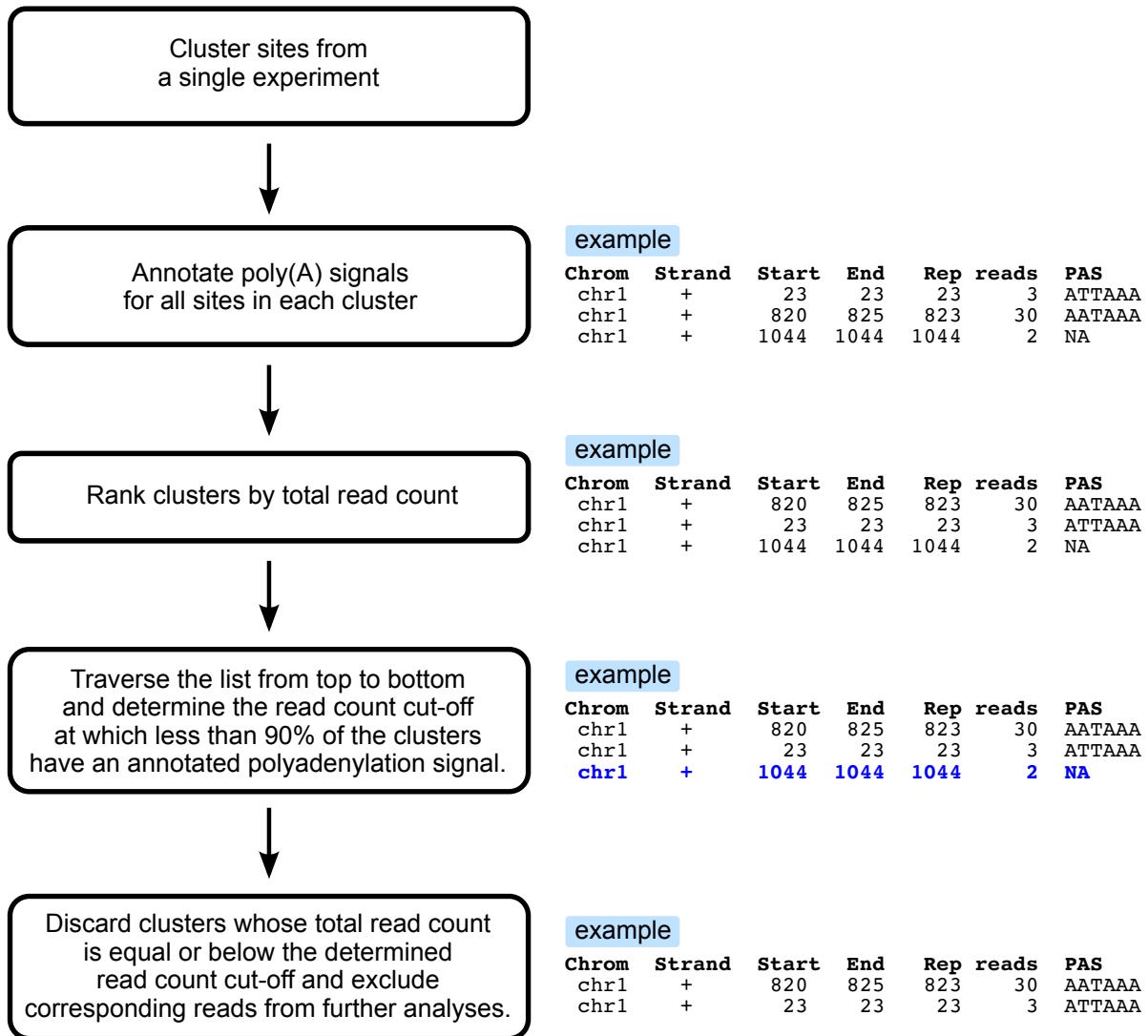



**Supplementary Figure 21.** Outline of the computational pipeline for processing 3' end sequencing data.

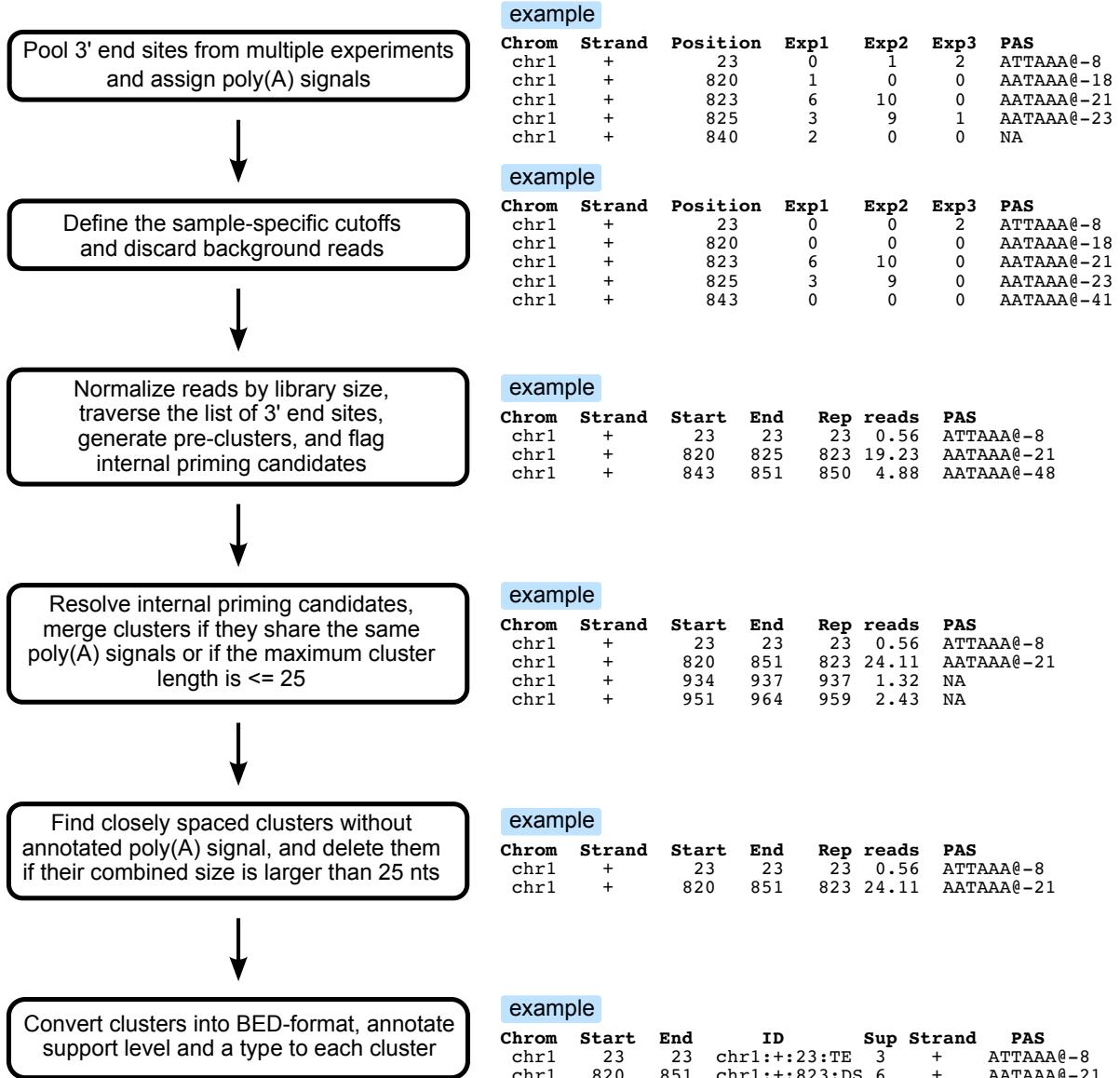



**Supplementary Figure 22.** Outline of the computational pipeline for clustering closely spaced 3' end sites into 3' end processing regions. A toy example data set is used to illustrate the procedure.




**Supplementary Figure 23.** Evaluation of the distance parameters for clustering closely spaced, putative 3' end processing sites.  $d_u$  and  $d_d$  refer to the distance upstream and downstream of the representative site, respectively. Values in the plot denote the percentage of 3' end processing sites that were part of a multi-site cluster when a particular set of distance parameters was applied to cluster individual sites. While initially there is a steep increase in the proportion of reads in clusters, a plateau is soon reached. Distances  $d_u = 12$  and  $d_d = 12$  were chosen in this study.




**Supplementary Figure 24.** Outline of the computational procedure that we used to identify poly(A) signals from poly(A) site clusters obtained from high-throughput sequencing of pre-mRNA 3' ends.



**Supplementary Figure 25.** Outline of the strategy to evaluate poly(A) clusters potentially originating from internal priming.



**Supplementary Figure 26.** Outline of the procedure that we used to filter out clusters that do not have sufficient experimental support (sample-specific cut-off of read counts).



**Supplementary Figure 27.** Outline of the computational procedure that we used to combine 3' end processing sites from multiple experiments into a comprehensive catalog of 3' end processing clusters.

### 3 Supplementary Tables

**Supplementary Table 1.** Comparison of poly(A) sites that were reported by Derti et al. [15] and You et al. [18] for different human tissues. Both of these studies reported only one genomic position per poly(A) site cluster. To be more permissive in evaluating the overlap of these data sets, we first extended the poly(A) sites from these data sets by 25 nt up- and downstream. A poly(A) site from one study was considered to overlap if there was at least one cluster in the other data set such that both clusters overlapped each other by at least one nucleotide. For each tissue we report both the number of poly(A) site clusters that overlapped as well as those that were unique to a specific data set. In parentheses, the average number of reported reads for the underlying poly(A) sites of the corresponding set of clusters is indicated.

|        | PolyA-seq<br>clusters over-<br>lapping with<br>APASdb clusters | APASdb<br>clusters over-<br>lapping with<br>PolyA-seq<br>clusters | PolyA-seq<br>unique clusters | APASdb<br>unique clusters |
|--------|----------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|---------------------------|
| brain  | 31,356<br>(58.47)                                              | 30,856<br>(90.04)                                                 | 57,754<br>(19.25)            | 23,827<br>(10.83)         |
| kidney | 23,793<br>(104.27)                                             | 23,090<br>(121.53)                                                | 71,152<br>(29.39)            | 12,006<br>(19.78)         |
| liver  | 25,923<br>(175.45)                                             | 25,152<br>(116.98)                                                | 62,317<br>(16.23)            | 10,741<br>(7.26)          |
| muscle | 21,910<br>(151.16)                                             | 21,227<br>(123.36)                                                | 90,888<br>(17.03)            | 10,743<br>(37.56)         |
| testes | 34,810<br>(117.72)                                             | 34,057<br>(66.84)                                                 | 80,258<br>(11.61)            | 34,860<br>(18.47)         |

**Supplementary Table 2.** Overview of the samples used to build the genome-wide catalog of 3' end processing site in human

| series ID | sample ID  | protocol    | tissue/cell type | gender | publication |
|-----------|------------|-------------|------------------|--------|-------------|
| GSE40859  | GSM1003590 | "DRS"       | "HeLa"           | F      | [10]        |
| GSE40859  | GSM1003591 | "DRS"       | "HeLa"           | F      | [10]        |
| GSE40859  | GSM1003592 | "DRS"       | "HeLa"           | F      | [10]        |
| SRP025988 | SRX388391  | "DRS"       | "HeLa"           | F      | [12]        |
| SRP022151 | SRX275752  | "DRS"       | "K562"           | F      | [11]        |
| SRP022151 | SRX275753  | "DRS"       | "K562"           | F      | [11]        |
| SRP022151 | SRX275806  | "DRS"       | "K562"           | F      | [11]        |
| SRP022151 | SRX275827  | "DRS"       | "K562"           | F      | [11]        |
| SRP003483 | SRX026582  | "SAPAS"     | "MDA-MB-231"     | F      | [17]        |
| SRP003483 | SRX026583  | "SAPAS"     | "MCF-10A"        | F      | [17]        |
| SRP003483 | SRX026584  | "SAPAS"     | "MCF-7"          | F      | [17]        |
| GSE25450  | GSM624686  | "PAS-Seq"   | "HeLa"           | F      | [14]        |
| GSE30198  | GSM747470  | "PolyA-seq" | "Brain"          | NA     | [15]        |

Continued on next page

Supplementary Table 2 – continued from previous page

| series ID | sample ID  | protocol    | tissue/cell type            | gender | publication |
|-----------|------------|-------------|-----------------------------|--------|-------------|
| GSE30198  | GSM747471  | "PolyA-seq" | "Kidney"                    | NA     | [15]        |
| GSE30198  | GSM747472  | "PolyA-seq" | "Liver"                     | NA     | [15]        |
| GSE30198  | GSM747473  | "PolyA-seq" | "MAQC Brain"                | NA     | [15]        |
| GSE30198  | GSM747474  | "PolyA-seq" | "MAQC Brain"                | NA     | [15]        |
| GSE30198  | GSM747475  | "PolyA-seq" | "MAQC UHR"                  | NA     | [15]        |
| GSE30198  | GSM747476  | "PolyA-seq" | "MAQC UHR"                  | NA     | [15]        |
| GSE30198  | GSM747477  | "PolyA-seq" | "Muscle"                    | NA     | [15]        |
| GSE30198  | GSM747479  | "PolyA-seq" | "Testis"                    | NA     | [15]        |
| GSE30198  | GSM747480  | "PolyA-seq" | "UHR"                       | NA     | [15]        |
| GSE37037  | GSM909242  | "A-seq"     | "HEK293"                    | F      | [22]        |
| GSE37037  | GSM909243  | "A-seq"     | "HEK293"                    | F      | [22]        |
| GSE37037  | GSM909244  | "A-seq"     | "HEK293"                    | F      | [22]        |
| GSE37037  | GSM909245  | "A-seq"     | "HEK293"                    | F      | [22]        |
| GSE40137  | GSM986133  | "A-seq"     | "HEK293"                    | F      | [8]         |
| GSE40137  | GSM986134  | "A-seq"     | "HEK293"                    | F      | [8]         |
| GSE40137  | GSM986135  | "A-seq"     | "HEK293"                    | F      | [8]         |
| GSE40137  | GSM986136  | "A-seq"     | "HEK293"                    | F      | [8]         |
| GSE40137  | GSM986137  | "A-seq"     | "HEK293"                    | F      | [8]         |
| GSE40137  | GSM986138  | "A-seq"     | "HEK293"                    | F      | [8]         |
| SRP029953 | SRX351949  | "3'-Seq"    | "native B cells"            | NA     | [3]         |
| SRP029953 | SRX351950  | "3'-Seq"    | "native B cells"            | NA     | [3]         |
| SRP029953 | SRX351952  | "3'-Seq"    | "brain"                     | NA     | [3]         |
| SRP029953 | SRX351953  | "3'-Seq"    | "breast"                    | F      | [3]         |
| SRP029953 | SRX359328  | "3'-Seq"    | "embryonic stem cells (H9)" | F      | [3]         |
| SRP029953 | SRX359329  | "3'-Seq"    | "ovary"                     | F      | [3]         |
| SRP029953 | SRX359330  | "3'-Seq"    | "skeletal muscle"           | NA     | [3]         |
| SRP029953 | SRX359331  | "3'-Seq"    | "testis"                    | NA     | [3]         |
| SRP029953 | SRX359332  | "3'-Seq"    | "MCF10A"                    | F      | [3]         |
| SRP029953 | SRX359333  | "3'-Seq"    | "MCF10A"                    | F      | [3]         |
| SRP029953 | SRX359334  | "3'-Seq"    | "MCF7"                      | F      | [3]         |
| SRP029953 | SRX359335  | "3'-Seq"    | "HeLa"                      | F      | [3]         |
| SRP029953 | SRX359336  | "3'-Seq"    | "HEK293"                    | F      | [3]         |
| SRP029953 | SRX359337  | "3'-Seq"    | "NTERA2"                    | M      | [3]         |
| SRP029953 | SRX359339  | "3'-Seq"    | "B-LCL cells"               | NA     | [3]         |
| SRP029953 | SRX359340  | "3'-Seq"    | "MCF10A"                    | F      | [3]         |
| SRP029953 | SRX359341  | "3'-Seq"    | "MCF10A"                    | F      | [3]         |
| GSE52527  | GSM1268942 | "3P-Seq"    | "HeLa"                      | F      | [5]         |
| GSE52527  | GSM1268943 | "3P-Seq"    | "HEK293"                    | F      | [5]         |
| GSE52527  | GSM1268944 | "3P-Seq"    | "Huh7"                      | NA     | [5]         |
| GSE52527  | GSM1268945 | "3P-Seq"    | "IMR90"                     | F      | [5]         |
| GSE56657  | GSM1366428 | "DRS"       | "neuroendocrine tumor"      | F      | [13]        |
| GSE56657  | GSM1366429 | "DRS"       | "neuroendocrine tumor"      | M      | [13]        |
| GSE56657  | GSM1366430 | "DRS"       | "Pituitary"                 | M      | [13]        |

Continued on next page

**Supplementary Table 2 – continued from previous page**

| series ID | sample ID | protocol | tissue/cell type  | gender | publication |
|-----------|-----------|----------|-------------------|--------|-------------|
| SRP041182 | SRX517334 | ”SAPAS”  | ”testis”          | M      | [18]        |
| SRP041182 | SRX517333 | ”SAPAS”  | ”ovary”           | F      | [18]        |
| SRP041182 | SRX517332 | ”SAPAS”  | ”skeletal muscle” | M      | [18]        |
| SRP041182 | SRX517331 | ”SAPAS”  | ”adipose”         | M      | [18]        |
| SRP041182 | SRX517330 | ”SAPAS”  | ”thymus”          | M      | [18]        |
| SRP041182 | SRX517329 | ”SAPAS”  | ”small intestine” | M      | [18]        |
| SRP041182 | SRX517328 | ”SAPAS”  | ”pancreas”        | F      | [18]        |
| SRP041182 | SRX517327 | ”SAPAS”  | ”liver”           | M      | [18]        |
| SRP041182 | SRX517326 | ”SAPAS”  | ”prostate”        | M      | [18]        |
| SRP041182 | SRX517325 | ”SAPAS”  | ”breast”          | F      | [18]        |
| SRP041182 | SRX517324 | ”SAPAS”  | ”bladder”         | F      | [18]        |
| SRP041182 | SRX517323 | ”SAPAS”  | ”uterus”          | F      | [18]        |
| SRP041182 | SRX517322 | ”SAPAS”  | ”lung”            | M      | [18]        |
| SRP041182 | SRX517321 | ”SAPAS”  | ”placenta”        | F      | [18]        |
| SRP041182 | SRX517320 | ”SAPAS”  | ”lymph node”      | M      | [18]        |
| SRP041182 | SRX517319 | ”SAPAS”  | ”heart”           | M      | [18]        |
| SRP041182 | SRX517318 | ”SAPAS”  | ”cervix”          | F      | [18]        |
| SRP041182 | SRX517317 | ”SAPAS”  | ”kidney”          | M      | [18]        |
| SRP041182 | SRX517316 | ”SAPAS”  | ”stomach”         | M      | [18]        |
| SRP041182 | SRX517315 | ”SAPAS”  | ”spleen”          | M      | [18]        |
| SRP041182 | SRX517314 | ”SAPAS”  | ”thyroid”         | F      | [18]        |
| SRP041182 | SRX517313 | ”SAPAS”  | ”brain”           | F      | [18]        |

**Supplementary Table 3.** Overview of the samples used to build the genome-wide catalog of 3' end processing site in mouse

| series ID | sample ID  | protocol    | tissue/cell type  | gender | publication |
|-----------|------------|-------------|-------------------|--------|-------------|
| GSE30198  | GSM747481  | ”PolyA-seq” | ”Brain”           | NA     | [15]        |
| GSE30198  | GSM747482  | ”PolyA-seq” | ”Kidney”          | NA     | [15]        |
| GSE30198  | GSM747483  | ”PolyA-seq” | ”Liver”           | NA     | [15]        |
| GSE30198  | GSM747484  | ”PolyA-seq” | ”Muscle”          | NA     | [15]        |
| GSE30198  | GSM747485  | ”PolyA-seq” | ”Testis”          | NA     | [15]        |
| GSE54950  | GSM1327166 | ”A-seq V2”  | ”T cells”         | NA     | [9]         |
| GSE54950  | GSM1327167 | ”A-seq V2”  | ”T cells”         | NA     | [9]         |
| GSE54950  | GSM1327168 | ”A-seq V2”  | ”T cells”         | NA     | [9]         |
| GSE54950  | GSM1327169 | ”A-seq V2”  | ”T cells”         | NA     | [9]         |
| GSE46433  | GSM1130096 | ”2P-Seq”    | ”embryonic cells” | stem   | NA          |
| GSE46433  | GSM1130097 | ”2P-Seq”    | ”embryonic cells” | stem   | NA          |
| GSE46433  | GSM1130098 | ”2P-Seq”    | ”embryonic cells” | stem   | NA          |
| GSE46433  | GSM1130099 | ”2P-Seq”    | ”embryonic cells” | stem   | NA          |

Continued on next page

Supplementary Table 3 – continued from previous page

| series ID | sample ID  | protocol       | tissue/cell type              | gender | publication |
|-----------|------------|----------------|-------------------------------|--------|-------------|
| GSE46433  | GSM1130100 | "2P-Seq"       | "embryonic cells"             | stem   | NA [1]      |
| GSE46433  | GSM1130101 | "2P-Seq"       | "embryonic cells"             | stem   | NA [1]      |
| SRP025988 | SRX304982  | "DRS"          | "embryonic cell line E14Tg2a" | stem   | M [12]      |
| SRP025988 | SRX304983  | "DRS"          | "embryonic cell line E14Tg2a" | stem   | M [12]      |
| GSE44698  | GSM1089085 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089086 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089087 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089088 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089089 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089090 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089091 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089092 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089093 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089094 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089095 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE44698  | GSM1089096 | "2P-Seq"       | "3T3"                         |        | NA [2]      |
| GSE52528  | GSM1268946 | "3P-seq"       | "heart"                       |        | NA [5]      |
| GSE52528  | GSM1268947 | "3P-seq"       | "muscle"                      |        | NA [5]      |
| GSE52528  | GSM1268948 | "3P-seq"       | "liver"                       |        | NA [5]      |
| GSE52528  | GSM1268949 | "3P-seq"       | "lung"                        |        | NA [5]      |
| GSE52528  | GSM1268950 | "3P-seq"       | "wat"                         |        | NA [5]      |
| GSE52528  | GSM1268951 | "3P-seq"       | "kidney"                      |        | NA [5]      |
| GSE52528  | GSM1268952 | "3P-seq"       | "heart"                       |        | NA [5]      |
| GSE52528  | GSM1268953 | "3P-seq"       | "muscle"                      |        | NA [5]      |
| GSE52528  | GSM1268954 | "3P-seq"       | "liver"                       |        | NA [5]      |
| GSE52528  | GSM1268955 | "3P-seq"       | "lung"                        |        | NA [5]      |
| GSE52528  | GSM1268956 | "3P-seq"       | "wat"                         |        | NA [5]      |
| GSE52528  | GSM1268957 | "3P-seq"       | "kidney"                      |        | NA [5]      |
| GSE52528  | GSM1268958 | "3P-seq"       | "embryonic cells"             | stem   | NA [5]      |
| GSE25450  | GSM624687  | "PAS-Seq"      | "ES"                          |        | NA [14]     |
| GSE60487  | GSM1480973 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE60487  | GSM1480974 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE60487  | GSM1480975 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE60487  | GSM1480976 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE60487  | GSM1480977 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE60487  | GSM1480978 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE60487  | GSM1480979 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE60487  | GSM1480980 | "PolyA-seq V2" | "MEF"                         |        | NA [16]     |
| GSE62001  | GSM1518105 | "3READS"       | "NA"                          |        | NA [7]      |
| GSE62001  | GSM1518106 | "3READS"       | "NA"                          |        | NA [7]      |
| GSE62001  | GSM1518107 | "3READS"       | "NA"                          |        | NA [7]      |

Continued on next page

Supplementary Table 3 – continued from previous page

| series ID | sample ID  | protocol | tissue/cell type | gender | publication |
|-----------|------------|----------|------------------|--------|-------------|
| GSE62001  | GSM1518108 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518109 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518110 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518111 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518112 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518113 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518082 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518089 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518090 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518102 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518103 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1586365 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1586366 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518096 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518097 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518098 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518072 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518073 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518074 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518075 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518076 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518077 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518078 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518079 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518080 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518081 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518083 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518084 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518085 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518086 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518087 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518088 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518091 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518092 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518093 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518094 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518095 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518099 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518101 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518104 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1586367 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518071 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518114 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1586368 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1518100 | "3READS" | "NA"             | NA     | [7]         |
| GSE62001  | GSM1586363 | "3READS" | "NA"             | NA     | [7]         |

Continued on next page

**Supplementary Table 3 – continued from previous page**

| series ID | sample ID  | protocol | tissue/cell type | gender | publication |
|-----------|------------|----------|------------------|--------|-------------|
| GSE62001  | GSM1586364 | "3READS" | "NA"             | NA     | [7]         |
| SRP039327 | SRX480169  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480179  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480205  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480212  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480221  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480227  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480229  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480250  | "SAPAS"  | "thymus"         | NA     | [18]        |
| SRP039327 | SRX480287  | "SAPAS"  | "thymus"         | NA     | [18]        |

**Supplementary Table 4.** The 100 most significantly enriched hexamers (binomial test relative to what is expected given the mononucleotide composition of the region from -60 to 0 nt relative to poly(A) site) in the human poly(A) site catalog

| hexamer       | -log p-value |
|---------------|--------------|
| AATAAA        | 122788.1     |
| AAATAA        | 42670.49     |
| AAAAAA        | 33960.3      |
| ATAAAA        | 33379.19     |
| TAAAAA        | 24249.76     |
| AAAATA        | 21755.03     |
| AAAAAT        | 19162.31     |
| TTAAAA        | 16451.96     |
| ATAAAT        | 14493.43     |
| AAAAAG        | 14079.72     |
| <b>TTTTTT</b> | 13455.43     |
| ATTAAA        | 12302.28     |
| TAAAAT        | 11913.92     |
| GCCTGG        | 11751.91     |
| ATAAAG        | 11628.45     |
| CCTGGG        | 11165.77     |
| TTTTCT        | 10964.83     |
| TGTTTT        | 10879.94     |
| CCAGCC        | 10729.18     |
| AAAATG        | 9002.596     |
| CAGCCT        | 8279.236     |
| CTTTTT        | 8043.175     |
| AGAAAA        | 7959.7       |
| TTTCTT        | 7707.476     |
| CTGGGC        | 7594.283     |
| AAAGAA        | 7535.008     |
| AAGAAA        | 7519.484     |
| AAATGT        | 7297.44      |

Continued on next page

**Supplementary Table 4 – continued from previous page**

| hexamer | -log p-value |
|---------|--------------|
| GAAAAA  | 7156.527     |
| AGCCTG  | 7106.297     |
| TTTAAA  | 7019.924     |
| TTTTTC  | 6929.253     |
| TTTTGT  | 6754.398     |
| CCTCCC  | 6622.351     |
| TTGTTT  | 6515.799     |
| TTCTTT  | 6484.465     |
| TTTTAA  | 6444.964     |
| TTTCTG  | 6351.61      |
| CAATAA  | 6137.289     |
| TAAATG  | 5913.602     |
| TTTTTG  | 5750.779     |
| AAAAAC  | 5741.94      |
| TAAATA  | 5719.061     |
| TCTTTT  | 5691.07      |
| ATTTTT  | 5690.314     |
| CTCCAG  | 5609.213     |
| CAAAAA  | 5564.294     |
| TTTGTT  | 5252.513     |
| TTTTTA  | 5163.368     |
| CTGTCT  | 5128.945     |
| TGTGTG  | 5124.415     |
| AAAACA  | 5094.2       |
| CCCAGC  | 5042.282     |
| TTCTGT  | 5016.795     |
| CTCTGT  | 4984.282     |
| ATAAAC  | 4984.15      |
| CTCCCC  | 4866.824     |
| TATTTT  | 4738.292     |
| AAAAGA  | 4679.872     |
| TTTCCT  | 4662.104     |
| CTGCTG  | 4550.984     |
| TTTTCC  | 4286.656     |
| CCTGGC  | 4259.37      |
| CCTGCC  | 4236.644     |
| CTGCCT  | 4207.258     |
| CTGTTT  | 4086.569     |
| CCCTCC  | 4082.152     |
| GGAAAA  | 4078.892     |
| ACAGAG  | 4074.031     |
| CTGTGT  | 4001.796     |
| TCTGTG  | 3969.594     |
| GTTTTT  | 3911.444     |
| CCCAGG  | 3869.135     |
| TGTCTC  | 3865.269     |

Continued on next page

**Supplementary Table 4 – continued from previous page**

| hexamer | -log p-value |
|---------|--------------|
| GCCTCC  | 3851.923     |
| TGCTTT  | 3843.789     |
| TGCCTG  | 3713.514     |
| CTTCCC  | 3708.302     |
| CCCCAG  | 3686.223     |
| TAATAA  | 3629.887     |
| TTTCTC  | 3577.619     |
| TGGAAA  | 3574.17      |
| TAAAAG  | 3557.743     |
| TGCTGT  | 3532.84      |
| TTTATT  | 3526.132     |
| CCCCCA  | 3524.531     |
| TCCAGC  | 3520.258     |
| GAATAA  | 3458.727     |
| GCTGTG  | 3405.909     |
| TCTCTG  | 3392.311     |
| CCACTG  | 3378.823     |
| CCTCTG  | 3304.089     |
| TTTCCC  | 3297.584     |
| GGGAGG  | 3271.045     |
| CATTTT  | 3270.061     |
| TTCCTG  | 3266.088     |
| CTGCC   | 3236.691     |
| CTTTCT  | 3230.07      |
| CAGAGC  | 3226.857     |
| CTGTGG  | 3207.589     |

**Supplementary Table 5.** The 100 most significantly enriched hexamers (binomial test relative to what is expected given the mononucleotide composition of the region from -60 to 0 nt relative to poly(A) site) in the mouse poly(A) site catalog

| hexamer | -log p-value |
|---------|--------------|
| AATAAA  | 78344.66     |
| AAAAAA  | 33032.07     |
| AAATAA  | 28932.12     |
| ATAAAT  | 17302.62     |
| ATAAAA  | 14803.36     |
| TAAAAA  | 12938.72     |
| TTAAAA  | 10366.85     |
| TAAATA  | 10122.15     |
| AAAAAG  | 8097.119     |
| ATTAAA  | 7668.254     |
| CAGTGT  | 6974.536     |
| ATAAAG  | 6855.813     |

Continued on next page

**Supplementary Table 5 – continued from previous page**

| hexamer | -log p-value |
|---------|--------------|
| AAAATA  | 6839.607     |
| ACAGTG  | 6185.573     |
| CTGCCT  | 5763.978     |
| TGTTTT  | 5692.668     |
| TGTCTG  | 5583.763     |
| CCTCCC  | 5520.302     |
| TTTAAA  | 5008.553     |
| GTGTAC  | 4968.018     |
| GTGTGT  | 4958.019     |
| GACAGC  | 4933.256     |
| TAAAAT  | 4914.887     |
| AAAAAT  | 4852.199     |
| CCTCTG  | 4693.22      |
| TAATAA  | 4460.155     |
| CTTCTG  | 4436.615     |
| TGTGTG  | 4411.729     |
| CTGAAG  | 4159.753     |
| TGTACT  | 4135.415     |
| TTGTTT  | 3858.373     |
| TTTTGT  | 3721.03      |
| ATAAAC  | 3683.916     |
| CCTGCC  | 3667.125     |
| GTGTCT  | 3663.924     |
| TTTTCT  | 3652.31      |
| TGCCTC  | 3617.359     |
| CTACAG  | 3575.848     |
| AAAGAA  | 3570.49      |
| GCTACA  | 3527.289     |
| TTCTGG  | 3512.262     |
| CTGTCT  | 3499.525     |
| TTTGTT  | 3488.113     |
| CTCCCC  | 3386.621     |
| AGACAG  | 3353.467     |
| TCTGAA  | 3231.828     |
| ACAGCT  | 3161.227     |
| CTGGTG  | 3148.898     |
| AAATCT  | 3076.442     |
| TCTGCC  | 3032.614     |
| AAATGT  | 3023.56      |
| CTGTGT  | 2979.327     |
| CTCTGC  | 2974.548     |
| AGTGTA  | 2935.839     |
| CAATAA  | 2867.629     |
| TTTCCT  | 2843.454     |
| GGTGTG  | 2836.151     |
| TGTGTC  | 2810.496     |

Continued on next page

**Supplementary Table 5 – continued from previous page**

| hexamer       | -log p-value |
|---------------|--------------|
| CCTGTC        | 2803.988     |
| <b>TTTTTT</b> | 2748.095     |
| CCCTGT        | 2719.253     |
| TGAAGA        | 2718.407     |
| CTTCCT        | 2690.973     |
| AAGAAA        | 2651.799     |
| AAAAGA        | 2636.556     |
| CCCTCC        | 2573.799     |
| CTGCTG        | 2560.113     |
| TTTCTT        | 2559.386     |
| GCTGGG        | 2522.802     |
| AAAAAC        | 2519.491     |
| TCTCTG        | 2486.791     |
| TCTGTG        | 2482.156     |
| TTTCTG        | 2480.577     |
| AAACCC        | 2460.335     |
| AGCTAC        | 2456.855     |
| TTTTAA        | 2438.885     |
| TGCTGG        | 2436.94      |
| CCTGGG        | 2436.371     |
| GTCTGA        | 2414.336     |
| TGCTGT        | 2412.297     |
| CTCTGT        | 2361.324     |
| TTCTGT        | 2360.056     |
| GTGCTG        | 2358.721     |
| AAAATG        | 2341.729     |
| CAGCTA        | 2295.836     |
| CCCTCT        | 2275.77      |
| TACAGT        | 2265.152     |
| TGTCTC        | 2255.793     |
| TAAATG        | 2252.428     |
| CTCCTG        | 2230.726     |
| TTCTTT        | 2206.821     |
| AAAACA        | 2176.917     |
| CTGGGA        | 2176.094     |
| TGCCTG        | 2171.784     |
| CTCTTC        | 2161.823     |
| GCCTCC        | 2150.538     |
| GCTGTG        | 2141.131     |
| TAAATC        | 2138.624     |
| ACCCTG        | 2131.258     |
| CCTGTG        | 2111.563     |

**Supplementary Table 6.** Summary statistics of 3' end sequencing libraries (A-Seq2 protocol [9]) for control-siRNA and HNRNPC-siRNA transfected HEK 293 cells.

|                                                                                                 | control-<br>siRNA | HNRNPC-<br>siRNA | control-<br>siRNA | HNRNPC-<br>siRNA |
|-------------------------------------------------------------------------------------------------|-------------------|------------------|-------------------|------------------|
|                                                                                                 | repli-<br>cate 1  | repli-<br>cate 1 | repli-<br>cate 2  | repli-<br>cate 2 |
|                                                                                                 | (ID:<br>29765)    | (ID:<br>29766)   | (ID:<br>32682)    | (ID:<br>32683)   |
| Number of reads<br>sequenced                                                                    | 55,274,416        | 47,917,208       | 68,650,218        | 78,065,144       |
| considered high-<br>confidence reads that<br>mapped to a unique<br>position in the<br>genome    | 6,836,446         | 9,265,965        | 13,818,252        | 15,319,388       |
| Number of reads<br>assigned to tandem<br>poly(A) site clusters<br>having >1 protocol<br>support | 2,991,716         | 4,115,507        | 6,989,361         | 8,601,510        |
| Number of reads<br>assigned to<br>sample-specific<br>clusters                                   | 2,976,577         | 4,107,667        | 6,893,361         | 8,529,512        |

**Supplementary Table 7.** Overview of the number and the proportion of features annotated in the human genome that are covered by poly(A) sites from different atlases.

|                   |                   | total  | PolyAsite        |                       | PolyA-seq        |                       | APASdb           |                       |
|-------------------|-------------------|--------|------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|
|                   |                   |        | covered<br>sites | percentage<br>covered | covered<br>sites | percentage<br>covered | covered<br>sites | percentage<br>covered |
| genes             | protein<br>coding | 21,232 | 18,139           | 85.43 %               | 17,742           | 83.56 %               | 16,724           | 78.77 %               |
|                   | lincRNA           | 7,048  | 4,160            | 59.02 %               | 3,745            | 53.14 %               | 2,387            | 33.87 %               |
| terminal<br>exons | protein<br>coding | 59,869 | 42,579           | 71.12 %               | 39,670           | 66.26 %               | 37,533           | 62.69 %               |
|                   | lincRNA           | 7,153  | 2,689            | 37.59 %               | 2,115            | 29.57 %               | 1,753            | 24.51 %               |

**Supplementary Table 8.** Overview of the number and the proportion of features annotated in the mouse genome that are covered by poly(A) sites from different atlases.

|                       | total  | PolyAsite     |            | PolyA-seq     |            |
|-----------------------|--------|---------------|------------|---------------|------------|
|                       |        | covered sites | percentage | covered sites | percentage |
| <b>genes</b>          | 43,054 | 22,988        | 53.39 %    | 21,088        | 48.98 %    |
| <b>terminal exons</b> | 92,351 | 38,529        | 41.72 %    | 31,903        | 34.55 %    |

## References

1. Almada, A. E., Wu, X., Kriz, A. J., Burge, C. B. & Sharp, P. A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. *Nature* **499**, 360–363 (2013).
2. Spies, N., Burge, C. B. & Bartel, D. P. 3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. *Genome Res.* **23**, 2078–2090 (2013).
3. Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. *Genes Dev.* **27**, 2380–2396 (2013).
4. Jan, C. H., Friedman, R. C., Ruby, J. G. & Bartel, D. P. Formation, regulation and evolution of *caenorhabditis elegans* 3'UTRs. *Nature* **469**, 97–101 (2011).
5. Nam, J.-W. *et al.* Global analyses of the effect of different cellular contexts on microRNA targeting. *Mol. Cell* **53**, 1031–1043 (2014).
6. Hoque, M. *et al.* Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing. *Nat. Methods* **10**, 133–139 (2013).
7. Li, W. *et al.* Systematic profiling of poly(a)+ transcripts modulated by core 3' end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. *PLoS Genet.* **11**, e1005166 (2015).
8. Gruber, A. R., Martin, G., Keller, W. & Zavolan, M. Cleavage factor im is a key regulator of 3' UTR length. *RNA Biol.* **9**, 1405–1412 (2012).
9. Gruber, A. R. *et al.* Global 3' UTR shortening has a limited effect on protein abundance in proliferating T cells. *Nat. Commun.* **5**, 5465 (2014).
10. Yao, C. *et al.* Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 18773–18778 (2012).
11. Ji, X., Wan, J., Vishnu, M., Xing, Y. & Liebhaber, S. A.  $\alpha$ cp Poly(C) binding proteins act as global regulators of alternative polyadenylation. *Mol. Cell. Biol.* **33**, 2560–2573 (2013).
12. Lackford, B. *et al.* Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. *EMBO J.* **33**, 878–889 (2014).

13. Rehfeld, A. *et al.* Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors. *Front. Endocrinol.* **5**, 46 (2014).
14. Shepard, P. J. *et al.* Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. *RNA* **17**, 761–772 (2011).
15. Derti, A. *et al.* A quantitative atlas of polyadenylation in five mammals. *Genome Res.* **22**, 1173–1183 (2012).
16. Batra, R. *et al.* Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. *Mol. Cell* **56**, 311–322 (2014).
17. Fu, Y. *et al.* Differential genome-wide profiling of tandem 3' UTRs among human breast cancer and normal cells by high-throughput sequencing. *Genome Res.* **21**, 741–747 (2011).
18. You, L. *et al.* APASdb: a database describing alternative poly(a) sites and selection of heterogeneous cleavage sites downstream of poly(a) signals. *Nucleic Acids Res.* **43**, D59–67 (2015).
19. Liu, N. *et al.* N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. *Nature* **518**, 560–564 (2015).
20. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).
21. Robinson, J. T. *et al.* Integrative genomics viewer. *Nat. Biotechnol.* **29**, 24–26 (2011).
22. Martin, G., Gruber, A. R., Keller, W. & Zavolan, M. Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length. *Cell Rep.* **1**, 753–763 (2012).