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Supplemental tables

Table S1: Sample sizes and number of SNPs for the evaluated WTCCC data sets. The
diseases are CD (Crohn's disease), T1D (type 1 diabetes), BD (bipolar disorder), RA
(rheumatoid arthritis), T2D (type 2 diabetes), CAD (coronary artery disease) HT
(hypertension) and UC (ulcerative colitis). Control individuals are divided into the UK

national blood service (NBS) controls and the 1958 British birth cohort (C58) controls.

#SNPs | #cases | #NBS controls | #C58 controls
CD | 285650 | 1720 1451 1474
TiD | 286237 | 1957 1454 1741
BD | 284208 | 1856 1450 1745
RA | 287884 | 1850 1453 1742
T2D | 286339 | 1906 1453 1742
CAD | 288544 | 1910 1451 1474
HT | 281898 | 1932 1455 1470
UC | 458560 | 2697 2801 2851




Table S2: Analysis results on WTCCC data. The table is similar to Table 1 in the main

text, but also includes mean negative out of sample log likelihood (NOOS LL) results,

computed heuristically as the probability of having a non-negative phenotype according

to the posterior phenotype distribution of each individual. We emphasize that such

values should be regarded with caution, as they do not take the ascertainment

procedure into account. Traits marked with an asterisk are ones where the MHC region

was excluded from the analysis.

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP
AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL
cb 0.667+0.010  0.645%0.005 | 0.650+0.010 0.651%0.005 | 0.645+0.011 0.657+0.004 | 0.582+0.013 0.680+0.003
T1D 0.886+0.004  0.43410.006 | 0.885%0.003 0.43710.005 | 0.883+0.004 0.443+0.006 | 0.601+0.008 0.670+0.004
BD 0.563+0.011  0.681+0.004 | 0.571+0.012 0.677+0.005 | 0.568+0.011  0.681+0.004 | 0.578+0.011 0.679+0.002
RA 0.750+0.009  0.592+0.007 | 0.749+0.009 0.589+0.006 | 0.752+0.010  0.589+0.007 | 0.671+0.009  0.643+0.003
T2D 0.634+0.007  0.655+0.004 | 0.632+0.008 0.656+0.004 | 0.634+0.007 0.655+0.004 | 0.598+0.009 0.672+0.003
CAD | 0.698+0.014° 0.624+0.007 | 0.697+0.014 0.621+0.007 | 0.699+0.013  0.621+0.007 | 0.701+0.015 0.621+0.008
HT 0.611+0.003  0.662+0.002 | 0.610+0.003 0.660+0.002 | 0.611+0.003  0.658+0.003 | 0.576+0.005 0.675+0.001
uc 0.601+0.007 0.676+0.004 | 0.590+0.003 0.689+0.001 | 0.585+0.002 0.683+0.001 | 0.583+0.004 0.684+0.001
CD* 0.668+0.009  0.646+0.004 | 0.653+0.009 0.65210.004 | 0.646+0.010 0.658+0.004 | 0.580+0.013 0.680+0.003
TiD* | 0.607+0.006  0.666+0.003 | 0.613+0.008 0.666+0.003 | 0.612+0.007 0.665+0.002 | 0.564+0.009 0.679+0.003
RA* 0.650+0.007  0.651+0.003 | 0.644+0.009 0.651+0.003 | 0.650+0.007 0.651+0.003 | 0.652+0.010 0.651+0.003

Table S3: Results of permutation tests comparing MKLMM-Adapt and AMB on the
WTCCC data sets. Each test was performed with 100,000 permutations. The P-value is
the percentage of permutations wherein the evaluated method had a larger advantage

over AMB than observed in the original data.

MKLMM-Adapt

MKLMM-Poly2

Trait AUC NOOS LL AUC NOOS LL
CD 5.00x107° <1075 1.18x 107! 6.30 x 107*
TID 1.82%x 1072 <1075 1.75x 1072 5.00 x 1073
BD 9.11x 107! 7.63x107!'| 6.11x 107! 2.13 x 1072
RA 730x107! 6.81x1071'| 532x107' 4.04 x 107!
T2D 3.47x 107! 529x1072| 2.14x107* 297 x 107!
CAD 5.16x107!' 7.05x1071|521x10"' 6.12x 107!
HT 9.26x107! 7.97x 107! | 9.45x 10°' 4.89 x 107!
UC 1.20x107* <107° [296x10"! 9.99 x 107!




Table S4: Analysis results on WTCCC data, using quantitative phenotype measures. The

reported values are the root mean square error (RMSE), and Pearson correlation (Corr).

Results marked in bold text indicate a statistically significant advantage over AMB.

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP
RMSE Corr RMSE Corr RMSE Corr RMSE Corr

cD 1.259+0.006 0.285+0.016 | 1.263+0.004 0.263+0.018 | 1.259+0.004 0.235+0.012 | 1.261+0.003 0.134+0.019
TiD | 1.224+0.006 0.620+0.011 | 1.232+0.006 0.619%+0.010 | 1.224+0.006 0.607+0.013 | 1.224+0.006 0.170+0.014
BD 1.238+0.003 0.137+0.020 | 1.243+0.003 0.145+0.017 | 1.241+0.003 0.133+0.023 | 1.237+0.002 0.125+0.015
RA 1.253+0.005 0.418+0.015 | 1.263+0.006 0.422+0.010 | 1.253+0.005 0.422%0.016 | 1.253+0.005 0.295+0.015
T2D | 1.236+0.005 0.230+0.015 | 1.242+0.004 0.231+0.017 | 1.236+0.005 0.2331#0.016 | 1.235#0.003 0.166+0.014
CAD | 1.265+0.002 0.356+0.019 | 1.275+0.005 0.355+0.019 | 1.267+0.002 0.356%+0.019 | 1.261+0.004 0.359+0.023
HT 1.233+0.003 0.206+0.014 | 1.243+0.004 0.202+0.003 | 1.233+0.003 0.211+0.015 | 1.233+0.003  0.134+0.006
uc 1.304+0.004 0.206+0.014 10.63£2.36 0.057+0.005 | 1.304+0.002 0.145+0.008 | 1.303+0.002 0.131+0.002

Table S5: Analysis results on WTCCC data, without omitting the top 10 principal

components. The table is similar to Table S1, but reports results for data that includes

the top 10 principal components, and may thus be susceptible to spurious results due to

confounding. The reported values are the area under ROC curve (AUC; higher is better),

and average negative out of sample log likelihood (NOOS LL; lower is better). Results

marked in bold text indicate a statistically significant advantage over AMB.

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP
AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL
CcD 0.679+0.013  0.640+0.005 | 0.675+0.010 0.641+0.005 | 0.673+0.010  0.643+0.005 | 0.628+0.014 0.666+0.004
T1D 0.891+0.006  0.422+0.009 | 0.89210.007 0.422+0.010 | 0.890+0.006 0.428+0.009 | 0.672+0.008  0.642+0.004
BD 0.640+0.006  0.660+0.001 | 0.638+0.006  0.661+0.002 | 0.641+0.006 0.658+0.002 | 0.641+0.008 0.660+0.003
RA 0.763+0.009  0.581+0.006 | 0.759+0.008 0.581+0.006 | 0.761+0.009  0.581+0.006 | 0.690+0.007  0.634+0.003
T2D 0.640+0.005 0.652+0.003 | 0.639+0.006  0.653+0.004 | 0.641+0.005 0.653+0.003 | 0.602+0.008 0.671+0.003
CAD | 0.693+0.014  0.624+0.008 | 0.692+0.014 0.628+0.008 | 0.692:+0.014  0.625+0.008 | 0.69410.014  0.623+0.008
HT 0.623+0.005 0.655+0.002 | 0.623+0.004 0.657+0.003 | 0.623+0.005 0.655+0.002 | 0.591+0.006 0.671+0.002
uc 0.626+0.005 0.670+0.005 | 0.631+0.003 0.671+0.005 | 0.629+0.005 0.663+0.003 | 0.623+0.003 0.667+0.003




Table S6: Analysis results on WTCCC data, using an additional controls group. The table
is similar to Table S1, but uses the C58 controls group in addition to the national blood
service control group. The reported values are the area under ROC curve (AUC; higher is
better), and average negative out of sample log likelihood (NOOS LL; lower is better).

Results marked in bold text indicate a statistically significant advantage over AMB.

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP

AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL

cb 0.688+0.004 0.61810.002 | 0.668:+0.011 0.620%0.003 | 0.644+0.008 0.625+0.004 | 0.584+0.008 0.650+0.002
T1D 0.917+0.007  0.384+0.005 | 0.914+0.007 0.39410.010 | 0.882+0.009 0.442+0.011 | 0.621+0.011 0.652+0.003
BD 0.621+0.009  0.643+0.004 | 0.626+0.009 0.636+0.004 | 0.620+0.009  0.644+0.003 | 0.617+0.012 0.650+0.003
RA 0.745+0.008  0.573+0.003 | 0.750+0.007 0.569+0.004 | 0.746+0.007 0.573+0.004 | 0.668+0.007 0.626+0.003
T2D 0.675+0.011  0.619+0.003 | 0.672+0.007 0.622+0.004 | 0.674+0.013  0.621+0.005 | 0.603+0.005 0.655+0.002
CAD 0.718+0.006  0.597+0.003 | 0.717+0.011  0.598+0.003 | 0.717+0.007  0.599+0.004 | 0.698+0.003 0.611+0.002
HT 0.632+0.003  0.637+0.002 | 0.633+0.007 0.634+0.003 | 0.635+0.009  0.635+0.005 | 0.603+0.011 0.657+0.003
uc 0.628+0.004  0.605%0.002 | 0.617+0.003 0.608+0.003 | 0.613+0.003 0.607+0.002 | 0.583+0.004 0.684+0.001
CD* 0.687+0.004  0.620+0.003 | 0.667+0.008 0.62810.005 | 0.645+0.007 0.644+0.003 | 0.583+0.008 0.661+0.003
TiD* | 0.611+0.005 0.664+0.003 | 0.613+0.006 0.665+0.004 | 0.613+0.007 0.661+0.004 | 0.588+0.008 0.664+0.006
RA* 0.653+0.006  0.650+0.004 | 0.655+0.010  0.645+0.003 | 0.653+0.007 0.649+0.003 | 0.651+0.011 0.641+0.005

Table S7: Analysis results on WTCCC data, using additional MKLMM methods. The table
is similar to Supplemental Table 1, but reports results for an MKLMM formulation that
uses a weighted combination of linear and an SP kernel for each region (MKLMM-SP),
and an MKLMM formulation that uses a weighted combination of a linear and a radial
basis function kernel for each region (MKLMM-RBF). Results marked in bold text

indicate a statistically significant advantage over AMB.

Trait MKLMM-Adapt MKLMM-SP MKLMM-RBF AMB

AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL

cb 0.667+0.010  0.6450.005 | 0.666+0.010 0.645+0.005 | 0.667+0.011 0.648+0.006 | 0.645:0.011 0.657+0.004
TiD | 0.88610.004 0.434+0.006 | 0.886+0.003  0.434+0.006 | 0.885t0.005  0.445+0.010 | 0.88310.004  0.443+0.006
BD 0.563+0.011  0.681+0.004 | 0.572+0.008 0.6760.003 | 0.572+0.009 0.682+0.004 | 0.568+0.011  0.681+0.004
RA 0.750+0.009  0.59240.007 | 0.750+0.010  0.590+0.007 | 0.751%+0.010  0.590+0.007 | 0.752+0.010  0.589+0.007
T2D | 0.634£0.007 0.655+0.004 | 0.632+0.007  0.655+0.003 | 0.633+0.007  0.660+0.003 | 0.634+0.007  0.655+0.004
CAD | 0.698t0.014  0.624+0.007 | 0.697+0.013  0.621+0.007 | 0.696%0.014  0.629+0.008 | 0.699+0.013  0.621+0.007
HT 0.611+0.003  0.662+0.002 | 0.609+0.004 0.658+0.003 | 0.614+0.004 0.660+0.003 | 0.611+0.003  0.658+0.003
uc 0.601+0.007 0.676+0.004 | 0.58710.006 0.678+0.001 | 0.592+0.003  0.676+0.002 | 0.585+0.002 0.683+0.001




Supplemental figures
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Figure S1: Comparison of the evaluated methods on synthetic data sets with various
ratios of explained to total phenotypic variance. The advantage of the MKLMM methods
over AMB, and of MKLMM-Adapt over MKLMM-Poly2, increases with the percentage of

explained variance.
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Figure S2: Comparison of the evaluated methods on synthetic data sets with various
region lengths. The advantage of the kernel-based methods over the linear methods is
greater under shorter regions, indicating that interactions can be better captured over
short distances. Linear methods do not capture interactions and are thus less sensitive

to the region length.
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Figure S3: Comparison of the evaluated methods on synthetic data sets with binary
phenotypes. The left pane shows performance for randomly ascertained data sets with
real genotypes, and the right pane shows performance for ascertained data sets with
synthetic genotypes and an equal number of cases and controls, as a function of the
trait prevalence in the population. Each data set contains two genomic regions

harboring interacting variants. The MKLMM methods outperform AMB under all

settings.
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Figure S4: Absolute performance of the evaluated methods in prediction of mouse

phenotypes, according to the root mean square error (RMSE) measure.
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Figure S5: Relative performance of the evaluated methods in prediction of mouse
phenotypes, according to the OOS LL measure. For each phenotype, the figure shows
the difference between the prediction performance of the evaluated methods and AMB,

according to OOS LL. MKLMM-Adapt outperformed AMB across 96 phenotypes.



A MKLMM-Adapt
X MKLMM-Poly2
AMB
GBLUP
16— MKLMM-Adapt #regions
== MKLMM-Poly2 #regions
- AMB #regions
-
-
w
(@]
o
=z
0.8
2
k=] 10
g
3 5
gh
z 0

Phenotypes

Figure S6: Absolute performance of the evaluated methods in prediction of mouse
phenotypes, according to negative out of sample log likelihood (NOOS LL) measure.
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Figure S7: Relative performance of the evaluated methods in prediction of mouse
phenotypes, according to the Pearson correlation measure. For each phenotype, the
figure shows the difference between the prediction performance of the evaluated

methods and AMB. MKLMM-Adapt outperformed AMB across 83 phenotypes.
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Figure S8: Absolute performance of the evaluated methods in prediction of mouse

phenotypes, according to the Pearson correlation measure.
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Figure S9: Relative performance of additional evaluated methods in prediction of mouse
phenotypes, according to the RMSE measure. The figure is similar to Figure S3 in the
main text, but reports results for additional MKLMM formulations that assign a
weighted combination of a linear and a radial basis function kernel for each region
(MKLMM-RBF), or a weighted combination of a linear and a saturating pathways kernel
for each region (MKLMM-SP). Higher values indicate a greater advantage for a method
over AMB. MKLMM-SP and MKLMM-RBF outperformed AMB across 96 and 112

phenotypes, respectively.

13



® 0.05 :%Sém;l:t;?nz#regions MA““‘
=l o e il

Phenotypes

Figure S10: Relative performance of additional evaluated methods in prediction of
mouse phenotypes, according to the OOS LL measure. The figure is similar to Figure S9,
but uses OOS LL to measure prediction performance. MKLMM-SP and MKLMM-RBF

outperformed AMB across 97 and 113 phenotypes, respectively.
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Figure S11: Relative performance of additional evaluated methods in prediction of
mouse phenotypes, according to the Pearson correlation measure. The figure is similar
to Figure S9, but uses Pearson correlation to measure prediction performance. MKLMM-

SP and MKLMM-RBF both outperformed AMB across 89 phenotypes.
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Investigating tagging of ungenotyped variants

A potential concern with MKLMM is that it may improve prediction performance over
AMB due to better tagging of ungenotyped variants, rather than modeling of true
interactions. To investigate this possibility, we generated data sets based on true
genotypes of control individuals from the Wellcome Trust Case Control Consortium 2
(WTCCC2) with one chromosome-wide linear kernel and an additional linear kernel for a
region consisting of 2,4,6 or 8 SNPs. Afterwards, we excluded the causal SNPs in the

small region and their 0,2,4 or 6 closest flanking SNPs from the analysis.

In all cases MKLMM-Adapt selected only linear kernels, indicating that even in the
situation which is most favorable to the tagging hypothesis, where untyped causal
variants have a strong linear effect, and typed variants have varying levels and patterns
of LD with these causative variants, the tagging did not create phantom interactions that
were captured by MKLMM-Adapt. Furthermore, prediction performance for MKLMM-
RBF and MKLMM-SP was almost the same as that of AMB (mean Pearson correlation
difference <0.0005, and maximum Pearson correlation difference <0.03 in all cases),
again indicating that improved tagging of causal SNPs was not exploited to improve

prediction performance.

Evaluated kernels

This work makes use of several kernel types under the MKLMM framework. In the
following, we describe the evaluated kernels and their underlying assumptions. The
kernels surveyed here are used as building blocks for a composite kernel that is a
weighted-sum of region-specific kernels, as detailed in the main text. Throughout this
section, X € R™™ denotes a matrix of m variants measured for n individuals, where all
variants are standardized to have a zero mean and unit variance. We consider four
kernels: A linear kernel, a polynomial kernel of degree 2, a radial basis function (RBF)

kernel and a saturating pathways (SP) kernel.
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The linear kernel is given by

1
G(X,0), = ZX?;X[; (1)

where G(X, 6)y; is the genotypic covariance between individuals k and [. This kernel is
equivalent to the kernel defined in Equation 3 in the main text, with the exception that
the scaling factor (commonly known as ng in the presence of a single genomewide
kernel) is now considered a parameter of the composite kernel. Therefore, the kernel
presented here is not associated with any parameter. The linear kernel corresponds to
the identity transformation, and encodes the assumption that genetic variants have a

linear effect on the phenotype.

The polynomial kernel of degree 2 is given by

1
G(X,6) = — (X[X))? )

This kernel encodes the assumption that products of pairs of variants have a linear
effect on the phenotype, as described in the main text. It corresponds to a
transformation that projects each genotype vector X, into a new vector in which there

is an entry for the product of every pair of variants.

The RBF kernel, which has received considerable attention in the plant and animal
breeding literature (Morota and Gianola 2014), generalizes the polynomial kernel to
model interactions of an arbitrary order. This kernel involves a single positive parameter

6, and is given by

l

1 S
G(X,0)k,; = exp <_MZ(X;¢_XLL)2>- 3)

The RBF kernel corresponds to an infinite-dimensional transformation, and can
therefore capture rich interaction patterns. To gain some intuition into its underlying
assumptions, we consider the explicit underlying transformation of the RBF kernel. It

can be shown that this transformation associates every non-negative integer number j
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and every set of non-negative integers ty, ..., t,, such that Y/, t; = j with a unique

entry, given by (Shashua 2009)

— 11X, 13
(o)

iU mirzeir

. 1/2
(e, )0 ) aba iy, @

Equation 4 demonstrates that the RBF kernel generalizes the polynomial kernel to also
capture higher order interactions, because every possible polynomial combination of

parameters is represented in its underlying transformation.

Finally, we also consider the saturating pathways kernel, described in detail below.

The saturating pathways kernel

Here we present a kernel known in the Machine learning community as the neural
network kernel (Neal 1996). In our context it has an attractive biological interpretation
as assuming an interaction model of saturating pathways, as described next. In this
description we assume a single kernel and omit the fixed effects for ease of

presentation.

Consider a phenotype that is affected by R biological processes in an additive manner.

The phenotype for individual k is given by

R
YKy 09,0) = > 6PR(OM)X) + €, 5)
i=1

where h(z) is a monotone function in the range [—1,1], and e~N(0, 52) (Supplemental
Figure S12). We refer to each term h((6}")"X,) as a saturating pathway, because the
bounded range of h(z) encodes saturation dynamics, which are common in biological
systems (Zuk et al. 2012). Interactions are naturally encoded in this model via the
saturating functions. The proposed model can be seen as a generalization of the

standard linear kernel. It is easy to show that when there is only a single pathway
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(R = 1) and h(z) = z, Equation 5 can be described by a linear kernel, by setting 9ip =

2
1,6 ~N (0,;—“71), and using the Bayesian interpretation of LMMs (see below).

We now extend Equation 5 by considering the limit of an infinite number of pathways.
Assuming that 8%, P are vectors of iid zero mean random variables with var(6!) =
1/R, taking the limit R — oo, and applying the central limit theorem, we obtain that y;

follows a zero mean normal distribution with the covariance matrix

cov(yi, y1) = cov(R((8")TX,), h((6")TX))). (6)

Different choices of the saturation function h(z) and the distribution of 8Y lead to
different kernels. A common choice is h(z) = erf(z) = 2n~1/? foze‘tzdt and

0V ~N(0,021I), which leads to a kernel defined by a single parameter (Rasmussen and

Williams 2006):

1w \T
G(X;0)y, =2n"! sin‘1< mXe) Xi >, (7)

O + IX, [12/m)(6 + [IX,11Z/m)

where 8 = 1/202. Typically the genotype matrix X is augmented with a column with
the value v/m for numerical stability. Each pathway can model a sharp step function by
taking the limit o2 > oo . It is worthy to note that the presented model (when not
invoking the central limit theorem) is known to be a universal approximator (Hornik
1993), which can approximate any arbitrary function to an arbitrary degree of accuracy

as the sample size tends to infinity.

We also note that there is some resemblance between the proposed model and the well
known limiting pathways model (Zuk et al. 2012), that can be obtained from Equation 5
by defining h(z) =z and replacing the summation with a minimization operator.
However, unlike the SP model, the limiting pathways model results in a non-normal

phenotype distribution.
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Figure S12: A schematic representation of the saturating pathways kernel. Blue circles
are genetic variants, red circles are pathways and the green circle represents the
phenotype. Every pathway is associated with a subset of variants and with a kernel. The
figure shows one genome-wide SP kernel and two region-specific SP kernels, highlighted
at the top and bottom of the middle column. The top two and bottom two variants
belong to regions with region-specific kernels. The output of each pathway is a
saturating function (erf(x)) of a linear combination of its variants, and the phenotype is a
linear combination of the pathway values. The linear combination coefficients of each

pathway and of the phenotype are drawn from a normal distribution.

MKLMM parameters estimation

Here we describe maximum likelihood (ML) and restricted maximum likelihood (REML)
parameter estimation for MKLMM. Under the LMM, the log likelihood of the

phenotypes vector y for n individuals is given by:
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LL(B,6,02) = — (y ~ CBY'R(X; 6,02)"" (y ~ CB) + nlog(2m)

+log|R(X; 0, 5)) 8)
where X is a matrix of genotyped variants, C is a matrix of covariates, B is a vector of
fixed effects, and R(X;0,02) = G(X;0) + g2l is the overall covariance matrix
composed of the genetic covariance matrix G(X; @) and an environmental term with

variance 2.

Maximum likelihood estimation

Maximum likelihood estimation amounts to finding the parameters 3,0 and o2 that
maximize Equation 8. Importantly, the normalization term of the normal distribution
serves as a regularization term that discourages overly complex models with a very high
variance. This distinguishes LMMs and their extensions from fixed effect models.
Parameter estimation can be performed via conjugate gradient ascent, as described
below. The maximum likelihood estimate of 8 given 8 and ¢ is given by (Lippert et al.

2011):
B =(C"TR(X;0,062)"1C)"'C"R(X; 0,52) y. 9)

To infer @ and 02, we perform conjugate gradient ascent using the gradient of Equation

8, given by (Rasmussen and Williams 2006):

d 1 OR(X,0;;
76, —LL(B,0,02) = —tr<(aa —R(X:0,0 )%) (10)
j
2) = Ltr(aa” — R(X; 6,02) 11
ao_ez ) - Etr(aa - ( ) Io—e) )l ( )
where @ = R(X; 0,02)~(y — CB), tr(*) is the trace operator, and aR(X:G £) is a matrix

J

of elementwise partial derivatives.

The computational complexity scales cubically with the sample size due to the matrix

inversion, as in standard LMMs. All other operations scale quadratically with the sample
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size. Importantly, the complexity is independent of the number of parameters. After
inverting this matrix, the computation of Equations 8-11 can be parallelized. Efficient
approximations can potentially scale this procedure up to hundreds of thousands of
individuals at a modest loss of accuracy (Snelson and Ghahramani 2007; Hensman et al.

2013; Yang et al. 2015).

Restricted maximum likelihood estimation
The restricted log likelihood is comprised of the log likelihood and three additional

terms (Lippert et al. 2011):

LLR(ﬁP e! 0-62) = LL(B! 0; 0-3)
1
+3 (dlog(2m) + log|CTC| — log|CT"R(X; 6,52)71C)). (12)
The restricted maximum likelihood value of B given @ and ¢ is the same as for non-

restricted likelihood (Equation 9). The gradient of LLz(f,80,02) with respect to the

other parameters is given by

LLg(B,0,02) =—LL(y) + 1 yO)ly (X 6, ez)yT 13
J e J ' J ( )

LL (B o 02) = LL(y) + 1t ((yC)_lny) 14
) ez R yY,Ue ) ez y 2 r ) ( )

wherey = CTR(X; 0,02)7 1.

The overall computational complexity remains the same as before after neglecting the
cubic dependency on the number of fixed effects, which is typically very small compared

to the sample size.

Estimation procedure
Parameter estimation was carried out via a Polak-Ribiere conjugate gradient procedure,
based on the code from the GPML toolbox (Rasmussen and Nickisch 2010), and using

REML computations. Such an optimization procedure is available in many optimization
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packages, and requires only a function to compute the gradient. Alternatively, one could
use average information REML (Gilmour et al. 1995; Lee and van der Werf 2006),
though this procedure was not carried out here. Empirical comparison with Adaptive
MultiBLUP (Speed and Balding 2014), which uses average information REML, indicated

that both methods tend to have very similar performance.

The optimization for each fold consisted of 100 conjugate gradient steps. The initial
values for the fixed effects were determined via a multivariate linear regression. The
initial scaling factor of each kernel was 0.5var(y)/r, where y is the phenotype vector
and 7 is the number of kernels. The initial value of the environmental effect variance o2
was 0.5var(y). Although the likelihood surface of MKLMM is not convex, we did not
encounter convergence problems, as determined via global optimization routines based

on simulated annealing.

MKLMM-Adapt procedure

Here we describe the MKLMM-Adapt model training procedure in detail. The MKLMM-
Adapt procedure is composed of two steps: Ranking of genomic regions, and evaluation

of models of increasing complexity to select the best one.

Ranking of regions
MKLMM-Adapt ranks genomic regions similarly to MultiBLUP (Speed and Balding 2014).

The full procedure is carried as follows.

1. Divide the genomic into overlapping sub-regions spanning 75kb, where the
minimum distance between the first base pair of two consecutive sub-regions is
10kb.

2. Assign a score to each sub-region, corresponding to the restricted log-likelihood
(Equation 12) when using an LMM with a single linear kernel spanning only the

variants in the sub-region. Such a score can be computed efficiently using the
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Fast-LMM procedure for fitting LMMs with a low-rank kernel (Lippert et al.
2011).

3. Discard all sub-regions whose restricted log-likelihood is below the 95%
percentile of obtained values.

4. Merge consecutive undiscarded sub-regions into regions. The score assigned to
each merged region is the maximum score among all its sub-regions.

5. Rank regions according to their score in descending order. Region 0 is always

considered as the genome-wide region that spans all variants.

Training an MKLMM-Adapt model

The MKLMM-Adapt model training procedure is as follows. We evaluate several models
with increasing complexity, M@ M@ . M®) where B is a user defined parameter
described in the main text, and where each model M® uses a sum of region-specific
kernels for regions 0 ...t. The difference between the models lies in the form of the

covariance matrix. The covariance matrix for model M® is given by
t
G0 = > Gi(X; 00,
i=0

where X; is the matrix of variants in region i, and G;(X;; 6;) is the covariance matrix

induced by region i. We consider four possible forms for G;(X;; 6;):

1. Linear kernel only: G;(X;;60) = H}f‘:‘,earG?“ear(Xi)
2. Linear and poly2 kernels: G;(X;; 0) = H}Ii‘,r;earG?“ear(Xi) + GfxlyzGﬁmlyz (X))
3. Linear and RFB kernels: G;(X;;0) = 0] Gi"er(X,) + ORBFGRBF(X;; OREF

4. Linear and SP kernels: G;(X;; 0) = 9/nearglinear(x,y + 958 6P (X;; 65F),

where Hiti'vpe is the weight assigned to a kernel of the specified type in region i, and
Hit’ipe is the internal parameter of a kernel of the specified type in region i.

When selecting the kernel type for model M®, the parameters for all regions 0 ...t are

jointly inferred by maximizing the restricted log likelihood in Equation 12 via conjugate
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gradient ascent. However, the type of the selected kernel for region t (out of the four
alternatives listed above) is only selected once, and will be used when evaluating all
other models M®>9_ In order to select the kernel type for region t we perform three
likelihood ratio tests, each comparing a model with one of the three composite kernel

types to a model that uses only a linear kernel for region t. These tests are carried out

type

by attempting to reject the null hypothesis Hy: 6,7, = 0 for each of the three non-

linear kernel types. Note that each hypothesis test re-estimates all parameters for all
regions 0 ...t. A step by step description of the model selection procedure is now

provided.

1. Iterate over the index t in the range [0..B]:

a. lterate over the evaluated kernel types (in the present study, these include a
linear, linear+Poly2, linear+RBF, linear+SP kernels). For each evaluated kernel:

i. Train an MKLMM model whose covariance matrix is a weighted combination
of kernels assigned to regions 0...t. The kernel type assigned to regions
0...t — 1 is the one selected at previous iterations. The kernel assigned to
region t is the one evaluated at the current iteration.

ii. Evaluate the restricted log likelihood (Equation 12) using the trained model.

iii. Assign a score to the evaluated model by performing a likelihood ratio test,
where the null model uses only a linear kernel for region t. The null
distribution is approximated by a 0.5x32:0.5y2 distribution, where d is the
number of additional estimated parameters in the alternative model over the
null model. This null distribution accounts for the fact that the tested
parameters are on the edge of the boundary space in the null model.

b. If no model has a statistically significant advantage over the linear kernel model
after multiple testing correction, select the linear kernel for region t. Otherwise,
select the model with the smallest P-value.

c. Evaluate the predictive performance of the selected model on an external
validation set.

2. Select the model with the best predictive performance on an external validation set.
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Computational complexity of MKLMM

The computational complexity of MKLMM is similar to that of a standard LMM, and is
determined by the sample size, the number of kernels, the number of variants assigned
to each kernel and the number of iterations carried out for parameter estimation. We
address the computational complexity required for parameter estimation and for

phenotype prediction separately.

Parameter estimation requires repeatedly evaluating each of Equations 9 and 12-14 for
a specified number of iterations, or until convergence. The computational complexity of
each iteration is formally dominated by the computation of G(X; @), which typically
scales linearly with the number of parameters p, the number of variants m and the
matrix size n? (where n is the sample size), yielding a computational complexity of
0(pmn?). However, it is often possible to perform a single O(mn?) computation for
each parameter p and cache the result, thus avoiding dependence on m during the
estimation procedure. For example, for a linear kernel, one can compute the matrix
XXT (where X is a matrix of variants) only once and then multiply this matrix by a
scaling factor at each iteration. Such a computational shortcut is also possible for
polynomial kernels, radial basis function kernels and saturating pathways kernels (see
below). MKLMM therefore only requires performing a small finite number of O(mn?)
computations, similarly to standard LMMs. The computational complexity of each

iteration in the estimation procedure is thus independent of m.

Assuming we can avoid O(m) operations at each iteration, the computation at each
iteration is dominated by the inversion of the overall covariance matrix R(X;0,02),
which scales as 0(n®). Afterwards, Equations 9 and 12-14 can be evaluated
concurrently. At each iteration, a different instance of Equation 13 is evaluated for each
kernel parameter separately, along with a single instance of Equations 9, 12 and 14.
Given the inverted matrix, the computational complexity of Equation 12 is 0(n? +

n%d + d?n + d?), where d is the number of fixed effects, and the 0(n?) element stems
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from the definition of the normal density. Similarly, the computational complexity for
Equation 9 is 0(n?d + d?n + d3). Denoting p as the number of kernel parameters, the
combined computational complexity of Equations 13-14 is 0(pn? + pnd? + pnd + d3).
This analysis exploits the fact that traces of matrix products can be computed efficiently
by only computing the diagonal of the product. Combining all these terms together and
neglecting terms that cannot dominate the complexity, the computational complexity
for parameter estimation is O(pmn? + i(n® + n%d + d° + pn? + pnd?)), where i is

the number of estimation iterations.

Assuming that p < n, d <n and pd? < n?, the asymptotic complexity is O(pmn? +
in®), similarly to the asymptotic complexity of REML estimation for standard LMMs with
multiple variance components. Typical use of MKLMM will only require a single genome-
wide kernel, with the other kernels using a small number of variants (typically less than

500), yielding O (mn? + in3®) complexity.

Using similar considerations, the computational complexity of phenotype prediction for
a single individual (Equation 2 in the main text) is O(d + mn + n?). When using the
techniques described in the privacy preservation section, the complexity is given by
0(d + M?), where M is the approximated dimensionality of the projection induced by

the kernel.

Efficient kernel computations
Here we describe how to efficiently cache kernel computations, so that the
computational complexity of kernel evaluation in each iteration of the estimation

procedure becomes independent of the number of variants m.

The linear kernel can be trivially cached by pre-computing the quantity (X;)7X, for
every pair of individuals k and I. The polynomial kernel can similarly be cached by pre-

computing the quantity ((X;)7X,)? for every pair of individuals.
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The RBF kernel can be computed efficiently by caching the squared distances between
every pair of individuals, given by Dj; = Zi(X,"c—Xli)z. Given the matrix D, the RBF
kernel can then be computed efficiently via G(X, 8),; = exp (_ﬁDkl)- Similarly, the

SP kernel can be efficiently computed by caching the quantity || X||3 for every individual

k, and the product (X,,)7X, and for every pair of individuals k and .

Empirical run time measurement

To evaluate the empirical complexity of MKLMM, we measured estimation run-times for
an analysis of Crohn's disease (CD; using 3,171 individuals and 285,650 variants) and
ulcerative colitis (UC; using 5,498 individuals and 458,560 variants) with various
numbers of kernels, under various MKLMM models. All regions used kernels of the same
type. The first region was the genome-wide region, and subsequent regions were
selected according to the MKLMM-Adapt region selection procedure. The analysis was
performed on a 2GHz Linux workstation using a single core. All analyses avoided direct
dependence on the number of variants m by caching the covariance matrices, as
described above. The average run time for each estimation procedure (using 100
estimation iterations) is reported below, using the average of five independent
estimation procedures (one for each cross validation fold). The times are reported in
minutes. The first row reports the average computation time for the genome-wide

kernel, as this kernel was computed only once and then cached for subsequent use.

CD CD uc uc

Linear kernels | SP kernels | Linear kernels | SP kernels
Kernel creation 5.1 5.1 26.6 32.0
1 kernel 4.6 4.3 20.5 26.1
2 kernels 4.6 5.5 21.4 29.3
3 kernels 4.9 7.0 23.8 34.2
4 kernels 5.1 8.0 28.3 36.6
5 kernels 5.6 9.2 28.6 42.6
6 kernels 6.2 10.3 30.2 47.5
7 kernels 6.2 11.5 30.3 54.7
8 kernels 6.7 12.6 323 55.0
9 kernels 6.7 16.8 35.7 58.3
10 kernels 6.8 17.0 36.5 63.0

28



MKLMM for binary phenotypes

Binary LMMs model the distribution of a binary trait y. To adapt MKLMM to the binary
case, we adopt the liability threshold model (Dempster and Lerner 1950; Golan and
Rosset 2014), which associates every individual i with a latent normally distributed
variable [; called the liability, such that cases are individuals whose liability exceeds a
given cutoff t. It is typically assumed that the liability has a unit variance, in which case t
is determined according to the trait prevalence K, t = ® (1 — K), where ® is the
standard normal cumulative density. The liability is typically assumed to arise as the sum
of two independent normally distributed terms, [; = g; + e;, where g; is called the

genetic effect, and the zero mean normal variable ¢; is called the environmental effect.

Given a sample of individuals with a variants matrix X = [X; X, ... X,,]7, a covariates
matrix C = [C; C; ... C,]T, a phenotypes vector y = [y1,V5, ..., ¥,]T and a genetic
effects vector g = (g1, g2, -.-, gn) ', The posterior liability for a tested individual given g
is normally distributed, [,|X,C, g,C,, X.~N(u.(g),02 + c2), where g2 is the variance

of e;. Following Equation 2 in the main text, the distribution parameters are given by

1(g) =CIB+gl(6)G(X;0)"'(g—CP)
0= g.(0) — g7 (0)G(X;0)'g.(0). (15)

Therefore, conditional on the genetic effects g of the training individuals, risk prediction

can be computed via a closed form formula,

P(y* = 1|Xl Clg) C*IX*;ﬁlelo—ez) = P(l* 2 th, Clg' C*'X*;ﬂ)elo—ez)

= o (@@ - ONoZ+aF). (16)

In practice, the vector g is not observed, and thus risk estimation is more involved.

When only the training set phenotypes vector y is given, the estimated risk is given by
P(y* = 1|XJ C;y; C*)X*; ﬁ! 0’0.82)

— [ P@ixCyp09((@-ONFFoE)dg. (7

g
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We conclude that risk estimation for binary phenotypes under LMMs amounts to
computing a high dimensional integral, which cannot be solved analytically.
Nevertheless, several effective approximation methods exist. One approach is to
approximate the integral via Gibbs sampling, as recently proposed (Golan and Rosset
2014). Another approach is to approximate the posterior distribution
P(g|X,C,y;B,0, 02) via a normal distribution, which can render Equation 17 tractable.
Such approximations have recently gained considerable interest in both the machine
learning (Nickisch and Rasmussen 2008) and Bayesian statistics (Rue et al. 2009)
communities. In particular, the Laplace approximation, which approximates the
posterior distribution via a second order Taylor approximation around the maximum a
posteriori value, is known to be computationally efficient on the one hand and highly
accurate on the other (Nickisch and Rasmussen 2008). It is therefore possible to

efficiently approximate Equation 17 with a high degree of accuracy.

Parameter estimation for binary phenotypes

While binary phenotypes prediction is relatively simple when the model parameters
B, 0,02 are known, estimating the model parameters poses a greater challenge. Here, it
is important to distinguish between randomly ascertained and ascertained samples,

wherein cases are oversampled relative to the trait prevalence.

Under a randomly ascertained sample, the liability threshold model states that g is
normally distributed in the sample. In such cases, one can efficiently approximate the
maximume-likelihood estimate by approximating the likelihood P(y|X,C;B,8,c2) via
the Laplace approximation, and inferring the parameters via conjugate gradient

ascent (Nickisch and Rasmussen 2008).

In the presence of ascertainment, the genetic effects vector g is no longer normally
distributed in the sample (Golan and Rosset 2014), and the assumptions of the Laplace
approximation are therefore no longer accurate. When a single linear kernel is used,
one possible approach is estimating the fixed effects via logistic regression to estimate

the affection thresholds, and then employing a Taylor approximation-based moments
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estimator for the covariance matrix parameters, which takes the ascertainment
procedure into account (Golan et al. 2014). However, the Taylor approximation is
accurate only when the entries of the covariance matrix G(X; @) are small, which may

not be the case under more complex kernels.

Another option is to treat the phenotype as if it were normally distributed and estimate
the model parameters as described in the main text. This is the approach adopted by
several recently proposed methods, which suggested treating binary phenotypes as if
they were normally distributed (Zhou et al. 2013; Speed and Balding 2014; Moser et al.
2015).

We have carried out an empirical evaluation of the three parameter estimation
approaches on both simulated and real data sets. Our evaluation found that when
complex kernels are being used, the third approach outperforms the other two in the
majority of cases, in spite of its inaccurate assumptions (results not shown). The
moments estimator approach is not robust to the large matrix entries that are
sometimes encountered in the presence of complex kernels, while the Laplace
approximation vyields estimates that are almost identical to the ones of the third
approach, at a substantially increased computational cost. We conclude that efficient
parameter estimation for binary LMMs under ascertainment remains an open research

problem.

Binary phenotype simulations

To simulate ascertained data for a binary trait with prevalence K, we used the
assumptions of the liability threshold model. Namely, we first generated a large data set
with 500,000 synthetic genotypes and phenotypes, and then determined the affection
cutoff as the 1 — K empirical percentile of the phenotypes. Afterwards, 1,400
individuals with phenotype exceeding this cutoff were designated as cases, and 1,401 of
the other individuals were designated as controls. Genotypes were generated by
treating each SNP as a Binom(2) distributed random variable, using the empirical minor

allele frequencies of the 2,801 individuals used in all other experiments.
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The Bayesian interpretation of MKLMM

MKLMM readily admits a Bayesian interpretation. Under this interpretation, MKLMM is
a linear regression model wherein effect sizes are iid normally distributed. Recall that
under MKLMM, the phenotype is normally distributed, y|X, C~N(CB,G(X;0) + cZI).
Further recall that according to the Mercer theorem, every covariance matrix is
associated with a transformation function @: R™ — RM that projects genotype vectors
into a high dimensional space, such that G(X; 8) = @(X)@p(X)T, where ¢ is invoked on
each row of the matrix X (each individual) separately. Using basic properties of the

normal distribution, the (normal) density of y is given by

1
P(y|X,C;B,6,0%) = fdJ(y; CB+ o(X)y, 02D (v: O'MI) dy, (18)

where ¢ is the normal density, and the parameters @ are used implicitly by ¢. We

conclude that MKLMM can be written as the following Bayesian model:

y=CB+opX)y+e

N (0 ! I)
y ’M
e~N(0, a2I).

We now describe how the linear kernel can be derived via a slight transformation of the
saturating pathways kernel in Equation 5. To derive the linear kernel from Equation 5,

we slightly rearrange the model for the linear kernel as follows:

y=Cp+Xy+e

N (0 6 I)
Y ‘m
e~N(0,c2I).

The linear kernel can be directly derived from the saturating pathways kernel in

Equation 5, by setting R = 1, h(z) = 2,67 = 1,6/ =y.
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Privacy-preserving phenotype prediction

A key feature of MKLMM is its ability to perform genetic-similarity based prediction
without having to store the genotypes and phenotypes of the training sample. Exact
computations are possible for kernels with a finite-dimensional underlying
transformation, while the computations for infinite-dimensional kernels can be
approximated to an arbitrary degree of accuracy. We first explain how privacy

preservation is achieved, and then provide mathematical proofs for our claims.

Privacy preserving prediction for finite-dimensional kernels

We begin by describing exact privacy preserving prediction for finite-dimensional kernel
transformations. Our main tool is the fact that the vector g,.(8) in Equation 2 in the
main text, which describes genotypic covariance between each training individual and
the tested individual, can be factored as g,(8) = ¢ (X;0)¢"(X,; 0), where M is the
dimension of the feature space, the function ¢":R™ — RM transforms genotype
vectors, and the function @V: R™™ — R™M transforms each row of a genotypes matrix
(each individual) separately. To simplify notation, in the remainder of this section we
write @ (X; @) for both transformation types, because the type of ¢ can always be
inferred from its argument. The Mercer theorem states that for every possible kernel

there exists a corresponding function ¢. For example, under the linear kernel we have

M=m, g,(0) = B%XX*, and the corresponding function is @(Z;0) = \gl. The

function ¢ enables computing the posterior distribution of a predicted phenotype
without storing genotypes or phenotypes of training individuals, as we now

demonstrate.

Using the factorization of g,(@), the predicted mean and variance in Equation 2 in the

main text can be rewritten as follows:
. =CIB+9X.;0)"p(X;0)"(G(X;0) + o)™ (y — CB)

02 = g..(8) — p(X.;0) p(X;0)" (G(X; 0) + D)™ p(X; 0)p(X.; 0). (19)
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Equation 19 can now be rewritten as follows:
i, =CIB+oX,;0)"H
0l = g.(0) —9(X.;0)"Wo(X.;0), (20)

where the vector H and the matrix W are independent of the tested genotype, and are

given by
H=¢(X;0)"(6(X;0)+ oiD~'(y — CP) (21)
W =X 0)(GX;0)+ ;D 'p(X; 0). (22)

Equation 20 has an intuitive interpretation under the Bayesian view of LMMs, described
above. Under this view, LMMs are equivalent to a linear regression model, wherein all
effect sizes are iid normally distributed. The vector H can therefore be viewed as the
posterior mean of the effect sizes vector, whereas the matrix W is given by W = I — X,

where X is the covariance matrix of the posterior effect sizes distribution.

We conclude that phenotype prediction can be performed by computing H and W only
once, and then discarding the original genotypes matrix X and phenotypes vector y. It is
clear that X and y cannot be recovered from H, because there are infinitely many such
matrix-vector pairs leading to the same vector H (see proof below). It is also easy to
show that X cannot be recovered from W, since it is invariant to rotations of ¢ (X; @),
indicating that there are infinitely many matrices leading to the same matrix W (see
proof below). We note that the matrix W has dimensions M X M, which can make its
storage unwieldy. However, it can be decomposed into a product of matrices of
dimensions n X M (where n is the training set size) which alleviates this concern, as

described below.

When using a composite kernel that is a weighted sum of simpler kernels, we define a
composite kernel transformation which concatenates matrices horizontally and vectors

vertically. For example, for the kernel G(X; 04,0,) = G,(X; 0,) + G,(X; 8,) we define
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(pl(x*; 01)
(pZ (X*r 02)

transformations for kernels G, and G, respectively.

g9.(04,0,) = [9p,(X;0,) 9,(X;0,)] ], where ¢,, @, are the underlying

Privacy preserving prediction for infinite-dimensional Kernels

When the kernel transformation ¢ has an infinite dimensionality (as in the SP kernel),
the procedure above cannot be used, because explicit computation of ¢(Z;8) is
impossible. However, the kernel transformation for many kernel types can be
approximated as a finite-dimensional transformation. Approximation of kernels via
finite transformations is an active research topic, and many recent works have shown
that finite approximations can substantially simplify kernel methods with a negligible

loss of accuracy (Le et al. 2013; Yang et al. 2015).

The saturating pathways kernel is particularly suitable for a finite approximation, as it is
explicitly derived by applying the central limit theorem for an asymptotic expansion of
an infinite number of saturating pathways. It is therefore straightforward to
approximate the underlying transformation of this kernel by sampling a finite but large
number of pathways. The central limit theorem guarantees that the approximation
error is proportional to the square root of the number of sampled pathways, indicating
that accuracy can be increased to an arbitrary degree by sampling additional pathways

without compromising genomic privacy.

Proofs of privacy-preserving claims

Here we provide proofs for several claims regarding privacy-preserving phenotype
prediction. We base the following proofs on the spectral decomposition of ¢(X;8),
which we now derive. We first rewrite the matrix G(X; @) as a matrix product in a high
dimensional space, G(X;0) = ¢(X;0)¢p(X;0)T. Equations 21 and 22 can now be

written as

H=0¢X;0)"(¢(X;0)0X;0)" + oiD~(y — CB) (23)

W =pX;0)"(pX;0)0X;0)" + oD ¢(X; ). (24)

35



Next, we rewrite Equations 23 and 24 via the singular value decomposition (SVD) of
@(X;0) = USVT. Using the orthonormality of U and denoting diag(§) = s (where a
lower case s indicates a vector rather than a diagonal matrix), Equations 23 and 24 can

be rewritten as follows:
H = VSUT ((USVT)(VSUT) + 62I)  (y — CB)
= VSUT (US*UT + cZ2UU") 1(y — CB)
=VSUT[U(S? + a2DUT]" 1 (y — CB)

= VSUT(U(S? + 62D)~UT)(y — CP)

= VSdiag( )UT(y— Ccp)

5% + o}

— Vdiag( ) U (y — CB). (25)

5% + o}
W = VSUT ((USV)(VSUT) + o) USVT

= VSUT (US?UT + oZ2UUT)"'USVT = vSUT[U(S? + a2D)UT|1USVT

, 1
= VSUT(U(S? + o2I)~1UT)USVT = VSdiag (32 — 02) ST

e

s? r
= Vdiag <82 n Gez) V. (26)

We conclude that Equations 21 and 22 can be rewritten as

H = Vdiag (SZ = aez) UT(y-cCp) (27)
SZ
— : T
W = Vdiag <sz n aez> V'. (28)

We now prove the claims made in the main text.
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To prove that W requires less than O(M?) storage space, we note that Equation 28
shows that W can be computed from the matrix V and the vector s, whose storage
requirements (when using the economy SVD) are O(nM) and 0(n), respectively (where
n is the training sample size). To prove that X cannot be recovered from W, we notice
that W is independent of U, indicating that W is invariant to rotations of ¢(X;0).
Finally, to prove that X and y cannot be recovered from H, we rearrange Equation 27 as

follows:
s? + a?
diag (Te> VTH = U"(y — CPB). (29)

Clearly, even when V and s are known, there are an infinite combinations of

orthonormal bases U and vectors (y — Cf) satisfying Equation 29.

Permutation testing

To evaluate the statistical significance of the advantage of each method over another
method, we employed a permutation test where the predicted phenotype of each
individual under each method was randomly swapped between the two methods
100,000 times and the measure of interest (e.g. AUC) was re-evaluated under each

permutation.

A potential concern with this test is that the selection of the optimal number of kernels
cannot be evaluated in the permutation test, because the dependence structure in each
permutation is different from the one in the original data, owing to the fact that
predictions of two different methods are combined. To circumvent this difficulty, we
first computed the optimal number of regions for each cross validation fold under each
method, where optimality was defined according to the evaluated measure. For
example, when AUC was measured, we computed the number of regions that

maximizes the AUC in each fold. Afterwards, we associated every individual under every
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method with a single prediction corresponding to the optimal number of regions for her

fold. The permutation test was applied using these predictions.

We additionally evaluated a different permutation test that evaluates the optimal
number of kernels under each permutation, which yielded very similar results in

practice (results not shown).

Estimating affection probability for binary phenotypes

As explained in the main text, estimating the affection probability of an individual under
an LMM is challenging because of the need to consider the ascertainment scheme.
Nevertheless, we carried out analyses of ascertained case control studies to obtain a

comparison with previous works.

Direct estimation of affection probabilities that ignores the ascertainment scheme is
straightforward, because LMMs compute a posterior normal distribution for the
phenotype of each tested individual. Assuming that individuals are affected if their
predicted phenotype is larger than zero, the affection probability is given by the
probability that the normally distributed posterior phenotype is positive. Furthermore,
an intercept value can be added to the LMM to maximize the likelihood of the binary
phenotype (after obtaining the REML parameter estimates when treating the phenotype

as quantitative), and this was done in the experiments.

Real Data preprocessing

In the Mice data set, we followed the preprocessing procedure described in (Speed and
Balding 2014). Namely, Single nucleotide polymorphisms (SNPs) were excluded if they
had a minor allele frequency <0.01, Hardy Weinberg equilibrium P-value < 1074, or a
missingness rate >1%. Phenotypes were selected for the analysis if measurements were

available for at least 1,300 mice, the coefficient of kurtosis was smaller than six, and the
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phenotype was not binary. Each analysis used sex as a covariate. Age at the experiment
time was also used as a covariate when this data was available. Mice with a missing
value for a certain phenotypes were excluded from the analysis of this phenotype. In the
cross-validation procedure, mice in the same cage were placed in the same fold to
prevent leakage. All variants were standardized to have zero mean and unit variance. In
all experiments, AMB and MKLMM used a division of the genome into regions of

approximately 75kb, using LDAK (Speed and Balding 2014).

In the WTCCC1 data sets, we performed stringent quality control preprocessing to avoid
genotyping artifacts from biasing the results (Golan and Rosset 2014). SNPs were
excluded if they had minor allele frequency <5%, missingness rates >1%, a significantly
different missingness rate between cases and controls, or a significant deviation from
Hardy Weinberg equilibrium among the controls group. Controls consisted of individuals
from the national blood service control group. The second controls group of C58 birth
cohort was excluded from the main experiments to address the concern that the non-
linear methods may exploit subtle population structure signals differentiating the two
groups. Results for analyses with both control groups are provided in Supplemental

Table S6.

Individuals were excluded from the analysis if they were in the WTCCC exclusion lists or
if they had missingness rates >1%. We further excluded individuals with a normalized
similarity coefficient >0.05 with at least one other individual, by greedily removing
individuals according to the number of related individuals they had, until no related
individuals remained. To prevent spurious results due to population structure, we
projected all genotype vectors to the subspace that is orthogonal to the top 10 principal
components. Sex was used as a covariate in all data sets. In all experiments, AMB and
MKLMM used a division of the genome into regions of approximately 75kb, using

LDAK (Speed and Balding 2014).

In the ulcerative colitis (UC) data set, controls consisted of individuals from the national

blood service control group. SNPs were removed if they had >0.5% missing data, p<0.01
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for allele frequency difference between two control groups, p<0.05 for deviation from
Hardy-Weinberg equilibrium, p<0.05 for differential missingness between cases and
controls, or minor allele frequency <1%. All genotype vectors were projected to the
subspace that is orthogonal to the top 10 principal components. Variants within 5kb of
the major histocompatibility complex (MHC) were excluded from the analysis, because
the MHC region in this data set is strongly associated with population structure, even
when excluding the top principal components (Yang et al. 2014). The genome was
divided into regions of approximately 75kb, using LDAK (Speed and Balding 2014). Due
to the memory requirements incurred by the large data set size, the genome-wide

kernel for this analysis was fixed to be a linear kernel.

An important concern in the analysis of case control phenotypes is ascertainment-
induced leakage. Leakage can be introduced to the analysis when standardizing variants,
because oversampling of cases leads to an overrepresentation of risk alleles in the
sample. To prevent such leakage, we computed a weighted mean and variance for each
SNP according to the disease prevalence, such that controls were overrepresented to
match the true phenotype prevalence (the marginal variance of each SNP can be
computed via the law of total variance). We then standardized each variant by
subtracting the weighted mean and dividing by the weighted standard deviation.
Following (Golan and Rosset 2014), the estimated prevalence for the diseases were CD

(0.1%), T1D (0.5%), BD (0.5%), RA (0.5%), T2D (3%), CAD (3.5%), HT (5%) and UC (0.3%).

Simulations procedure

The synthetic phenotype simulations were carried out as follows. We created a data set
consisting of 2,801 individuals from the Wellcome trust 2 national blood service controls
group and their Chromosome 1 SNPs. In each simulation, we generated a synthetic
phenotype by first randomly selecting genomic regions and then generating

phenotypes. Ten data sets were created for each unique combination of tested
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parameters. We first describe the simulations procedure, and then describe the default

parameter values used in all experiments.

Genomic regions were selected by first sampling a region size for each region from a
Poisson(75,000) distribution, and then randomly selecting a set of consecutive SNPs
spanning the selected region size. We also considered an additional region spanning all

chromosome-wide SNPs.

For each region, we generated a linear effect, and one or two non-linear effects. Each
non-linear effect was either a saturating effect or a groupwise effect (described below).
Afterwards, an aggregated linear effect, an aggregated saturating effect and an
aggregated groupwise effect were created by summing all region-specific effects of each
type (excluding the chromosome-wide region) with randomly sampled mixture weights,
designed to differentiate the phenotypic variance explained by different regions. In the
next step, a combined chromosome-wide effect and a combined regions effect were
created by summing of the aggregated effects and the chromosome-wide effects,
respectively. The final phenotype consisted of a weighted sum of the two combined
effects, with predetermined mixture weights, and an iid normally distributed
environmental effect that was independent of the genotypes. In all simulations, the
chromosome-wide region included all three effect types, while each of the other regions
included a linear effect and one of the two non-linear effect types, with an equal
number of regions for each effect type. We now describe the simulation procedure for

each of the three effect types in detail.

The linear effect of each region was generated by drawing effect sizes for all the SNPs in
the region from a standard normal distribution, and computing the weighted sum. The
value of each linear effect for each individual was given by X;x;a;, where x; is the
(normalized) value of SNP i carried by the individual, «; is the effect size of variant i, and

the index i iterates over all variants in the region.

The saturating effect of each region was generated by sampling 100 pathways. For each
pathway, input effect sizes a; were sampled from a zero-mean normal distribution with
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a variance of 100, and an output effect size y was sampled from a normal distribution
with a variance of 0.01. Using the same notations as before, the value of each pathway
was given by y - erf(Z;x;a;). The large variance of the input effect sizes is meant to
induce non-linear dynamics, because erf(z) is approximately linear when z is close to
zero. Finally, all pathway values were summed to generate an aggregated saturating

effect.

The groupwise effect of each region was generated by randomly selecting ten SNP
subsets, computing a value for each one and then summing up the values. The effect of
each SNP subset consisted of the element-wise multiplication of the selected SNP
vectors, multiplied by an effect size drawn from a standard zero-mean normal
distribution. Formally, the groupwise effect for region r for a certain individual is given
by Z;-‘:l S;(X")aj, where X" is the vector of SNPs in region r carried by the individual, a;
is the effect size of group j and S;(X") = [}, x;,, where the index j; iterates over SNPs
that participate in group j. The SNPs for each group were selected uniformly with
replacement, and the group sizes were drawn from a Poisson(2) distribution, conditional

on being larger than one.

Unless otherwise stated, in all experiments the regions consisted of two, four or six
randomly selected regions with lengths drawn from a Poisson(75,000) distribution with
an additional chromosome-wide region. Each region included a linear and either a
groupwise or a saturating effect, with an equal number of regions having each of the
effect types. The chromosome-wide region included all three effect types. When
combining the contribution of each effect of each region to the aggregated effects, the
effects were differentiated with random mixture weight drawn from an inverse gamma
distribution (the conjugate prior of the variance of the normal distribution) with shape
and scale parameters 2 and 1, respectively (to yield a mean variance of 1.0). The
aggregated linear effect accounted for 25% of the combined effect, while the two non-
linear effects each accounted for 37.5% of the combined effect. The combined effect

itself accounted for 50% of the explained phenotypic variance, and the other 50% was
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drawn from an iid zero mean normal distribution. In all experiments, all variants were

standardized to have a zero mean and a unit variance.
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