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Supplemental Material for Multi-
Kernel Linear Mixed Models for 
Complex Phenotype Prediction 

 

Supplemental tables 

Table S1: Sample sizes and number of SNPs for the evaluated WTCCC data sets. The 

diseases are CD (Crohn's disease), T1D (type 1 diabetes), BD (bipolar disorder), RA 

(rheumatoid arthritis), T2D (type 2 diabetes), CAD (coronary artery disease) HT 

(hypertension) and UC (ulcerative colitis). Control individuals are divided into the UK 

national blood service (NBS) controls and the 1958 British birth cohort (C58) controls. 

 #SNPs #cases #NBS controls #C58 controls 

CD 285650 1720 1451 1474 

T1D 286237 1957 1454 1741 

BD 284208 1856 1450 1745 

RA 287884 1850 1453 1742 

T2D 286339 1906 1453 1742 

CAD 288544 1910 1451 1474 

HT 281898 1932 1455 1470 

UC 458560 2697 2801 2851 
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Table S2: Analysis results on WTCCC data. The table is similar to Table 1 in the main 

text, but also includes mean negative out of sample log likelihood (NOOS LL) results, 

computed heuristically as the probability of having a non-negative phenotype according 

to the posterior phenotype distribution of each individual. We emphasize that such 

values should be regarded with caution, as they do not take the ascertainment 

procedure into account.  Traits marked with an asterisk are ones where the MHC region 

was excluded from the analysis. 

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP 

 AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL 

CD 0.667±0.010 0.645±0.005 0.650±0.010 0.651±0.005 0.645±0.011 0.657±0.004 0.582±0.013 0.680±0.003 

T1D 0.886±0.004 0.434±0.006 0.885±0.003 0.437±0.005 0.883±0.004 0.443±0.006 0.601±0.008 0.670±0.004 

BD 0.563±0.011 0.681±0.004 0.571±0.012 0.677±0.005 0.568±0.011 0.681±0.004 0.578±0.011 0.679±0.002 

RA 0.750±0.009 0.592±0.007 0.749±0.009 0.589±0.006 0.752±0.010 0.589±0.007 0.671±0.009 0.643±0.003 

T2D 0.634±0.007 0.655±0.004 0.632±0.008 0.656±0.004 0.634±0.007 0.655±0.004 0.598±0.009 0.672±0.003 

CAD 0.698±0.014` 0.624±0.007 0.697±0.014 0.621±0.007 0.699±0.013 0.621±0.007 0.701±0.015 0.621±0.008 

HT 0.611±0.003 0.662±0.002 0.610±0.003 0.660±0.002 0.611±0.003 0.658±0.003 0.576±0.005 0.675±0.001 

UC 0.601±0.007 0.676±0.004 0.590±0.003 0.689±0.001 0.585±0.002 0.683±0.001 0.583±0.004 0.684±0.001 

CD* 0.668±0.009 0.646±0.004 0.653±0.009 0.652±0.004 0.646±0.010 0.658±0.004 0.580±0.013 0.680±0.003 

T1D* 0.607±0.006 0.666±0.003 0.613±0.008 0.666±0.003 0.612±0.007 0.665±0.002 0.564±0.009 0.679±0.003 

RA* 0.650±0.007 0.651±0.003 0.644±0.009 0.651±0.003 0.650±0.007 0.651±0.003 0.652±0.010 0.651±0.003 

 

 

Table S3: Results of permutation tests comparing MKLMM-Adapt and AMB on the 

WTCCC data sets. Each test was performed with 100,000 permutations. The P-value is 

the percentage of permutations wherein the evaluated method had a larger advantage 

over AMB than observed in the original data. 

 MKLMM-Adapt MKLMM-Poly2 

Trait AUC NOOS LL AUC NOOS LL 

CD 5.00            1.18                

T1D 1.82            1.75                
BD 9.11                6.11                
RA 7.30                5.32                

T2D 3.47                2.14                

CAD 5.16                5.21                
HT 9.26                9.45                
UC                                     
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Table S4: Analysis results on WTCCC data, using quantitative phenotype measures. The 

reported values are the root mean square error (RMSE), and Pearson correlation (Corr). 

Results marked in bold text indicate a statistically significant advantage over AMB. 

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP 

 RMSE Corr RMSE Corr RMSE Corr RMSE Corr 

CD 1.259±0.006 0.285±0.016 1.263±0.004 0.263±0.018 1.259±0.004 0.235±0.012 1.261±0.003 0.134±0.019 

T1D 1.224±0.006 0.620±0.011 1.232±0.006 0.619±0.010 1.224±0.006 0.607±0.013 1.224±0.006 0.170±0.014 

BD 1.238±0.003 0.137±0.020 1.243±0.003 0.145±0.017 1.241±0.003 0.133±0.023 1.237±0.002 0.125±0.015 

RA 1.253±0.005 0.418±0.015 1.263±0.006 0.422±0.010 1.253±0.005 0.422±0.016 1.253±0.005 0.295±0.015 

T2D 1.236±0.005 0.230±0.015 1.242±0.004 0.231±0.017 1.236±0.005 0.233±0.016 1.235±0.003 0.166±0.014 

CAD 1.265±0.002 0.356±0.019 1.275±0.005 0.355±0.019 1.267±0.002 0.356±0.019 1.261±0.004 0.359±0.023 

HT 1.233±0.003 0.206±0.014 1.243±0.004 0.202±0.003 1.233±0.003 0.211±0.015 1.233±0.003 0.134±0.006 

UC 1.304±0.004 0.206±0.014 10.63±2.36 0.057±0.005 1.304±0.002 0.145±0.008 1.303±0.002 0.131±0.002 

 

 

 

 

Table S5: Analysis results on WTCCC data, without omitting the top 10 principal 

components. The table is similar to Table S1, but reports results for data that includes 

the top 10 principal components, and may thus be susceptible to spurious results due to 

confounding. The reported values are the area under ROC curve (AUC; higher is better), 

and average negative out of sample log likelihood (NOOS LL; lower is better). Results 

marked in bold text indicate a statistically significant advantage over AMB. 

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP 

 AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL 

CD 0.679±0.013 0.640±0.005 0.675±0.010 0.641±0.005 0.673±0.010 0.643±0.005 0.628±0.014 0.666±0.004 

T1D 0.891±0.006 0.422±0.009 0.892±0.007 0.422±0.010 0.890±0.006 0.428±0.009 0.672±0.008 0.642±0.004 

BD 0.640±0.006 0.660±0.001 0.638±0.006 0.661±0.002 0.641±0.006 0.658±0.002 0.641±0.008 0.660±0.003 

RA 0.763±0.009 0.581±0.006 0.759±0.008 0.581±0.006 0.761±0.009 0.581±0.006 0.690±0.007 0.634±0.003 

T2D 0.640±0.005 0.652±0.003 0.639±0.006 0.653±0.004 0.641±0.005 0.653±0.003 0.602±0.008 0.671±0.003 

CAD 0.693±0.014 0.624±0.008 0.692±0.014 0.628±0.008 0.692±0.014 0.625±0.008 0.694±0.014 0.623±0.008 

HT 0.623±0.005 0.655±0.002 0.623±0.004 0.657±0.003 0.623±0.005 0.655±0.002 0.591±0.006 0.671±0.002 

UC 0.626±0.005 0.670±0.005 0.631±0.003 0.671±0.005 0.629±0.005 0.663±0.003 0.623±0.003 0.667±0.003 
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Table S6: Analysis results on WTCCC data, using an additional controls group. The table 

is similar to Table S1, but uses the C58 controls group in addition to the national blood 

service control group. The reported values are the area under ROC curve (AUC; higher is 

better), and average negative out of sample log likelihood (NOOS LL; lower is better). 

Results marked in bold text indicate a statistically significant advantage over AMB. 

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP 

 AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL 

CD 0.688±0.004 0.618±0.002 0.668±0.011 0.620±0.003 0.644±0.008 0.625±0.004 0.584±0.008 0.650±0.002 

T1D 0.917±0.007 0.384±0.005 0.914±0.007 0.394±0.010 0.882±0.009 0.442±0.011 0.621±0.011 0.652±0.003 

BD 0.621±0.009 0.643±0.004 0.626±0.009 0.636±0.004 0.620±0.009 0.644±0.003 0.617±0.012 0.650±0.003 

RA 0.745±0.008 0.573±0.003 0.750±0.007 0.569±0.004 0.746±0.007 0.573±0.004 0.668±0.007 0.626±0.003 

T2D 0.675±0.011 0.619±0.003 0.672±0.007 0.622±0.004 0.674±0.013 0.621±0.005 0.603±0.005 0.655±0.002 

CAD 0.718±0.006 0.597±0.003 0.717±0.011 0.598±0.003 0.717±0.007 0.599±0.004 0.698±0.003 0.611±0.002 

HT 0.632±0.003 0.637±0.002 0.633±0.007 0.634±0.003 0.635±0.009 0.635±0.005 0.603±0.011 0.657±0.003 

UC 0.628±0.004 0.605±0.002 0.617±0.003 0.608±0.003 0.613±0.003 0.607±0.002 0.583±0.004 0.684±0.001 

CD* 0.687±0.004 0.620±0.003 0.667±0.008 0.628±0.005 0.645±0.007 0.644±0.003 0.583±0.008 0.661±0.003 

T1D* 0.611±0.005 0.664±0.003 0.613±0.006 0.665±0.004 0.613±0.007 0.661±0.004 0.588±0.008 0.664±0.006 

RA* 0.653±0.006 0.650±0.004 0.655±0.010 0.645±0.003 0.653±0.007 0.649±0.003 0.651±0.011 0.641±0.005 

 

Table S7: Analysis results on WTCCC data, using additional MKLMM methods. The table 

is similar to Supplemental Table 1, but reports results for an MKLMM formulation that 

uses a weighted combination of linear and an SP kernel for each region (MKLMM-SP), 

and an MKLMM formulation that uses a weighted combination of a linear and a radial 

basis function kernel for each region (MKLMM-RBF). Results marked in bold text 

indicate a statistically significant advantage over AMB. 

Trait MKLMM-Adapt MKLMM-SP MKLMM-RBF AMB 

 AUC NOOS LL AUC NOOS LL AUC NOOS LL AUC NOOS LL 

CD 0.667±0.010 0.645±0.005 0.666±0.010 0.645±0.005 0.667±0.011 0.648±0.006 0.645±0.011 0.657±0.004 

T1D 0.886±0.004 0.434±0.006 0.886±0.003 0.434±0.006 0.885±0.005 0.445±0.010 0.883±0.004 0.443±0.006 

BD 0.563±0.011 0.681±0.004 0.572±0.008 0.676±0.003 0.572±0.009 0.682±0.004 0.568±0.011 0.681±0.004 

RA 0.750±0.009 0.592±0.007 0.750±0.010 0.590±0.007 0.751±0.010 0.590±0.007 0.752±0.010 0.589±0.007 

T2D 0.634±0.007 0.655±0.004 0.632±0.007 0.655±0.003 0.633±0.007 0.660±0.003 0.634±0.007 0.655±0.004 

CAD 0.698±0.014 0.624±0.007 0.697±0.013 0.621±0.007 0.696±0.014 0.629±0.008 0.699±0.013 0.621±0.007 

HT 0.611±0.003 0.662±0.002 0.609±0.004 0.658±0.003 0.614±0.004 0.660±0.003 0.611±0.003 0.658±0.003 

UC 0.601±0.007 0.676±0.004 0.587±0.006 0.678±0.001 0.592±0.003 0.676±0.002 0.585±0.002 0.683±0.001 
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Supplemental figures 

 

Figure S1: Comparison of the evaluated methods on synthetic data sets with various 

ratios of explained to total phenotypic variance. The advantage of the MKLMM methods 

over AMB, and of MKLMM-Adapt over MKLMM-Poly2, increases with the percentage of 

explained variance. 
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Figure S2: Comparison of the evaluated methods on synthetic data sets with various 

region lengths. The advantage of the kernel-based methods over the linear methods is 

greater under shorter regions, indicating that interactions can be better captured over 

short distances. Linear methods do not capture interactions and are thus less sensitive 

to the region length. 
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Figure S3: Comparison of the evaluated methods on synthetic data sets with binary 

phenotypes. The left pane shows performance for randomly ascertained data sets with 

real genotypes, and the right pane shows performance for ascertained data sets with 

synthetic genotypes and an equal number of cases and controls, as a function of the 

trait prevalence in the population. Each data set contains two genomic regions 

harboring interacting variants. The MKLMM methods outperform AMB under all 

settings. 
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Figure S4: Absolute performance of the evaluated methods in prediction of mouse 

phenotypes, according to the root mean square error (RMSE) measure. 
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Figure S5: Relative performance of the evaluated methods in prediction of mouse 

phenotypes, according to the OOS LL measure. For each phenotype, the figure shows 

the difference between the prediction performance of the evaluated methods and AMB, 

according to OOS LL. MKLMM-Adapt outperformed AMB across 96 phenotypes. 
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Figure S6: Absolute performance of the evaluated methods in prediction of mouse 

phenotypes, according to negative out of sample log likelihood (NOOS LL) measure. 
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Figure S7: Relative performance of the evaluated methods in prediction of mouse 

phenotypes, according to the Pearson correlation measure. For each phenotype, the 

figure shows the difference between the prediction performance of the evaluated 

methods and AMB. MKLMM-Adapt outperformed AMB across 83 phenotypes. 
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Figure S8: Absolute performance of the evaluated methods in prediction of mouse 

phenotypes, according to the Pearson correlation measure. 
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Figure S9: Relative performance of additional evaluated methods in prediction of mouse 

phenotypes, according to the RMSE measure. The figure is similar to Figure S3 in the 

main text, but reports results for additional MKLMM formulations that assign a 

weighted combination of a linear and a radial basis function kernel for each region 

(MKLMM-RBF), or a weighted combination of a linear and a saturating pathways kernel 

for each region (MKLMM-SP). Higher values indicate a greater advantage for a method 

over AMB. MKLMM-SP and MKLMM-RBF outperformed AMB across 96 and 112 

phenotypes, respectively. 
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Figure S10: Relative performance of additional evaluated methods in prediction of 

mouse phenotypes, according to the OOS LL measure. The figure is similar to Figure S9, 

but uses OOS LL to measure prediction performance. MKLMM-SP and MKLMM-RBF 

outperformed AMB across 97 and 113 phenotypes, respectively. 
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Figure S11: Relative performance of additional evaluated methods in prediction of 

mouse phenotypes, according to the Pearson correlation measure. The figure is similar 

to Figure S9, but uses Pearson correlation to measure prediction performance. MKLMM-

SP and MKLMM-RBF both outperformed AMB across 89 phenotypes. 
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Investigating tagging of ungenotyped variants 

A potential concern with MKLMM is that it may improve prediction performance over 

AMB due to better tagging of ungenotyped variants, rather than modeling of true 

interactions. To investigate this possibility, we generated data sets based on true 

genotypes of control individuals from the Wellcome Trust Case Control Consortium 2 

(WTCCC2) with one chromosome-wide linear kernel and an additional linear kernel for a 

region consisting of 2,4,6 or 8 SNPs. Afterwards, we excluded the causal SNPs in the 

small region and their 0,2,4 or 6 closest flanking SNPs from the analysis. 

In all cases MKLMM-Adapt selected only linear kernels, indicating that even in the 

situation which is most favorable to the tagging hypothesis, where untyped causal 

variants have a strong linear effect, and typed variants have varying levels and patterns 

of LD with these causative variants, the tagging did not create phantom interactions that 

were captured by MKLMM-Adapt. Furthermore, prediction performance for MKLMM-

RBF and MKLMM-SP was almost the same as that of AMB (mean Pearson correlation 

difference <0.0005, and maximum Pearson correlation difference <0.03 in all cases), 

again indicating that improved tagging of causal SNPs was not exploited to improve 

prediction performance. 

 

Evaluated kernels 

This work makes use of several kernel types under the MKLMM framework. In the 

following, we describe the evaluated kernels and their underlying assumptions. The 

kernels surveyed here are used as building blocks for a composite kernel that is a 

weighted-sum of region-specific kernels, as detailed in the main text. Throughout this 

section,        denotes a matrix of   variants measured for   individuals, where all 

variants are standardized to have a zero mean and unit variance. We consider four 

kernels: A linear kernel, a polynomial kernel of degree 2, a radial basis function (RBF) 

kernel and a saturating pathways (SP) kernel. 
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The linear kernel is given by 

          
 

 
  
                                                                                             

where           is the genotypic covariance between individuals   and  . This kernel is 

equivalent to the kernel defined in Equation 3 in the main text, with the exception that 

the scaling factor (commonly known as   
  in the presence of a single genomewide 

kernel) is now considered a parameter of the composite kernel. Therefore, the kernel 

presented here is not associated with any parameter. The linear kernel corresponds to 

the identity transformation, and encodes the assumption that genetic variants have a 

linear effect on the phenotype. 

The polynomial kernel of degree 2 is given by 

       
 

  
   

    
                                                                                   

This kernel encodes the assumption that products of pairs of variants have a linear 

effect on the phenotype, as described in the main text. It corresponds to a 

transformation that projects each genotype vector    into a new vector in which there 

is an entry for the product of every pair of variants.  

The RBF kernel, which has received considerable attention in the plant and animal 

breeding literature  (Morota and Gianola 2014), generalizes the polynomial kernel to 

model interactions of an arbitrary order. This kernel involves a single positive parameter 

 , and is given by  

               
 

    
    

    
  
 

 

                                                           

The RBF kernel corresponds to an infinite-dimensional transformation, and can 

therefore capture rich interaction patterns. To gain some intuition into its underlying 

assumptions, we consider the explicit underlying transformation of the RBF kernel. It 

can be shown that this transformation associates every non-negative integer number   
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and every set of non-negative integers         such that       
    with a unique 

entry, given by  (Shashua 2009) 

    
      

 

     

   
    

         
 

 
       

 
   

   
          

                                        

Equation 4 demonstrates that the RBF kernel generalizes the polynomial kernel to also 

capture higher order interactions, because every possible polynomial combination of 

parameters is represented in its underlying transformation. 

Finally, we also consider the saturating pathways kernel, described in detail below. 

 

The saturating pathways kernel 

Here we present a kernel known in the Machine learning community as the neural 

network kernel  (Neal 1996). In our context it has an attractive biological interpretation 

as assuming an interaction model of saturating pathways, as described next. In this 

description we assume a single kernel and omit the fixed effects for ease of 

presentation. 

Consider a phenotype that is affected by   biological processes in an additive manner. 

The phenotype for individual   is given by 

       
         

      
        

 

   

                                                                 

where      is a monotone function in the range       , and         
   (Supplemental 

Figure S12). We refer to each term      
       as a saturating pathway, because the 

bounded range of      encodes saturation dynamics, which are common in biological 

systems  (Zuk et al. 2012). Interactions are naturally encoded in this model via the 

saturating functions. The proposed model can be seen as a generalization of the 

standard linear kernel. It is easy to show that when there is only a single pathway 
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(   ) and       , Equation 5 can be described by a linear kernel, by setting    
 
 

 ,   
      

  
 

 
    and using the Bayesian interpretation of LMMs (see below). 

We now extend Equation 5 by considering the limit of an infinite number of pathways. 

Assuming that       are vectors of iid zero mean random variables with       
   

   ,  taking the limit    , and applying the central limit theorem, we obtain that    

follows a zero mean normal distribution with the covariance matrix 

                              
                                                              

Different choices of the saturation function      and the distribution of    lead to 

different kernels. A common choice is                       
 
  

 

 
 and 

         
   , which leads to a kernel defined by a single parameter  (Rasmussen and 

Williams 2006): 

                    
 
 
    

   

         
            

    
            

where        
 . Typically the genotype matrix   is augmented with a column with 

the value    for numerical stability. Each pathway can model a sharp step function by 

taking the limit   
    . It is worthy to note that the presented model (when not 

invoking the central limit theorem) is known to be a universal approximator  (Hornik 

1993),  which can approximate any arbitrary function to an arbitrary degree of accuracy 

as the sample size tends to infinity. 

We also note that there is some resemblance between the proposed model and the well 

known limiting pathways model   (Zuk et al. 2012), that can be obtained from Equation 5 

by defining         and replacing the summation with a minimization operator. 

However, unlike the SP model, the limiting pathways model results in a non-normal 

phenotype distribution. 
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Figure S12: A schematic representation of the saturating pathways kernel. Blue circles 

are genetic variants, red circles are pathways and the green circle represents the 

phenotype. Every pathway is associated with a subset of variants and with a kernel. The 

figure shows one genome-wide SP kernel and two region-specific SP kernels, highlighted 

at the top and bottom of the middle column. The top two and bottom two variants 

belong to regions with region-specific kernels. The output of each pathway is a 

saturating function (erf(x)) of a linear combination of its variants, and the phenotype is a 

linear combination of the pathway values. The linear combination coefficients of each 

pathway and of the phenotype are drawn from a normal distribution. 

 

 

MKLMM parameters estimation 

Here we describe maximum likelihood (ML) and restricted maximum likelihood (REML) 

parameter estimation for MKLMM. Under the LMM, the log likelihood of the 

phenotypes vector   for   individuals is given by: 
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where   is a matrix of genotyped variants,   is a matrix of covariates,   is a vector of 

fixed effects, and         
            

   is the overall covariance matrix 

composed of the genetic covariance matrix        and an environmental term with 

variance   
 . 

Maximum likelihood estimation 

Maximum likelihood estimation amounts to finding the parameters  ,  and   
  that 

maximize Equation 8. Importantly, the normalization term of the normal distribution 

serves as a regularization term that discourages overly complex models with a very high 

variance. This distinguishes LMMs and their extensions from fixed effect models. 

Parameter estimation can be performed via conjugate gradient ascent, as described 

below. The maximum likelihood estimate of   given   and   
  is given by  (Lippert et al. 

2011): 

              
                  

                                                                        

To infer   and   
 , we perform conjugate gradient ascent using the gradient of Equation 

8, given by  (Rasmussen and Williams 2006): 

 

   
         

   
 

 
                

     
       

    

   
                                  

 

    
         

   
 

 
               

                                                                    

where           
           ,       is the trace operator, and 

         
  

   
 is a matrix 

of elementwise partial derivatives.  

The computational complexity scales cubically with the sample size due to the matrix 

inversion, as in standard LMMs. All other operations scale quadratically with the sample 
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size. Importantly, the complexity is independent of the number of parameters. After 

inverting this matrix, the computation of Equations 8-11 can be parallelized. Efficient 

approximations can potentially scale this procedure up to hundreds of thousands of 

individuals at a modest loss of accuracy  (Snelson and Ghahramani 2007; Hensman et al. 

2013; Yang et al. 2015). 

Restricted maximum likelihood estimation 

The restricted log likelihood is comprised of the log likelihood and three additional 

terms  (Lippert et al. 2011): 

          
            

  

 
 

 
                                 

                                 

The restricted maximum likelihood value of   given   and   
  is the same as for non-

restricted likelihood (Equation 9). The gradient of           
   with respect to the 

other parameters is given by 

 

   
          

   
 

   
      

 

 
          

         
  

   
                                 

 

    
          

   
 

    
      

 

 
                                                                     

where             
      

The overall computational complexity remains the same as before after neglecting the 

cubic dependency on the number of fixed effects, which is typically very small compared 

to the sample size. 

Estimation procedure 

Parameter estimation was carried out via a Polak-Ribiere conjugate gradient procedure, 

based on the code from the GPML toolbox  (Rasmussen and Nickisch 2010), and using 

REML computations. Such an optimization procedure is available in many optimization 
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packages, and requires only a function to compute the gradient. Alternatively, one could 

use average information REML  (Gilmour et al. 1995; Lee and van der Werf 2006), 

though this procedure was not carried out here. Empirical comparison with Adaptive 

MultiBLUP  (Speed and Balding 2014), which uses average information REML, indicated 

that both methods tend to have very similar performance. 

The optimization for each fold consisted of 100 conjugate gradient steps. The initial 

values for the fixed effects were determined via a multivariate linear regression. The 

initial scaling factor of each kernel                         is the phenotype vector 

and   is the number of kernels. The initial value of the environmental effect variance   
  

was          . Although the likelihood surface of MKLMM is not convex, we did not 

encounter convergence problems, as determined via global optimization routines based 

on simulated annealing. 

 

MKLMM-Adapt procedure 

Here we describe the MKLMM-Adapt model training procedure in detail. The MKLMM-

Adapt procedure is composed of two steps: Ranking of genomic regions, and evaluation 

of models of increasing complexity to select the best one. 

Ranking of regions 

MKLMM-Adapt ranks genomic regions similarly to MultiBLUP  (Speed and Balding 2014). 

The full procedure is carried as follows. 

1. Divide the genomic into overlapping sub-regions spanning 75kb, where the 

minimum distance between the first base pair of two consecutive sub-regions is 

10kb. 

2. Assign a score to each sub-region, corresponding to the restricted log-likelihood  

(Equation 12) when using an LMM with a single linear kernel spanning only the 

variants in the sub-region. Such a score can be computed efficiently using the 
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Fast-LMM procedure for fitting LMMs with a low-rank kernel  (Lippert et al. 

2011). 

3. Discard all sub-regions whose restricted log-likelihood is below the 95% 

percentile of obtained values. 

4. Merge consecutive undiscarded sub-regions into regions. The score assigned to 

each merged region is the maximum score among all its sub-regions. 

5. Rank regions according to their score in descending order. Region 0 is always 

considered as the genome-wide region that spans all variants.  

Training an MKLMM-Adapt model 

The MKLMM-Adapt model training procedure is as follows. We evaluate several models 

with increasing complexity,                 , where B is a user defined parameter 

described in the main text, and where each model      uses a sum of region-specific 

kernels for regions    .  The difference between the models lies in the form of the 

covariance matrix. The covariance matrix for model      is given by 

                    

 

   

  

where    is the matrix of variants in region  , and           is the covariance matrix 

induced by region  . We consider four possible forms for          : 

1. Linear kernel only:               
        

             

2. Linear and poly2 kernels:              
        

               
     

  
            

3. Linear and RFB kernels:                
        

               
     

           
       

4. Linear and SP kernels:                
        

               
    

          
   , 

where     
    

  is the weight assigned to a kernel of the specified type in region  , and 

    
    

 is the internal parameter of a kernel of the specified type in region  . 

When selecting the kernel type for model     , the parameters for all regions     are 

jointly inferred by maximizing the restricted log likelihood in Equation 12 via conjugate 
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gradient ascent. However, the type of the selected kernel for region   (out of the four 

alternatives listed above) is only selected once, and will be used when evaluating all 

other models       . In order to select the kernel type for region   we perform three 

likelihood ratio tests, each comparing a model with one of the three composite kernel 

types to a model that uses only a linear kernel for region  . These tests are carried out 

by attempting to reject the null hypothesis         
    

   for each of the three non-

linear kernel types. Note that each hypothesis test re-estimates all parameters for all 

regions    . A step by step description of the model selection procedure is now 

provided. 

1. Iterate over the index   in the range [0..B]: 

a. Iterate over the evaluated kernel types (in the present study, these include a 

linear, linear+Poly2, linear+RBF, linear+SP kernels). For each evaluated kernel: 

i. Train an MKLMM model whose covariance matrix is a weighted combination 

of kernels assigned to regions    . The kernel type assigned to regions 

      is the one selected at previous iterations. The kernel assigned to 

region   is the one evaluated at the current iteration.  

ii. Evaluate the restricted log likelihood (Equation 12) using the trained model. 

iii. Assign a score to the evaluated model by performing a likelihood ratio test, 

where the null model uses only a linear kernel for region  . The null 

distribution is approximated by a      
       

  distribution, where   is the 

number of additional estimated parameters in the alternative model over the 

null model. This null distribution accounts for the fact that the tested 

parameters are on the edge of the boundary space in the null model. 

b. If no model has a statistically significant advantage over the linear kernel model 

after multiple testing correction, select the linear kernel for region  . Otherwise, 

select the model with the smallest P-value. 

c. Evaluate the predictive performance of the selected model on an external 

validation set. 

2. Select the model with the best predictive performance on an external validation set. 
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Computational complexity of MKLMM 

The computational complexity of MKLMM is similar to that of a standard LMM, and is 

determined by the sample size, the number of kernels, the number of variants assigned 

to each kernel and the number of iterations carried out for parameter estimation. We 

address the computational complexity required for parameter estimation and for 

phenotype prediction separately. 

Parameter estimation requires repeatedly evaluating each of Equations 9 and 12-14 for 

a specified number of iterations, or until convergence. The computational complexity of 

each iteration is formally dominated by the computation of       , which typically 

scales linearly with the number of parameters  , the number of variants   and the 

matrix size    (where   is the sample size), yielding a computational complexity of 

       . However, it is often possible to perform a single        computation for 

each parameter   and cache the result, thus avoiding dependence on   during the 

estimation procedure. For example, for a linear kernel, one can compute the matrix 

    (where   is a matrix of variants) only once and then multiply this matrix by a 

scaling factor at each iteration. Such a computational shortcut is also possible for 

polynomial kernels, radial basis function kernels and saturating pathways kernels (see 

below). MKLMM therefore only requires performing a small finite number of        

computations, similarly to standard LMMs. The computational complexity of each 

iteration in the estimation procedure is thus independent of  . 

Assuming we can avoid      operations at each iteration, the computation at each 

iteration is dominated by the inversion of the overall covariance matrix         
  , 

which scales as      . Afterwards, Equations 9 and 12-14 can be evaluated 

concurrently. At each iteration, a different instance of Equation 13 is evaluated for each 

kernel parameter separately, along with a single instance of Equations 9, 12 and 14. 

Given the inverted matrix, the computational complexity of Equation 12 is      

           , where   is the number of fixed effects, and the       element stems 
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from the definition of the normal density. Similarly, the computational complexity for 

Equation 9 is              . Denoting   as the number of kernel parameters, the 

combined computational complexity of Equations 13-14 is                   . 

This analysis exploits the fact that traces of matrix products can be computed efficiently 

by only computing the diagonal of the product. Combining all these terms together and 

neglecting terms that cannot dominate the complexity, the computational complexity 

for parameter estimation is                              , where   is 

the number of estimation iterations. 

Assuming that    ,     and        , the asymptotic complexity is        

    , similarly to the asymptotic complexity of REML estimation for standard LMMs with 

multiple variance components. Typical use of MKLMM will only require a single genome-

wide kernel, with the other kernels using a small number of variants (typically less than 

500), yielding            complexity.  

Using similar considerations, the computational complexity of phenotype prediction for 

a single individual (Equation 2 in the main text) is           . When using the 

techniques described in the privacy preservation section, the complexity is given by 

       , where   is the approximated dimensionality of the projection induced by 

the kernel. 

 

Efficient kernel computations 

Here we describe how to efficiently cache kernel computations, so that the 

computational complexity of kernel evaluation in each iteration of the estimation 

procedure becomes independent of the number of variants  . 

The linear kernel can be trivially cached by pre-computing the quantity     
    for 

every pair of individuals   and l. The polynomial kernel can similarly be cached by pre-

computing the quantity      
    

  for every pair of individuals. 
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The RBF kernel can be computed efficiently by caching the squared distances between 

every pair of individuals, given by         
    

  
 

 . Given the matrix  , the RBF 

kernel can then be computed efficiently via                
 

    
    . Similarly, the 

SP kernel can be efficiently computed by caching the quantity      
  for every individual 

 , and the product     
     and for every pair of individuals   and  . 

Empirical run time measurement 

To evaluate the empirical complexity of MKLMM, we measured estimation run-times for 

an analysis of Crohn's disease (CD; using 3,171 individuals and 285,650 variants) and 

ulcerative colitis (UC; using 5,498 individuals and 458,560 variants) with various 

numbers of kernels, under various MKLMM models. All regions used kernels of the same 

type. The first region was the genome-wide region, and subsequent regions were 

selected according to the MKLMM-Adapt region selection procedure. The analysis was 

performed on a 2GHz Linux workstation using a single core. All analyses avoided direct 

dependence on the number of variants   by caching the covariance matrices, as 

described above. The average run time for each estimation procedure (using 100 

estimation iterations) is reported below, using the average of five independent 

estimation procedures (one for each cross validation fold). The times are reported in 

minutes. The first row reports the average computation time for the genome-wide 

kernel, as this kernel was computed only once and then cached for subsequent use. 

 CD  
Linear kernels 

CD 
SP kernels 

UC 
Linear kernels 

UC 
SP kernels 

Kernel creation 5.1 5.1 26.6 32.0 

1 kernel 4.6 4.3 20.5 26.1 

2 kernels 4.6 5.5 21.4 29.3 

3 kernels 4.9 7.0 23.8 34.2 

4  kernels 5.1 8.0 28.3 36.6 

5  kernels 5.6 9.2 28.6 42.6 

6  kernels 6.2 10.3 30.2 47.5 

7  kernels 6.2 11.5 30.3 54.7 

8  kernels 6.7 12.6 32.3 55.0 

9  kernels 6.7 16.8 35.7 58.3 

10  kernels 6.8 17.0 36.5 63.0 
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MKLMM for binary phenotypes 

Binary LMMs model the distribution of a binary trait  . To adapt MKLMM to the binary 

case, we adopt the liability threshold model  (Dempster and Lerner 1950; Golan and 

Rosset 2014), which associates every individual   with a latent normally distributed 

variable    called the liability, such that cases are individuals whose liability exceeds a 

given cutoff  . It is typically assumed that the liability has a unit variance, in which case   

is determined according to the trait prevalence  ,           , where   is the 

standard normal cumulative density. The liability is typically assumed to arise as the sum 

of two independent normally distributed terms,         , where    is called the 

genetic effect, and the zero mean normal variable    is called the environmental effect. 

Given a sample of individuals with a variants matrix              
 , a covariates 

matrix              
 , a phenotypes vector               

  and a genetic 

effects vector               
 , The posterior liability for a tested individual given   

is normally distributed,                          
    

  , where   
  is the variance 

of   . Following Equation 2 in the main text, the distribution parameters are given by 

        
     

                                                                                          

  
             

                                                                                              

Therefore, conditional on the genetic effects   of the training individuals, risk prediction 

can be computed via a closed form formula, 

                         
                            

  

                                                                                      

In practice, the vector   is not observed, and thus risk estimation is more involved. 

When only the training set phenotypes vector   is given, the estimated risk is given by 
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We conclude that risk estimation for binary phenotypes under LMMs amounts to 

computing a high dimensional integral, which cannot be solved analytically. 

Nevertheless, several effective approximation methods exist. One approach is to 

approximate the integral via Gibbs sampling, as recently proposed  (Golan and Rosset 

2014). Another approach is to approximate the posterior distribution 

                
   via a normal distribution, which can render Equation 17 tractable. 

Such approximations have recently gained considerable interest in both the machine 

learning  (Nickisch and Rasmussen 2008) and Bayesian statistics  (Rue et al. 2009) 

communities. In particular, the Laplace approximation, which approximates the 

posterior distribution via a second order Taylor approximation around the maximum a 

posteriori value, is known to be computationally efficient on the one hand and highly 

accurate on the other  (Nickisch and Rasmussen 2008). It is therefore possible to 

efficiently approximate Equation 17 with a high degree of accuracy. 

Parameter estimation for binary phenotypes 

While binary phenotypes prediction is relatively simple when the model parameters 

      
  are known, estimating the model parameters poses a greater challenge. Here, it 

is important to distinguish between randomly ascertained and ascertained samples, 

wherein cases are oversampled relative to the trait prevalence. 

Under a randomly ascertained sample, the liability threshold model states that   is 

normally distributed in the sample. In such cases, one can efficiently approximate the 

maximum-likelihood estimate by approximating the likelihood               
   via 

the Laplace approximation, and inferring the parameters via conjugate gradient 

ascent  (Nickisch and Rasmussen 2008). 

In the presence of ascertainment, the genetic effects vector   is no longer normally 

distributed in the sample   (Golan and Rosset 2014), and the assumptions of the Laplace 

approximation are therefore no longer accurate. When a single linear kernel is used, 

one possible approach is estimating the fixed effects via logistic regression to estimate 

the affection thresholds, and then employing a Taylor approximation-based moments 
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estimator for the covariance matrix parameters, which takes the ascertainment 

procedure into account  (Golan et al. 2014). However, the Taylor approximation is 

accurate only when the entries of the covariance matrix        are small, which may 

not be the case under more complex kernels.  

Another option is to treat the phenotype as if it were normally distributed and estimate 

the model parameters as described in the main text. This is the approach adopted by 

several recently proposed methods, which suggested treating binary phenotypes as if 

they were normally distributed  (Zhou et al. 2013; Speed and Balding 2014; Moser et al. 

2015).  

We have carried out an empirical evaluation of the three parameter estimation 

approaches on both simulated and real data sets. Our evaluation found that when 

complex kernels are being used, the third approach outperforms the other two in the 

majority of cases, in spite of its inaccurate assumptions (results not shown). The 

moments estimator approach is not robust to the large matrix entries that are 

sometimes encountered in the presence of complex kernels, while the Laplace 

approximation yields estimates that are almost identical to the ones of the third 

approach, at a substantially increased computational cost. We conclude that efficient 

parameter estimation for binary LMMs under ascertainment remains an open research 

problem. 

Binary phenotype simulations 

To simulate ascertained data for a binary trait with prevalence  , we used the 

assumptions of the liability threshold model. Namely, we first generated a large data set 

with 500,000 synthetic genotypes and phenotypes, and then determined the affection 

cutoff as the     empirical percentile of the phenotypes. Afterwards, 1,400 

individuals with phenotype exceeding this cutoff were designated as cases, and 1,401 of 

the other individuals were designated as controls. Genotypes were generated by 

treating each SNP as a Binom(2) distributed random variable, using the empirical minor 

allele frequencies of the 2,801 individuals used in all other experiments. 
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The Bayesian interpretation of MKLMM 

MKLMM readily admits a Bayesian interpretation. Under this interpretation, MKLMM is 

a linear regression model wherein effect sizes are iid normally distributed. Recall that 

under MKLMM, the phenotype is normally distributed,                      
   . 

Further recall that according to the Mercer theorem, every covariance matrix is 

associated with a transformation function          that projects genotype vectors 

into a high dimensional space, such that                 , where    is invoked on 

each row of the matrix   (each individual) separately. Using basic properties of the 

normal distribution, the (normal) density of   is given by 

              
                    

          
 

 
                                     

where   is the normal density, and the parameters   are used implicitly by  . We 

conclude that MKLMM can be written as the following Bayesian model: 

             

      
 

 
   

        
     

We now describe how the linear kernel can be derived via a slight transformation of the 

saturating pathways kernel in Equation 5. To derive the linear kernel from Equation 5, 

we slightly rearrange the model for the linear kernel as follows: 

          

      
 

 
   

        
     

The linear kernel can be directly derived from the saturating pathways kernel in 

Equation 5, by setting    ,       ,   
   ,   

   . 
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Privacy-preserving phenotype prediction 

A key feature of MKLMM is its ability to perform genetic-similarity based prediction 

without having to store the genotypes and phenotypes of the training sample. Exact 

computations are possible for kernels with a finite-dimensional underlying 

transformation, while the computations for infinite-dimensional kernels can be 

approximated to an arbitrary degree of accuracy. We first explain how privacy 

preservation is achieved, and then provide mathematical proofs for our claims. 

Privacy preserving prediction for finite-dimensional kernels 

We begin by describing exact privacy preserving prediction for finite-dimensional kernel 

transformations. Our main tool is the fact that the vector        in Equation 2 in the 

main text, which describes genotypic covariance between each training individual and 

the tested individual, can be factored as                      , where   is the 

dimension of the feature space, the function          transforms genotype 

vectors, and the function              transforms each row of a genotypes matrix 

(each individual) separately. To simplify notation, in the remainder of this section we 

write        for both transformation types, because the type of   can always be 

inferred from its argument. The Mercer theorem states that for every possible kernel 

there exists a corresponding function  . For example, under the linear kernel we have 

   ,        
 

 
   , and the corresponding function is         

 

 
 . The 

function   enables computing the posterior distribution of a predicted phenotype 

without storing genotypes or phenotypes of training individuals, as we now 

demonstrate. 

Using the factorization of      , the predicted mean and variance in Equation 2 in the 

main text can be rewritten as follows: 
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Equation 19 can now be rewritten as follows: 

     
          

                    

  
                  

                              

where the vector   and the matrix   are independent of the tested genotype, and are 

given by 

                    
                                

                    
                           

Equation 20 has an intuitive interpretation under the Bayesian view of LMMs, described 

above. Under this view, LMMs are equivalent to a linear regression model, wherein all 

effect sizes are iid normally distributed. The vector   can therefore be viewed as the 

posterior mean of the effect sizes vector, whereas the matrix   is given by      , 

where   is the covariance matrix of the posterior effect sizes distribution. 

We conclude that phenotype prediction can be performed by computing    and   only 

once, and then discarding the original genotypes matrix   and phenotypes vector  . It is 

clear that   and   cannot be recovered from  , because there are infinitely many such 

matrix-vector pairs leading to the same vector   (see proof below). It is also easy to 

show that   cannot be recovered from  , since it is invariant to rotations of       , 

indicating that there are infinitely many matrices leading to the same matrix   (see 

proof below). We note that the matrix   has dimensions    , which can make its 

storage unwieldy. However, it can be decomposed into a product of matrices of 

dimensions     (where   is the training set size) which alleviates this concern, as 

described below. 

When using a composite kernel that is a weighted sum of simpler kernels, we define a 

composite kernel transformation which concatenates matrices horizontally and vectors 

vertically. For example, for the kernel                              we define 
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 , where       are the underlying 

transformations for kernels    and   , respectively. 

Privacy preserving prediction for infinite-dimensional kernels 

When the kernel transformation   has an infinite dimensionality (as in the SP kernel), 

the procedure above cannot be used, because explicit computation of        is 

impossible. However, the kernel transformation for many kernel types can be 

approximated as a finite-dimensional transformation. Approximation of kernels via 

finite transformations is an active research topic, and many recent works have shown 

that finite approximations can substantially simplify kernel methods with a negligible 

loss of accuracy  (Le et al. 2013; Yang et al. 2015). 

 The saturating pathways kernel is particularly suitable for a finite approximation, as it is 

explicitly derived by applying the central limit theorem for an asymptotic expansion of 

an infinite number of saturating pathways. It is therefore straightforward to 

approximate the underlying transformation of this kernel by sampling a finite but large 

number of pathways. The central limit theorem guarantees that the approximation 

error is proportional to the square root of the number of sampled pathways, indicating 

that accuracy can be increased to an arbitrary degree by sampling additional pathways 

without compromising genomic privacy. 

Proofs of privacy-preserving claims 

Here we provide proofs for several claims regarding privacy-preserving phenotype 

prediction. We base the following proofs on the spectral decomposition of       , 

which we now derive. We first rewrite the matrix        as a matrix product in a high 

dimensional space,                     . Equations 21 and 22 can now be 

written as  
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Next, we rewrite Equations 23 and 24 via the singular value decomposition (SVD) of 

           . Using the orthonormality of   and denoting           (where a 

lower case   indicates a vector rather than a diagonal matrix), Equations 23 and 24 can 

be rewritten as follows: 

                        
   

  
                                      

                
                                                  

             
                                                           

             
                                                           

        
 

      
                                                                  

       
 

      
                                                                  

                        
   

  
                                                               

                
                        

             

             
                    

 

      
                          

       
  

      
                                                                                                        

We conclude that Equations 21 and 22 can be rewritten as 

        
 

      
                                                                                         

        
  

      
                                                                                                         

We now prove the claims made in the main text.  
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To prove that   requires less than       storage space, we note that Equation 28 

shows that   can be computed from the matrix   and the vector s, whose storage 

requirements (when using the economy SVD) are       and     , respectively (where 

  is the training sample size). To prove that   cannot be recovered from  , we notice 

that   is independent of  , indicating that   is invariant to rotations of       . 

Finally, to prove that   and   cannot be recovered from  , we rearrange Equation 27 as 

follows: 

     
     

 

 
                                                                                               

Clearly, even when   and   are known, there are an infinite combinations of 

orthonormal bases   and vectors        satisfying Equation 29. 

  

Permutation testing 

To evaluate the statistical significance of the advantage of each method over another 

method, we employed a permutation test where the predicted phenotype of each 

individual under each method was randomly swapped between the two methods 

100,000 times and the measure of interest (e.g. AUC) was re-evaluated under each 

permutation. 

A potential concern with this test is that the selection of the optimal number of kernels 

cannot be evaluated in the permutation test, because the dependence structure in each 

permutation is different from the one in the original data, owing to the fact that 

predictions of two different methods are combined. To circumvent this difficulty, we 

first computed the optimal number of regions for each cross validation fold under each 

method, where optimality was defined according to the evaluated measure. For 

example, when AUC was measured, we computed the number of regions that 

maximizes the AUC in each fold. Afterwards, we associated every individual under every 
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method with a single prediction corresponding to the optimal number of regions for her 

fold. The permutation test was applied using these predictions. 

We additionally evaluated a different permutation test that evaluates the optimal 

number of kernels under each permutation, which yielded very similar results in 

practice (results not shown). 

 

 

Estimating affection probability for binary phenotypes 

As explained in the main text, estimating the affection probability of an individual under 

an LMM is challenging because of the need to consider the ascertainment scheme. 

Nevertheless, we carried out analyses of ascertained case control studies to obtain a 

comparison with previous works.  

Direct estimation of affection probabilities that ignores the ascertainment scheme is 

straightforward, because LMMs compute a posterior normal distribution for the 

phenotype of each tested individual. Assuming that individuals are affected if their 

predicted phenotype is larger than zero, the affection probability is given by the 

probability that the normally distributed posterior phenotype is positive. Furthermore, 

an intercept value can be added to the LMM to maximize the likelihood of the binary 

phenotype (after obtaining the REML parameter estimates when treating the phenotype 

as quantitative), and this was done in the experiments. 

Real Data preprocessing 

In the Mice data set, we followed the preprocessing procedure described in  (Speed and 

Balding 2014). Namely, Single nucleotide polymorphisms (SNPs) were excluded if they 

had a minor allele frequency <0.01, Hardy Weinberg equilibrium P-value <     , or a 

missingness rate >1%. Phenotypes were selected for the analysis if measurements were 

available for at least 1,300 mice, the coefficient of kurtosis was smaller than six, and the 
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phenotype was not binary. Each analysis used sex as a covariate. Age at the experiment 

time was also used as a covariate when this data was available. Mice with a missing 

value for a certain phenotypes were excluded from the analysis of this phenotype. In the 

cross-validation procedure, mice in the same cage were placed in the same fold to 

prevent leakage. All variants were standardized to have zero mean and unit variance. In 

all experiments, AMB and MKLMM used a division of the genome into regions of 

approximately 75kb, using LDAK  (Speed and Balding 2014). 

In the WTCCC1 data sets, we performed stringent quality control preprocessing to avoid 

genotyping artifacts from biasing the results  (Golan and Rosset 2014). SNPs were 

excluded if they had minor allele frequency <5%, missingness rates >1%, a significantly 

different missingness rate between cases and controls, or a significant deviation from 

Hardy Weinberg equilibrium among the controls group. Controls consisted of individuals 

from the national blood service control group. The second controls group of C58 birth 

cohort was excluded from the main experiments to address the concern that the non-

linear methods may exploit subtle population structure signals differentiating the two 

groups. Results for analyses with both control groups are provided in Supplemental 

Table S6. 

Individuals were excluded from the analysis if they were in the WTCCC exclusion lists or 

if they had missingness rates >1%. We further excluded individuals with a normalized 

similarity coefficient >0.05 with at least one other individual, by greedily removing 

individuals according to the number of related individuals they had, until no related 

individuals remained. To prevent spurious results due to population structure, we 

projected all genotype vectors to the subspace that is orthogonal to the top 10 principal 

components. Sex was used as a covariate in all data sets.  In all experiments, AMB and 

MKLMM used a division of the genome into regions of approximately 75kb, using 

LDAK  (Speed and Balding 2014). 

In the ulcerative colitis (UC) data set, controls consisted of individuals from the national 

blood service control group. SNPs were removed if they had >0.5% missing data, p<0.01 
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for allele frequency difference between two control groups, p<0.05 for deviation from 

Hardy-Weinberg equilibrium, p<0.05 for differential missingness between cases and 

controls, or minor allele frequency <1%. All genotype vectors were projected to the 

subspace that is orthogonal to the top 10 principal components. Variants within 5kb of 

the major histocompatibility complex (MHC) were excluded from the analysis, because 

the MHC region in this data set is strongly associated with population structure, even 

when excluding the top principal components  (Yang et al. 2014). The genome was 

divided into regions of approximately 75kb, using LDAK  (Speed and Balding 2014). Due 

to the memory requirements incurred by the large data set size, the genome-wide 

kernel for this analysis was fixed to be a linear kernel. 

An important concern in the analysis of case control phenotypes is ascertainment-

induced leakage. Leakage can be introduced to the analysis when standardizing variants, 

because oversampling of cases leads to an overrepresentation of risk alleles in the 

sample. To prevent such leakage, we computed a weighted mean and variance for each 

SNP according to the disease prevalence, such that controls were overrepresented to 

match the true phenotype prevalence (the marginal variance of each SNP can be 

computed via the law of total variance). We then standardized each variant by 

subtracting the weighted mean and dividing by the weighted standard deviation. 

Following   (Golan and Rosset 2014), the estimated prevalence for the diseases were CD 

(0.1%), T1D (0.5%), BD (0.5%), RA (0.5%), T2D (3%), CAD (3.5%), HT (5%) and UC (0.3%). 

 

Simulations procedure 

The synthetic phenotype simulations were carried out as follows. We created a data set 

consisting of 2,801 individuals from the Wellcome trust 2 national blood service controls 

group and their Chromosome 1 SNPs. In each simulation, we generated a synthetic 

phenotype by first randomly selecting genomic regions and then generating 

phenotypes.  Ten data sets were created for each unique combination of tested 
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parameters. We first describe the simulations procedure, and then describe the default 

parameter values used in all experiments. 

Genomic regions were selected by first sampling a region size for each region from a 

Poisson(75,000) distribution, and then randomly selecting a set of consecutive SNPs 

spanning the selected region size. We also considered an additional region spanning all 

chromosome-wide SNPs. 

For each region, we generated a linear effect, and one or two non-linear effects. Each 

non-linear effect was either a saturating effect or a groupwise effect (described below). 

Afterwards, an aggregated linear effect, an aggregated saturating effect and an 

aggregated groupwise effect were created by summing all region-specific effects of each 

type (excluding the chromosome-wide region) with randomly sampled mixture weights, 

designed to differentiate the phenotypic variance explained by different regions. In the 

next step, a combined chromosome-wide effect and a combined regions effect were 

created by summing of the aggregated effects and the chromosome-wide effects, 

respectively. The final phenotype consisted of a weighted sum of the two combined 

effects, with predetermined mixture weights, and an iid normally distributed 

environmental effect that was independent of the genotypes. In all simulations, the 

chromosome-wide region included all three effect types, while each of the other regions 

included a linear effect and one of the two non-linear effect types, with an equal 

number of regions for each effect type. We now describe the simulation procedure for 

each of the three effect types in detail. 

The linear effect of each region was generated by drawing effect sizes for all the SNPs in 

the region from a standard normal distribution, and computing the weighted sum. The 

value of each linear effect for each individual was given by       , where    is the 

(normalized) value of SNP   carried by the individual,    is the effect size of variant  , and 

the index   iterates over all variants in the region. 

The saturating effect of each region was generated by sampling 100 pathways. For each 

pathway, input effect sizes    were sampled from a zero-mean normal distribution with 
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a variance of 100, and an output effect size   was sampled from a normal distribution 

with a variance of 0.01. Using the same notations as before, the value of each pathway 

was given by              . The large variance of the input effect sizes is meant to 

induce non-linear dynamics, because        is approximately linear when   is close to 

zero. Finally, all pathway values were summed to generate an aggregated saturating  

effect. 

The groupwise effect of each region was generated by randomly selecting ten SNP 

subsets, computing a value for each one and then summing up the values. The effect of 

each SNP subset consisted of the element-wise multiplication of the selected SNP 

vectors, multiplied by an effect size drawn from a standard zero-mean normal 

distribution. Formally, the groupwise effect for region   for a certain individual is given 

by      
    

 
   , where    is the vector of SNPs in region   carried by the individual,    

is the effect size of group   and     
         

, where the index    iterates over SNPs 

that participate in group  . The SNPs for each group were selected uniformly with 

replacement, and the group sizes were drawn from a Poisson(2) distribution, conditional 

on being larger than one. 

Unless otherwise stated, in all experiments the regions consisted of two, four or six 

randomly selected regions with lengths drawn from a Poisson(75,000) distribution with 

an additional chromosome-wide region. Each region included a linear and either a 

groupwise or a saturating effect, with an equal number of regions having each of the 

effect types. The chromosome-wide region included all three effect types. When 

combining the contribution of each effect of each region to the aggregated effects, the 

effects were differentiated with random mixture weight drawn from an inverse gamma 

distribution (the conjugate prior of the variance of the normal distribution) with shape 

and scale parameters 2 and 1, respectively (to yield a mean variance of 1.0). The 

aggregated linear effect accounted for 25% of the combined effect, while the two non-

linear effects each accounted for 37.5% of the combined effect. The combined effect 

itself accounted for 50% of the explained phenotypic variance, and the other 50% was 
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drawn from an iid zero mean normal distribution. In all experiments, all variants were 

standardized to have a zero mean and a unit variance. 
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