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Supplemental Notes 

 

1. Simulation Models 

1.1 Neutral mutations and population expansion 
Demographic scenario: After splitting into two populations, one population experiences rapid growth to 

10,000,000, and other population remains at the same population size (10,000) before the split (Gazave et al. 

2013). The mutation rate per site is varied under the demographic model. 

 

Command line of sfs_code 

./sfs_code 2 1 -N 1000 -t %f -n 5000  -a N -W 0 -Td 0 P 0 0.0758 -Td 0.02 P 0 13.2 -Td 0.2 P 0 0.0769 -Td 0.207 

P 0 13 -TS 0.215 0 1 -Tg 0.216 P 1 345.37501 -TE 0.236 

Where: %f token depicts substitution for θ. 

θ = (0.0016, 0.0008, 0.0004) 

1.2 Selection and realistic demographic model  
Demographic scenario involving European demographic model (Tennessen et al. 2012; Gazave et al. 2013): After 

splitting into two populations, one population experiences a slow recovery from severe population bottleneck, 

followed by exponential growth, Ne = 512,010. The other population’s Ne remains constant at 9,210.  

 

Command line of sfs_code: 

./sfs_code 2 1000 -N 740 -t 0.008 -r 0.0008 -n %d  -W %s -TN 0 1447 -TN 0.2622 186 -TN 0.3378 104 -TS 

0.3379 0 1 -Tg 0.3379 45.47 -Tg 0.3861 P 0 0 -Tg 0.3861 P 1 283.16 -TE 0.40  

Where, %d and %s tokens depict substitutions for sample size and selection coefficients.  

a) Sample size 

%d = (5, 50, 500, 5000)  

b) Selection coefficients 

i) Neutral mutation %s : ‘0’ 

ii) Purifying selection (%s): 

-|ϒ|: "L 0 2 0 0.0 1.0 0.206 0.0004931" 

-|ϒ|*0.1: "L 0 2 0 0.0 1.0 0.206 0.004931" 

-|ϒ|*0.025: "L 0 2 0 0.0 1.0 0.206 0.0197240" 

-|ϒ|*0.01: "L 0 2 0 0.0 1.0 0.206 0.04931" 
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-|ϒ|*0.005: "L 0 2 0 0.0 1.0 0.206 0.0986200"  

-|ϒ|*0.0025: "L 0 2 0 0.0 1.0 0.206 0.1972400"  

-|ϒ|*0.001: "L 0 2 0 0.0 1.0 0.206 0.4931" 

-|ϒ|*0.0001: "L 0 2 0 0.0 1.0 0.206 4.931" 

 

iii) Positive selection (%s): 

|ϒ|: "L 0 2 1.0 0.206 0.0004931 0.206 0.0004931" 

|ϒ|*0.1:  "L 0 2 1.0 0.206 0.004931 0.206 0.004931" 

|ϒ|*0.025: "L 0 2 1.0 0.206 0.0197240 0.206 0.0197240"  

|ϒ|*0.01: "L 0 2 1.0 0.206 0.0493100 0.206 0.0493100"  

|ϒ|*0.005: "L 0 2 1.0 0.206 0.0986200 0.206 0.0986200"  

|ϒ|*0.0025: "L 0 2 1.0 0.206 0.1972400 0.206 0.1972400"  

|ϒ|*0.001: "L 0 2 1.0 0.206 0.4931 0.206 0.4931" 

|ϒ|*0.0001: "L 0 2 1.0 0.206 4.931 0.206 4.931" 

 

iv) Mixture of negative selection and positive selection (%s) 

-|ϒ|*0.1 and |ϒ|*0.1 : "L 0 1 41.77652 %n %p"  

where, %n = (0.10, 0.20, …, 1.00) is the proportion of sites under purifying selection, %p = (0.0, 0.02,…, 0.10) is 

the proportion of sites under positive selection, and %n + %p = 1. The same gamma distribution is used for both 

negative and positive selection.  

 

Note: ϒ is the 'baseline' model of distribution of selection coefficients as inferred by Boyko et al (Boyko et al. 

2008), where α = 0.206 and β= 1/2740. Under each combination of demographic parameters and selection 

coefficients, 100 sets of sequences were generated for compiling SFS and computing the mean and variance of f 

estimates. 

1.3 Simulation of exon sequences 
A set of SFS was constructed from 1,000 simulation replicates. Each replicate consisted of 300bp of coding 

sequence (e.g., synonymous and nonsynonymous sites) and 100bp of non-coding sequence. Positions of non-

coding sequences were 0, 1kb, 10kb, 100kb, 500kbp from coding regions (Supplemental Figure 1). For selection 

models, only nonsynonymous sites were under selection with a selection coefficient drawn form the given 

Gamma distribution. Non-coding sequences were used as the reference SFS, unless otherwise noted. 
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2 Data analysis 

2.1 Building site-frequency spectrum 
We initially separated coding SNVs into genomic contexts based on CDS annotations of Homo sapiens 

(GRch37.74). We chose the longest CDS if alternative isoforms existed for a gene. For estimating codon usage of 

synonymous sites, we used codon frequencies based on tRNAscan_SE Analysis of Homo sapiens (hg19 – NCBI 

Build 37.1) that can be found in http://gtrnadb.ucsc.edu/Hsapi19/. PhyloP scores (Cooper et al. 2005) of 99 

vertebrate genomes were used for measuring evolutionary conservation that can be found at the UCSC genome 

annotation database (human build GRCh37/hg19). Regulatory potentials of SNVs were identified based on the 

datasets of high-resolution maps of DnaseI Hypersensitive Sites (DHS) identified in 81 human cell types by using 

DNaseI FDR-1% calls for genome-wide per-nucleotide DNaseI-seq (Stergachis et al. 2013). The datasets were 

downloaded from the UW ENCODE Project (http://www.uwencode.org/proj/Science_Stergachis_et_al/). Levels 

of local recombination rates were defined by using a quantile binning procedure in which the same number of data 

points fall within each group (i.e., top 5% quantile) as recombination hot-spots and bottom 5% as recombination 

cold-spots, from the distribution of recombination rates across the human genome. We used the combined 

HapMap recombination map that is available at the UCSC genome browser. Then, we separated intronic SNVs 

located within 50bp of each exon into the same context class. Finally, we defined the unfolded SFS as a vector η 

= (η1, η 2, …, η n-1), where ηi denotes the number of sites that consisted of i derived alleles and n-i ancestral alleles 

for a given context.  

2.2 Smoothing the SFS 
When the sample size is large and sequence length is small, the SFS can have many zero intermediate frequency 

categories, which may result in inaccurate estimation of θ-estimators. We applied the one-dimensional smoothing 

spline fit to the SFS by using ‘interpolante.UnivariateSpline’ method in the Python library “scipy” library to 

obtain robust estimation of θ-estimator. The python library for estimating f can be found in 

https://github.com/moon-s/fraction-under-selection. 

2.3 Python code for estimating f  
 #!/usr/bin/python 
# 
 
import sys 
import numpy as np 
import scipy.interpolate as interp 
import operator as op 
 
 
# input SFS 
# sfs is 1-D arrary of site frequency(1,2,..., n-1) 
# 
 
def ncr(n, r): 
    r = min(r, n-r) 
    if r == 0: return 1 
    numer = reduce(op.mul, xrange(n, n-r, -1)) 
    denom = reduce(op.mul, xrange(1, r+1)) 
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    return numer//denom 
 
 
def theta_w(sfs): 
 N = len( sfs ) + 1 
 a1 = np.array(xrange(1, N ))   
 return sum( sfs)/sum(1.0/a1) # sum 1 ~ N-1 class 
 
 
def theta_pi(sfs): 
 N = len( sfs )  + 1 
 s = sum( i*( N - i )*sfs[ i -1 ] for i in range( 1, N) ) 
 return s/float( ncr(N, 2 ) )  
 
 
 
def diff_f( test, ref ): 
 f = 0.0 
 # optional: smoothing 
 n = len( test ) 
 x = np.array(range(1, len(  test)  +1)) 
 best_s = int( n * np.var(test)) 
 i_test = interp.UnivariateSpline (x, test, s = best_s) 
 best_s = int( n * np.var(ref)) 
 i_ref = interp.UnivariateSpline (x, ref , s= best_s) 
 sfs_test = i_test( x ) 
 sfs_ref  = i_ref( x ) 
 # scaling SFS_test by ratio of theta_pi 
 a1 = theta_pi( sfs_test)/theta_pi( sfs_ref ) 
 selectiontype = "negative " 
 f = ( 1 - theta_w(sfs_ref*a1)/theta_w(sfs_test) ) 
 if  f < 0.: 
  # scale by theta_w 
  selectiontype = "positive" 
  s = np.asarray( [i*(n+1 - i) for i in range(1, n + 1 )] )/float(ncr(n+1, 2 )) 
  a2 = theta_w( sfs_test)/theta_w(sfs_ref ) 
  f = -( 1 - theta_pi( ref*a2) /theta_pi( test) ) 
 return selectiontype , f  
 
 
# 
# load SFS from files into array 
# 
if len( sys.argv ) == 3 : 
 file_testsfs = open( sys.argv[1] ) 
 file_refsfs = open( sys.argv[2]) 
 testsfs, refsfs = (), () 
 for l in file_testsfs: 
  testsfs = np.array([ int(x) for x in l.split()] ) 
 for l in file_refsfs: 
  refsfs = np.array([ int(x) for x in l.split() ])  
 print  "Fraction of sites under {} selection: {}".format( *diff_f( testsfs, refsfs )[0:2] ) 
 
 

3 Evaluation of θ-estimators in calculating f 

3.1 Choice of θ-estimators 
Out of various θ-estimators, we used θW and θπ as estimators of θ, where θ = 4Nµ (N is effective population size, µ 

is mutation rate), as summary statistics of the scaled population mutation rate. Under the standard neutral model, 

θπ and θW are equal to one another, but are differentially influenced by rare and common alleles. Due to these 

characteristics, we used θπ when testing for positive selection and θW when testing for purifying selection. The 

theoretical variance of θW is:  

E(θW) = a1M, 

V(S) = a1M + a2M2, where 
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a1= 1/#$%&
& ,  a2 = 1/#'$%&

& , and M = 4Nµ. 

 

Theoretical variance of θπ is: 

E(θπ) = M, 

V(θπ) = b1M + b2M2, where 

b1= ()&
*((%&)	 , b2 =  '($

.	)	(	)	/)
0(((%&)	 . 

Analytical results show their variance decreases as the sample size increases (Supplemental Figure S2). This 

property contributes to stable estimation of f.   

3.2 θ-estimators for scaling factor  
Under the neutral mutation model, assuming a common demographic history in two sets of sites, θ-estimator 

would be the only parameter that characterizes the quantitative differences the two SFSs. Consistent with this 

expectation, there was no difference between the shape of test and reference SFS under various demographic 

perturbations (Figure 1c,d), except mutation rate. Based on this property, we calculated the ratio of θ in test sites 

to that in reference sites and used this to rescale the reference SFS. For a given SFS, η = ηi (i = 1, 2,…, n-1), 

where ηi is the number of sites at i derived allele frequency, common θ-estimators include: 

θW = &12
34$%&

45& , a1= 1/#$%&
45&  

θπ= '
$
%& #(6 − 1)34$%&

45&  

θH= '
$
%& #'34$%&

45&  

θS = η1. 

θW (Watterson 1975) and θπ (Tajima 1983) have equal weight across site frequency categories and high weight on 

rare allele, respectively. θH (Fay and Wu 2000) has high weight on high frequency categories. θS (Fu and Li 1993) 

is the number of singletons. Both θH and θS require ancestral state information, whereas θπ and θW do not. 

Additionally, we tested other possible θ-estimators, including the partial sum of η, e.g., S1= 34$/'
85&  and θS2 

= 349.;∗$
85$/' , for calculating the scaling factor, where S1 is the sum of sites from singleton to intermediate 

frequency classes and S2 is the sum of sites at low frequency and high frequency categories. Regardless of the 

choice of θ-estimators, we obtain E(f)= (=4,?@A? − 	B=4,C@D)$%&
45& 		= 0, where η is neutral site frequency spectrum, 

and α = θtest/θref (Supplemental Figure S2).  

 

4 Factors influencing estimation accuracy 

4.1 Robustness to hitchhiking, background selection, and recombination rate heterogeneity 
Positive or purifying selection would act on closely linked sites by hitchhiking or background selection, 
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respectively. We tested these effects on estimates of f by simulating a coding region, consisting of neutral loci 

(synonymous sites) and loci subject to the selection (nonsynonymous sites), and a reference non-coding region, 

where the distance between coding region and non-coding region was varied (Supplemental Figure 1). We test f 

for synonymous variants with noncoding variants as a reference group. For close distance between them, both 

hitchhiking and background selection have no effect on the estimate of f (Supplemental Figure S5). For 

hitchhiking model, the estimate of f increases as the distance between them increases, reflecting hitchhiking effect 

produces an excess of rare variants at the linked neutral sites (Braverman et al. 1995).  Meanwhile background 

selection, which reduces θ at the liked neutral sites (Stephan 2010), had no effect on the estimate of f. Essentially, 

recombination rate is a key evolutionary parameter that determines the degree of those effects at linked sites. We 

further tested potential effects of recombination rate heterogeneity on estimates of f by binning variants according 

to their local recombination rates (Supplemental Figure 3). We find no effect of recombination rate on estimates 

of f. 

 

4.2 Effect of genomic contexts 
We considered two genomic contexts, including CpG and GC-biased gene conversion. CpG sites are 

hypermutable for the spontaneous deamination of methylated cytosine at CpG to thymine (Ying and Huttley 

2011), producing an excess of rare alleles. GC-biased gene conversion increases the rate of fixation of C/G alleles 

over A/T alleles (Capra et al. 2013), producing an excess of common alleles. Qualitatively, the neutral mutation 

rate determines the total amount of variants for a given sequence length (Supplemental Figure 6), but does not 

influence the SFS. In contrast, genomic context can influence the shape of the SFS because of fixation rate 

heterogeneity that might be confounded with selection pressures. We tested how estimates of f are affected by the 

mismatch of genomic contexts between test and reference sites (Supplemental Figure 7). As expected, the 

estimate of f was reduced for a combination of gBGC sites in the test model and NCB sites in the reference 

model, suggesting gBGC sites inflate common allele frequency by high fixation rate. Thus, matching genomic 

context between test and reference sites is critical to disentangle selection from neutral forces that influence the 

SFS.  

4.3 Influence of selection on reference sites  
Approximately 2.3% of intronic sites are under constraint (Pollard et al. 2010). Indeed, we found that estimates of 

f increased by removing highly conserved sites from reference sites (Supplemental Figure 9). Thus, estimates of 

f are conservative (i.e., biased downward) in the presence of deleterious sites in the reference set. To mitigate the 

potential influence of selection on reference sites in empirical analyses, we filtered out intronic sites that were in 

the top and bottom 5th percentile of the distribution of PhyloP scores of intronic variants.  
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5	Empirical	measure	of	selection	strength 

5.1	Selection	strength	and	sample	size	
The abundance of rare alleles is a signature of explosive population growth (Keinan and Clark 2012). We 

investigated the effect of sample size on estimates of f under a model of rapid population expansion with constant 

selection coefficient. The estimate of f was increased as the sample size increased (Supplemental Figure S4), 

suggesting large samples are necessary to capture low frequency deleterious alleles under very strong selection. 

With large enough sample sizes, the estimate of f would reflect the observable fraction of deleterious alleles and 

be correlated with the strength of selection. For estimates of f larger than 0.6, where mutations under very strong 

purifying selection are quickly lost from the population, caution is needed in relating estimates of f to selection 

strength without prior knowledge of demographic history.  

5.2	Mixture	of	different	types	of	selections	

For a mixture model of selection, we investigated a situation in which a fraction of mutations is deleterious and a 

fraction is advantageous, and, the reminders are neutral. We found that the estimates of f were sum of f(positive 

selection) + f(negative selection) + f(positive selection)×f(negative selection) (Supplemental Figure S12). In 

humans, the overall proportion of positively selected mutations in coding regions was expected to be less than 

2%(Boyko et al. 2008). The genome-wide estimate of f will be reduced to the fraction of sites under positive 

selection. Practically, without a prior knowledge of which selection regime acted on test sites, a conservative 

interpretation of f would be the total fraction of observable non-neutral variants that some fraction of sites under 

one selection regime could be offset by the fraction of sites under the opposite selection regime.  

 

 

 



	 9	

 

Supplemental Figures and Legends 

Supplemental Figure S1 

 
Supplemental Figure S1. Simulation model under complex demographic scenarios. (A) Simulated sequence 

consisted of a coding region (nonsynonymous and synonymous sites) and noncoding regions. For distributing the 

computational burden among the grid resources, 1,000 replicates under each condition were used for one SFS. A 

standard error was estimated from a set of hundred SFS for a given set of parameters. (B) Diagrams of 

demographic models used in the forward-time simulation. N0 and NB depict effective population size of ancestral 

population and effective population size during bottleneck period, respectively. All simulations were carried out 

using the program SFS-Code.
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Supplemental Figure S2 

 

 
Supplemental Figure S2. Variance of θ-estimators. (A) Theoretical variance of θ-estimators as a function of 

sample size (n). (B) Characteristics of summary statistics of θ in terms of site frequency spectrum. S1 and S2 are 

partial sums of the number of variable sites, where S1 is the sum for rare to intermediate frequency sites, 34$/'
45& , 

and S2 is the truncated sum for intermediate frequency sites, 349.;∗$
45$/' . (C) For two models of neutral variants 

under a realistic demographic model (n = 10,000), where one has a higher mutation rate than the other, differences 

in the rare frequency variation between them became approximately zero after scaling down the SFS with high 

mutation rate to have the same θ with the other SFS.  (D) SFS of neutral mutations simulated under a realistic 

model of human demographic history (Tennessen et al. 2012; Gazave et al. 2013) with varying mutations rates. 

Each line corresponds to a different simulation replicate. (E) The scaled difference in SFS between the reference 
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SFS (µ) and test SFS with a higher (2µ,10µ) or lower (µ/10) neutral mutation rate for each frequency class. Note, 

although the test and reference SFS have different mutation rates, the summed value of f across all frequency 

classes is zero.  (G) Variance of the estimate of f for a realistic model of selection, obtained from the Gamma 

distribution of selection coefficients for nonsynonymous sites estimated in humans (Boyko et al. 2008), as a 

function of the number of variants. Since the variance of estimators of θ depended on the variance of each site 

frequency category (Ramirez-Soriano and Nielsen 2009), f in large sample sizes shows high variance.  
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Supplemental Figure S3 

 
 

Supplemental Figure S3. Effect of recombination rate on estimates of f. Exons were classified into 20 groups 

based on the degree of the local recombination rate. The estimates of f were computed for nonsynonymous sites 

(A) and synonymous sites (B) in EA (red) and AA (blue). The slope of the dashed line was obtained from a linear 

regression model between average recombination rates and the estimates of f, showing that estimates of f are 

robust to recombination rate heterogeneity. 

 

5e-03 5e-02 5e-01 5e+00

-0
.2

0.
2

0.
6

1.
0

f

5e-03 5e-02 5e-01 5e+00

-0
.2

0.
2

0.
6

1.
0

f

A

B



	 13	

 

Supplemental Figure S4 

 
Supplemental Figure S4. Effect of sample size and selection coefficient on estimates of f. For a given selection 

coefficient, f was computed with varying sample size (2n = 10, 100,1000,10000) under a realistic demographic 

model of recent population expansion. For larger sample sizes, estimates of f captured more rare deleterious 

alleles for a fixed selection coefficient. γ* depicts the baseline model of selection, obtained from the Gamma 

distribution of selection coefficients for nonsynonymous sites estimated in humans (Boyko et al. 2008). 
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Supplemental Figure S5 

 
Supplemental Figure S5. Estimates of hitchhiking and background selection on estimates of f. With varying 

distances between reference sites (noncoding sequence) and coding region, f was estimated at neutral (A-F) and 

non-neutral sites (�*�0.1;G-L) that were linked to nonsynonymous sites under purifying (A, B, C, G, H, I) and 

positive selection (D, E, F, J, K ,L) in the coding region. The dashed red line denotes the expected value of f. γ* 

depicts the baseline model of selection, obtained from the Gamma distribution of selection coefficients for 

nonsynonymous sites in human (Boyko et al. 2008). It is interesting to note that the hitchhiking effect in the cases 

of J, K, and L is analogous to the interaction term in the mixture of difference types of selections (Supplemental 

note 5.2, Figure S12). 
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Supplemental Figure S6 

 
 

Supplemental Figure S6. Effect of sequence length on the estimator of θ. Give a number of genes, n, where n = 

10, 20,...,100, the total length of coding sequences and nucleotide diversity was computed in each genomic 

contexts, including CpG, gBGC, and NCB classes, at intronic sites, synonymous sites, and nonsynonymous sites. 

There was a linear relationship between the amount of observable SNVs and sequence length, where the slopes 

were different between genomic contexts. 
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Supplemental Figure S7 

 
 

Supplemental Figure S7. Effect of genomic context mismatch on f. For all combinations of genomic contexts for 

test and reference sites, average estimates of f were computed by bootstrapping 100 replicates of 1,000 randomly 

selected exons. Given its high rate of fixation,, the gBGC group reduced or inflated the estimates of f when used 

for test or reference sites, respectively, compared with estimates of f from the matching genomic context. 

Diagonal panels depict the estimates of f used in the study that controlled for the possible confounding effect of 

mutation rate heterogeneity in test and reference model.  
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Supplemental Figure S8 

 
Supplemental Figure S8. Effect of genomic context on the site frequency spectrum of non-neutral mutations. For 

rare (0.001) nonsynonymous mutations, the estimates of f were significantly (Wilcoxon-test p-value < 10-16) high 

at CpG sites compared to gBGC and NCB sites. 
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Supplemental Figure S9 

 

 
Supplemental Figure S9. Effect of conservation in reference model on the estimates of f. (A) distribution of 

PhyloP scores obtained from 100 vertebrates basewise conservation for intronic variants. The type of reference 

EA Coding region Nonsynonymous sites synonymous sites

Type of reference All CpG gBGC NCB All CpG gBGC NCB

Ref. 
(Intronic 

sites)

 ① All 0.584787 0.656977 0.566285 0.534931 0.071963 0.091511 0.035003 0.073476

② 90% Interquantile (-2.275<PhyloP<2.001) 0.587642 0.65247 0.574447 0.539411 0.078343 0.079575 0.053164 0.082401

③ Remove conserved (5%) (PhyloP < 2.001) 0.593827 0.659933 0.579833 0.545405 0.092168 0.09934 0.065148 0.094342

④ Remove all conserved (PhyloP < 0) 0.626407 0.674558 0.617294 0.588937 0.164987 0.138074 0.148495 0.181068

⑤ Use only conserved(PhyloP > 0) 0.523265 0.601103 0.502432 0.467345 -0.061512 -0.053452 -0.096712 -0.057646

AA Coding region Nonsynonymous synonymous

Type of reference All CpG gBGC NCB All CpG gBGC NCB

Ref. 
(Intronic

sites)

 ① All 0.524501 0.606988 0.509178 0.464599 0.067464 0.075796 0.045592 0.072616

② 90% Interquantile (-2.275<PhyloP<2.001) 0.527029 0.603035 0.516153 0.46916 0.072423 0.066501 0.059155 0.080516

③ Remove conserved (5%) (PhyloP < 2.001) 0.532899 0.609475 0.522495 0.474067 0.083933 0.081646 0.071486 0.089014

④ Remove all conserved (PhyloP < 0) 0.565573 0.624049 0.566768 0.512409 0.148013 0.115916 0.157577 0.155428

⑤ Use only conserved(PhyloP > 0) 0.46438 0.552058 0.43899 0.40491 -0.048022 -0.050672 -0.083317 -0.029855
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represents range of PhyloP scores for obtaining variants as a reference model. For example, the type (2), used in 

this study, includes 90% interquartile range of the distribution. In the other word, this excludes mutations assigned 

to top 5% of highly conserved sites as well as top 5% of highly accelerated sites. (B) Summary of the estimates of 

f in nonsynonymous and synonymous variants with using different type of conservation cutoff for the reference 

sites. As a final reference, type (2) was chosen to filtering out top 5% of highly conserved sites as well as top 5% 

of highly accelerated sites from intronic sites.  (C) Average PhyloP scores of variants in each genomic contexts. 
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Supplemental Figure S10 

 
 

Supplemental Figure S10. Distribution of estimates of f in EA and that in AA. To compare average estimates of f 

in AA and EA, two bootstrapping was applied: first randomly selected n individuals from EA, n to be the number 

of individuals in AA (n= 2217), and than bootstrapped 1,000 genes with replacement to estimate the f for the 

sampled individual in EA and AA. All comparisons between EA and AA are statistically significant (Wilcoxon p 

< 10-16). 
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Supplemental Figure S11 

 
Supplemental Figure S11. The effect of genomic contexts and connectivity (d) of protein-protein interaction 

network on the estimates of f. For a group of genes having same degree of connectivity (d), variants of genes were 

separated into subgroups of genomic contexts in EA (red) and in AA (blue). Solid and dashed lines depict 

regression lines of combining EA and AA and each population, respectively. 
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Supplemental Figure S12 

 
Supplemental Figure S12. Effect of mixture of deleterious and advantageous mutations on f.  (A) mixture of 

sites under purifying selection and sites under weak positive selection, where selection coefficients were drawn 

from Gamma distribution with γ*/10 and |γ*|/100, respectively. (B) mixture of sites under purifying selection and 

sites under positive selection, where selection coefficients were drawn from Gamma distribution with -γ*/10 and | 

γ*|/10. The proportion of positively selection sites equals 1 – the proportion of negatively selection sites. Dashed 

line reflects expected average fraction of multiplicative effect of purifying selection and positive selection. For 

example, if the test sites consisted of a 80:20 mixture of γ*/10 (fNeg=0.50) and |γ*|/10 (f Pos= -0.61), then f is 

estimated to be fNeg + fPos + 2*fNeg*fPos = 0.18. γ* depicts the baseline model of selection, obtained from the 

Gamma distribution of selection coefficients for nonsynonymous sites in human (Boyko et al. 2008). 
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