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Processing mtDNA data 

All reads were aligned with BWA (Li and Durbin 2009) to the hg19 human reference sequence, 

supplemented with the mtDNA revised Cambridge Reference Sequence (rCRS; GenBank 

accessionnumberNC_012920) (Anderson et al. 1981; Andrews et al. 1999). Reads that mapped to 

nuclear DNA were removed, and the remaining reads were then remapped to the rCRS (with the first 

500 bp of the rCRS copied to the end to account for the circularity of the mtDNA genome). A 

consensus sequence for each individual was called using the majority rule, and then the reads for that 

individual were remapped to this consensus sequence. The average coverage per site across the 

mtDNA genome was 1212X (117X-3559X).  

Unexpectedly, the data generated at one of the four centers (Groningen) had systematically lower 

coverage of the mtDNA genome (Figure S1), despite having the same overall whole genome 

coverage as the other three centers. We have so far been unable to identify any difference in DNA 

extraction, processing of samples, sequencing, or downstream bioinformatics processing that could 

account for this difference in mtDNA coverage. However, the lower coverage did not result in any 

systematic differences with respect to number of heteroplasmies detected or average MAF (Table 

S1). Moreover, most of our analyses explicitly take coverage into account and hence are not 

influenced by the systematic difference in coverage between Groningen and the other centers. Where 

coverage could be an issue, we omitted the data from Groningen and repeated the analyses using just 

the data from the three centers with similar coverage levels; these analyses gave essentially the same 

results as the analyses that included the Groningen data.  

After removing long mononucleotide/dinucleotide repeats (specifically, np 302-316, 513-526, 566-

573, and 16181-16194), we used the following criteria to call heteroplasmies: a minimum minor 

allele frequency on each strand of 2% (a lower threshold increases false positives from sequencing 

error and NUMTs (Li et al. 2012; Li and Stoneking 2012)); at least three reads on each strand with 

the minor allele; a DREEP quality score (Li and Stoneking 2012) of 10 or more; coverage of at least 

50X at that np in that individual; and coverage within 20-200% of the genome average. Note that the 

DREEP approach includes measures to control for false heteroplasmies caused by NUMTs (Li et al. 

2012), and these criteria have been tested extensively with simulated data as well as empirical data 

from both rho-zero cells (which lack mtDNA and hence any mtDNA-associated reads are derived 

from NUMTs) and from artificial mixtures, and shown to accurately identify heteroplasmies with a 

false positive rate of <1% (Li et al. 2012; Li and Stoneking 2012). The local alignment around each 

inferred heteroplasmic position was further inspected manually to ensure that alignment issues with 
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potential nearby indels were not producing false inferences. As detecting heteroplasmies for indels 

requires a different approach, they are not considered here but will be the focus of another study. 

 

Droplet digital PCR 

A subset of the inferred heteroplasmies were selected for independent verification via droplet digital 

PCR (ddPCR), which was performed as described previously (Li et al. 2015). Six positions (Table 

S4) were analyzed in a total of 33 individuals, chosen to encompass a wide range of minor allele 

frequencies (Table S5). Briefly, standard PCR assays were prepared in a volume of 20 μL and 

containing two allele-specific probes labeled with different fluorescent dyes (Table S4); assays were 

then partitioned into ~20,000 emulsion droplets that each contained on average one template DNA 

molecule. After PCR the fluorescence was read and the minor allele frequency was estimated from 

droplets containing exactly one template molecule, as described previously (Li et al. 2015).  

 

Potential contamination 

Before we received the data, contamination was assessed in the whole genome sequence data and 

potential contaminants removed (Genome of the Netherlands 2014). Potential contamination in the 

mtDNA data was called if the minor alleles at five or more heteroplasmic positions in an individual 

could define an alternative haplogroup. While this procedure could miss contamination involving 

sequences that differ by less than five mutations, only about 0.7% of pairwise comparisons of the 

parental mtDNA genome sequences in the GoNL data differ by less than five mutations. In addition, 

a sample was regarded as contaminated if more than 80% of the heteroplasmies could be explained 

by contamination from another GoNL sample. Five samples (one father, three mothers, and one 

offspring) showed evidence of potential contamination. For the four parents showing evidence of 

contamination, the entire trio was removed, while the offspring showing evidence of contamination 

was a twin and hence only that sample was removed, thereby converting the twin quartet into a trio. 

In total 13 samples were removed, leaving 756 samples (228 trios, 8 DZ twin quartets, and 10 MZ 

twin quartets) for further analysis.  

 

Estimating the size of the bottleneck during mtDNA transmission 

We aim to estimate the size and nature of the bottleneck during the inheritance of mitochondria 

based on the change in minor allele frequency of heteroplasmic mtDNA sites transmitted from 

mother to offspring. We considered four models: a constant size bottleneck model, in which each 

mtDNA genome is a segregating unit and the bottleneck size does not vary between individuals; a 
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variable size bottleneck model, in which each mtDNA genome is a segregating unit and the 

bottleneck size is allowed to vary between individuals; a constant size nucleoid model, in which a 

nucleoid containing a variable number of identical mtDNA genomes (with mean = 7.5 genomes per 

nucleoid) is the segregating unit and the bottleneck size does not vary between individuals; and a 

variable size nucleoid model, in which a nucleoid containing a variable number of identical mtDNA 

genomes (with mean = 7.5 genomes per nucleoid) is the segregating unit and the bottleneck size is 

allowed to vary between individuals.  

We first describe the most basic model: a constant size bottleneck with the transmission of 

individual mitochondria. Let n be the size of the bottleneck, mobs the number of copies of the minor 

allele in the mother, 𝑚𝑁 the total number of reads in the mother, cobs the number of copies of the 

minor allele in the offspring, and 𝑐𝑁 the total number of reads in the offspring. We aim to 

maximize 𝐿(𝑛|𝑚𝑜𝑏𝑠, 𝑐𝑜𝑏𝑠, 𝑚𝑁 , 𝑐𝑁). To this end, we model the bottleneck as sampling n mtDNA 

genomes with x copies of the minor allele where each transmitted mtDNA genome is sampled 

independently from a large number of maternal mtDNA genomes. We calculate the probability of 

observing 𝑐𝑜𝑏𝑠 given 𝑚𝑜𝑏𝑠 when 𝑛 mtDNA genomes are transmitted: 

𝐿(𝑛|𝑚𝑜𝑏𝑠, 𝑐𝑜𝑏𝑠,𝑚𝑁 , 𝑐𝑁) ∝ 𝑃(𝑐𝑜𝑏𝑠|𝑛,𝑚𝑜𝑏𝑠, 𝑚𝑁 , 𝑐𝑁) =

∑ 𝑃(𝑐𝑜𝑏𝑠|𝑥, 𝑛, 𝑚𝑜𝑏𝑠, 𝑚𝑁 , 𝑐𝑁)𝑃(𝑥|𝑛,𝑚𝑜𝑏𝑠, 𝑚𝑁 , 𝑐𝑁)
𝑛
𝑥=0 = ∑

𝑃(𝑐𝑜𝑏𝑠|𝑥, 𝑛, 𝑐𝑁)⏟          

𝐵

𝑛
𝑥=0

[𝑃(𝑥|𝑛,𝑚𝑜𝑏𝑠, 𝑚𝑁)]⏟            

𝐴
.

     (1) 

This simplification arises because by conditioning on x: 𝑐𝑜𝑏𝑠 given 𝑥 and 𝑛, 𝑐𝑁 is independent of 

𝑚𝑜𝑏𝑠 and 𝑚𝑁 , and x depends only on 𝑚𝑜𝑏𝑠 and 𝑚𝑁. Therefore, this likelihood consists of two 

expressions: (A) the probability of transmitting x minor alleles in a bottleneck of size n ; and (B) the 

probability of observing cobs minor alleles in a mature offspring, conditional on x and n. To calculate 

(A), we consider the probability of sampling 𝑚𝑜𝑏𝑠 minor alleles in the mother by integration over the 

unknown maternal minor allele frequency, 𝑚𝑓: 

𝑃(𝑥|𝑛,𝑚𝑜𝑏𝑠, 𝑚𝑁) 

= ∫ 𝑃(𝑥|𝑚𝑜𝑏𝑠, 𝑚𝑁 , 𝑛,𝑚𝑓)𝑃(𝑚𝑓|𝑚𝑜𝑏𝑠, 𝑛,𝑚𝑁)𝑑𝑚𝑓

1

0

 

= ∫
𝑃(𝑥|𝑚𝑓 , 𝑛)⏟      

𝐴1

𝑃(𝑚𝑓|𝑚𝑜𝑏𝑠, 𝑛,𝑚𝑁)⏟            

𝐴2

1

0
𝑑𝑚𝑓     (2)         
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In the first expression of this equation, (A1), x given 𝑚𝑓 is independent of 𝑚𝑜𝑏𝑠, 𝑚𝑁.  A1 is 

binomial, giving the probability of observing x minor alleles given n transmitted mtDNA genomes 

with probability mf . The second expression of this equation (A2) is the probability that the 

underlying maternal minor allele frequency is mf, given the observed maternal minor allele count, 

mobs, which is independent of n. In this expression, consider the possibility of genotyping errors 

among the maternal reads. Then 𝑚𝑡, the true unknown number of maternal alleles in the sample 

carrying the derived allele, may differ from the observed number 𝑚𝑜𝑏𝑠. We then calculate A2 as: 

𝑃(𝑚𝑓|𝑚𝑜𝑏𝑠, 𝑚𝑁) = ∑ [𝑃(𝑚𝑓|𝑚𝑡, 𝑚𝑜𝑏𝑠, 𝑚𝑁)𝑃(𝑚𝑡|𝑚𝑜𝑏𝑠, 𝑚𝑁)]
𝑚𝑁
𝑚𝑡=0

  (3) 

= ∑ [
𝑃(𝑚𝑡|𝑚𝑓 , 𝑚𝑁)𝑃(𝑚𝑓| 𝑚𝑁)

∫ 𝑃(𝑚𝑡|𝑚𝑓 ,𝑚𝑁)𝑃(𝑚𝑓 | 𝑚𝑁)𝑑𝑚𝑓
1
0

𝑃(𝑚𝑡|𝑚𝑜𝑏𝑠, 𝑚𝑁)]
𝑚𝑁
𝑚𝑡=0

   (4) 

 

To model the genotyping errors, given by the probability 𝑃(𝑚𝑡|𝑚𝑜𝑏𝑠,, 𝑚𝑁) in equation (3), 

we incorporated a position-specific error rate ε, which was estimated as the average minor allele 

frequency at that position across all individuals (irrespective of the specific minor allele observed, so 

ε is position-specific but not allele-specific); the average ε for the data used in the bottleneck size 

estimation was 0.0008. Then 𝑃(𝑚𝑡|𝑚𝑜𝑏𝑠,, 𝑚𝑁) can be calculated using Bayes’ rule (equation (5) and 

reduces to equation (6)), the probability of observing the maternal minor allele count based on the 

sequencing error ε. Equation (6) is made up of two additional binomials that model: the probability 

that i minor alleles were correctly called minor (with probability (1- ε)); and the probability that the 

remaining 𝑚𝑜𝑏𝑠 − 𝑖 alleles were incorrectly called minor (with probability ε). 

𝑃(𝑚𝑡|𝑚𝑜𝑏𝑠, 𝑚𝑁) =
𝑃(𝑚𝑜𝑏𝑠|𝑚𝑡, 𝑚𝑁)𝑃(𝑚𝑡|𝑚𝑁)

𝑃(𝑚𝑜𝑏𝑠|𝑚𝑁)
= 𝑃(𝑚𝑜𝑏𝑠|𝑚𝑡, 𝑚𝑁) (5) 

= ∑ (
𝑚𝑡

𝑖
) (1 − 𝜀)𝑖(𝜀)𝑚𝑡−𝑖 ∗ (

𝑚𝑛 −𝑚𝑡

𝑚𝑜𝑏𝑠 − 𝑖 
) (𝜀)𝑚𝑜𝑏𝑠−𝑖(1 − 𝜀)(𝑚𝑛−𝑚𝑡)−(𝑚𝑜𝑏𝑠−𝑖)

min (𝑚𝑡,𝑚𝑜𝑏𝑠 )
𝑖=0  (6) 

 

Note that in equation (5), 𝑚𝑡 is independent of 𝑛 given 𝑚𝑜𝑏𝑠 and 𝑚𝑁. Furthermore, we are 

assuming a uniform prior on (mt |mN), so P(mt|mN)/P(mobs |mN) is constant with mt .  

In equation (3), 𝑚𝑓  given 𝑚𝑡 is independednt of 𝑚𝑜𝑏𝑠, such that  𝑃(𝑚𝑓|𝑚𝑡, 𝑛,𝑚𝑜𝑏𝑠, 𝑚𝑁) = 

𝑃(𝑚𝑓|𝑚𝑡, 𝑛) is the probability of the true underlying maternal minor allele frequency 𝑚𝑓 given that 

our sample of size 𝑚𝑁 contains 𝑚𝑡 true minor alleles. We calculate this using Bayes’ rule, as shown 

in equation (4), in which 𝑃(𝑚𝑡|𝑚𝑓) is the binomial probability of 𝑚𝑡 minor alleles in a sample of 

size 𝑚𝑁, drawn from the underlying frequency 𝑚𝑓. We assume a uniform prior on 𝑚𝑓.  
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We focus now on the probability of the observed minor allele count in the child, given x 

transmitted minor alleles and n transmitted mtDNA genomes (probability (B) in equation (1)). We 

model the three processes that occur after transmission: (1) replication within the child to achieve the 

final minor allele count (𝑥𝑓) and final total allele count (𝑛𝑓) in the child from the bottleneck size of n 

transmitted mtDNA genomes (drift); (2) sampling from this final population; and (3) genotyping 

error in our sample. This probability is obtained by summing over all possible values of the true 

offspring minor allele count ct, where cN is the total coverage in the child: 

𝑃(𝑐𝑜𝑏𝑠|𝑥, 𝑛, 𝑐𝑁) =  ∑ 𝑃(𝑐𝑜𝑏𝑠|𝑐𝑡, 𝑥, 𝑛, 𝑐𝑁)𝑃(𝑐𝑡|𝑥, 𝑛, 𝑐𝑁)
𝑐𝑁
𝑐𝑡

=

∑ [
𝑃(𝑐𝑜𝑏𝑠|𝑐𝑡, 𝑐𝑁)⏟        

𝐵1
∑

𝑃(𝑐𝑡|𝑥𝑓 , 𝑛𝑓 , 𝑐𝑁)⏟          

𝐵2

𝑃(𝑥𝑓 , |𝑥, 𝑛, 𝑛𝑓)⏟        

𝐵3
𝑥𝑓 ]

𝑐𝑁
𝑐𝑡

        (7) 

The first expression in equation (7), B1, arises because 𝑐𝑜𝑏𝑠is independent of 𝑥 and 𝑛 given 𝑐𝑡 

and 𝑐𝑁. Then B1 is the sequencing error probability, calculated as in equation (6). The second term, 

B2, arises by conditioning on 𝑥𝑓 , 𝑛𝑓, and 𝑐𝑁, such that (𝑐𝑡|𝑥𝑓 , 𝑛𝑓 , 𝑐𝑁) is independent of x and n. Then, 

B2,is a binomial that corresponds to observing 𝑐𝑡  minor alleles after sampling 𝑐𝑁 mitochondria from 

the adult offspring mtDNA population where minor alleles are sampled with probability 𝑥𝑓/𝑛𝑓.  

The last portion, B3, models the replication process to the full size offspring population from 

the bottleneck size at transmission. In B3, 𝑥𝑓 is independent of 𝑐𝑁 given 𝑥, 𝑛. Expanded in equation 

(8), B3 is calculated using a modified Moran model without replacement (Moran 1958). Briefly, we 

assume that in the initial population, there are 𝑛 mtDNA genomes with 𝑥 (𝑛 > 𝑥 > 0) carrying 

minor alleles. At each replication event, one genome is chosen at random. This mtDNA is replicated 

and added to the population, increasing the population size by one. We repeat this process until we 

reach the assumed final population size of 𝑛𝑓=1000, based on the known copy number of mtDNA of 

103-104 (Shoubridge 2000; Lan et al. 2008). Based on this model the probability of the final minor 

allele count can be calculated (for details see section below on modeling the replication process): 

𝑃(𝑥𝑓|𝑥, 𝑛, 𝑛𝑓) =  (
(𝑛𝑓 − 𝑛)

(𝑥𝑓 − 𝑥)
) (

(𝑥𝑓−1)!

(𝑥−1)!
) (

(𝑛𝑓−𝑥𝑓−1)!

(𝑛−𝑥−1)!
) (

(𝑛−1)!

(𝑛𝑓−1)!
)  (8) 

Combining these equations, we return to the overall summation in equation (1). Maximizing 

equation (1) gives the maximum-likelihood estimate of n for an individual site. The estimate across 

all sites is the joint likelihood, obtained by multiplying the individual likelihoods across all sites. 

Building on the most basic model of a constant size bottleneck, we construct three more 

complex models. The variable size bottleneck model differs from the constant size bottleneck model 

by modeling 𝑛, the number of mtDNA genomes transmitted to the child, as a Poisson distributed 
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random variable with mean 𝜆 .  The estimate of λ can be obtained by maximizing the likelihood of λ 

while summing over the unknown values of x and n: 

     𝐿(𝜆|𝑚𝑜𝑏𝑠, 𝑐𝑜𝑏𝑠) = 𝑃(𝑐𝑜𝑏𝑠|𝜆,𝑚𝑜𝑏𝑠, 𝑚𝑁 , 𝑐𝑁) ∝ ∑ 𝑃(𝑐𝑜𝑏𝑠|𝑛,𝑚𝑜𝑏𝑠, 𝑚𝑁 , 𝑐𝑁)𝑃(𝑛|𝜆)
∞
𝑛=0  (9) 

Because the upper limit of n is infinite for a Poisson distribution, we calculate this sum until    

)|( nP  reaches a lower limit (arbitrarily set at 10-10). 

The third model, the constant size bottleneck with nucleoids, differs from the first two models 

in that the estimate of n now represents the number of nucleoids transmitted to the child, with each 

nucleoid containing only identical copies of either the major allele or the minor allele. We assume 

each nucleoid i has a random size gi, i=0…n modeled as a Poisson-distributed random variable with 

mean λ=7.5 (based on empirical studies that find that each nucleoid has 5-10 mtDNA genomes 

(Jacobs et al. 2000; Cao et al. 2007; Khrapko 2008)) . Without loss of generality, the first x groups 

contain the minor allele. This gives ∑ 𝑔𝑖
𝑛
1  as the total number of transmitted mitochondria and 

∑ 𝑔𝑖
𝑥
1 as the total number of copies of the minor allele. Under this nucleoid model, we adjust B3 in 

equation (7) which models the replication process to the full size offspring population from the 

bottleneck size at transmission. Using the same model of replication, we now assume that in the 

initial population, there are ∑ 𝑔𝑖
𝑛
1  mtDNA genomes with ∑ 𝑔𝑖

𝑥
1   carrying minor alleles. Because we 

lack a closed form equation for all possibilities of the Poisson-distributed random sizes of gi, we use 

a Monte-Carlo approximation to calculate this term. The other terms of equation (7), B1 and B3, are 

again made up of the sequencing error probability and the probability of having ct minor alleles in 

our sample of size cN  given 𝑥𝑓 and 𝑛𝑓, the final minor allele count and final total allele count in the 

child after replication. The remainder of the maximum-likelihood estimation was calculated as for 

the constant size bottleneck model. 

Finally, we consider the variable size bottleneck with nucleoids. Similar to the variable size 

bottleneck model in which each mtDNA genome is a segregating unit, this model differs from the 

constant size bottleneck model with nucleoids in that we now estimate λ, the mean of a Poisson 

distributed random variable that represents the mean number of nucleoids transmitted to the child.  

The estimate of λ can be obtained by maximizing the likelihood of λ while summing over the 

unknown values of x and n, as in equation (9), with λ now representing the mean number of 

nucleoids transmitted to the child. 

 

Modeling the replication process 
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Assume that in the initial population, there are 𝑛 individuals with 𝑥 (𝑛 > 𝑥 > 1) carrying minor 

alleles. One individual is chosen at random, copied, and added to the next generation, increasing the 

population size by one. Then for the first generation of 𝑛 + 1 individuals, the probability of 𝑘1 

individuals carrying minor alleles is binomial: 

: 

𝑃(𝑘1|𝑥) =  {

𝑛−𝑥

𝑛
𝑖𝑓 𝑘1 = 𝑥

𝑥

𝑛
𝑖𝑓 𝑘1 = 𝑥 + 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  

 

Similarly, for  the second generation of 𝑛 + 2 individuals, the probability of 𝑘2 individuals carrying 

minor alleles is based on two binomial samplings: 

 

𝑃(𝑘2|𝑥) =  

{
 
 

 
 
𝑛−𝑥

𝑛
(
𝑛−𝑥+1

𝑛+1
) 𝑖𝑓 𝑘2 = 𝑥

2
𝑥(𝑛−𝑥)

𝑛(𝑛+1)
𝑖𝑓 𝑘2 = 𝑥 + 1

𝑥

𝑛
(
𝑥+1

𝑛+1
) 𝑖𝑓 𝑘2 = 𝑥 + 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

  

 

Therefore, the closed form for the probability of observing 𝑥 + 𝑧 minor alleles in generation  j is: 

 

 

𝑃(𝑘𝑗 = 𝑥 + 𝑧|𝑥) = (
𝑗
𝑧
) (
(𝑥 + 𝑧 − 1)!

(𝑥 − 1)!
) (
((𝑛 − 𝑥) + (𝑗 − 𝑧 − 1))!

(𝑛 − 𝑥 − 1)!
) (

(𝑛 − 1)!

(𝑛 + (𝑗 − 1))!
) 

 

We apply this approach to the replication within the child to achieve the final minor allele count (𝑥𝑓) 

and final total allele count (𝑛𝑓) in the child from the bottleneck size of n transmitted mtDNA 

genomes (drift) with x carrying minor alleles.The probability of observing 𝑥𝑓 after (𝑛𝑓 − 𝑛) 

generations: 
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𝑃(𝑥𝑓|𝑥, 𝑛, 𝑛𝑓) = 𝑃 (𝑘𝑛𝑓−𝑛 = 𝑥 + (𝑥𝑓 − 𝑥)) |𝑘𝑛 = 𝑥)

= (
(𝑛𝑓 − 𝑛)

(𝑥𝑓 − 𝑥)
)(
(𝑥 + (𝑥𝑓 − 𝑥) − 1)!

(𝑥 − 1)!
)(
((𝑛 − 𝑥) + ((𝑛𝑓 − 𝑛) − (𝑥𝑓 − 𝑥) − 1)) !

(𝑛 − 𝑥 − 1)!
)(

(𝑛 − 1)!

(𝑛 + ((𝑛𝑓 − 𝑛) − 1))!
)

=  (
(𝑛𝑓 − 𝑛)

(𝑥𝑓 − 𝑥)
)(
(𝑥𝑓 − 1)!

(𝑥 − 1)!
)(
(𝑛𝑓 − 𝑥𝑓 − 1)!

(𝑛 − 𝑥 − 1)!
) (

(𝑛 − 1)!

(𝑛𝑓 − 1)!
) 
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Figure S1. Average coverage for the mtDNA genome in the GoNL data. Top, average coverage 

across the mtDNA genome for data generated from the four centers. Bottom, box plots of the 

coverage. The mtDNA coverage was systematically lower for the samples processed in Groningen, 

for unknown reasons. 
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Figure S2.  Comparison of the MAF estimated via sequencing to that estimated via ddPCR for 

a subset of the data.   
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Figure S3. The number of heteroplasmies per individual follows a Poisson distribution. The plot 

shows the observed number of heteroplasmies (open circles) in each of the 492 mothers and fathers, 

and the expected number (vertical lines) based on the Poisson distribution.  

 

  



13 

 

 

 

 

 

 

 

Figure S4. Coverage at heteroplasmic positions. Box plots are shown for heteroplasmies that were 

transmitted or not transmitted from mothers, and for heteroplasmies that were either received or not 

received (i.e., arose de novo) in the offspring. There are no significant differences in coverage 

between either transmitted and non-transmitted heteroplasmies (P=0.401, Mann-Whitney U test) or 

between inherited and non-inherited heteroplasmies (P=0.391, Mann-Whitney U test). 
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Figure S5. Number of synonymous and nonsynonymous heteroplasmies with different minor 

allele frequencies. 
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Figure S6. Proportion of nonsynonymous mutations in different functional impact categories in 

high level (MAF≥0.05) vs. low level heteroplasmies (MAF<0.05). Nonsynonymous mutations 

were categorized in terms of likely functional impact on the protein as high risk, medium risk, low 

risk, or neutral. 
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Figure S7. Distribution of the number of heteroplasmies for polymorphic alleles that were 

present in mothers but not present in offspring (disappeared heteroplasmies). To control for the 

effect of frequency differences between novel alleles and polymorphic alleles, for each novel allele 

one polymorphic allele which had a similar allele frequency (difference≤0.03) was randomly 

retrieved. Among 100000 resamplings, none of the polymorphic alleles had the number of 

disappearing events equal to or higher than the observed number of disappearing events for novel 

alleles (empirical P-value < 0.00001).
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Table S1.  Number of individuals sequenced, mtDNA and whole genome coverage, number of heteroplasmies, and average minor allele 

frequency (MAF) for each of the four centers contributing to the GoNL project. The number of heteroplasmies per sample is significantly 

higher in the Rotterdam population than in the other populations (Mann-Whitney U tests: Rotterdam vs. Groningen, p=0.0042; Rotterdam vs. 

Leiden, p=0.035; Rotterdam vs. Amsterdam, p=0.00331). This may reflect the higher coverage for the samples from Rotterdam.  There were no 

significant differences among populations with respect to the distribution of average MAF (after Bonferroni correction for the number of tests). 

Only unrelated individuals (fathers and mothers) were used.  

 

Populations Number 

of 

samples 

Average 

mtDNA 

coverage 

Number of 

samples with ≥1 

heteroplasmy 

Total number of 

heteroplasmies 

Number of 

heteroplasmies 

per sample 

Average 

MAF 

Rotterdam 122 1464 74 111 0.91 0.101 

Groningen 106 304 47 63 0.59 0.120 

Leiden 48 1315 21 29 0.60 0.129 

Amsterdam 216 1384 101 139 0.64 0.108 
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Table S2. Heteroplasmies identified in the MZ twin quartets. 

 

Trio Position 
Major 

allele 

Minor 

allele 
Mother1 MZ11 MZ21 P-value2 

A105 379 A G 1 0.975* 0.973* 1 

A148 195 T C 0.793 0.558*** 0.584*** 0.448 

A148 11080 T C 0.938 0.914 0.925 0.384 

A148 16093 C T 0.973 0.983 0.984 1 

A163 16104 T C 0.953 0.984*** 0.983** 0.899 

A164 16124 T C 0.994 0.969*** 0.985 0.0009 

A173 16234 C T 0.629 0.325*** 0.317*** 0.749 

 

Asterisks indicate P-values (Fisher’s exact test) for differences in major allele frequency 

between each twin (MZ1 or MZ2) and the mother: *, P<0.001; **, P<0.00001; ***, 

P<0.0000001 

1Major allele frequency 
2Fisher’s exact test of the null hypothesis: no difference in major allele frequencies in MZ1 

vs. MZ2 
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Table S3. Heteroplasmies identified in the DZ twin quartets. 

 

Trio Position 
Major 

allele 

Minor 

allele 
Mother1 DZ11 DZ21 P-value2 

A124 195 T C 0.994 0.883*** 1 8.8x10-22 

A124 385 A G 0.964 1*** 1** 1 

A124 15848 A G 0.974 1*** 1*** 1 

A125 16220 A G 0.991 0.970* 1* 3.8x10-13 

A127 709 G A 1 0.974** 0.998 9.6x10-6 

A127 2600 A G 1 1 0.952*** 3.9x10-26 

A128 16256 C T 0.976 1*** 0.999*** 0.21 

A177 14470 T C 1 1 0.861*** 4.2x10-66 

A178 7980 A G 0.633 0.332*** 0.145*** 3.3x10-42 

 

Asterisks indicate P-values (Fisher’s exact test) for differences in major allele frequency 

between each twin (DZ1 or DZ2) and the mother: *, P<0.001; **, P<0.00001; ***, 

P<0.0000001 

1Major allele frequency 
2Fisher’s exact test of the null hypothesis: no difference in major allele frequencies in DZ1 vs. 

DZ2 
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Table S4. Primer and probe sequences used in the ddPCR verification of a subset of the 

heteroplasmies.  Numbers refer to nucleotide positions; F and R refer to the forward and 

reverse primers used to amplify the sequence surrounding each position; the designation 

“Probe” followed by a small letter indicates the probe sequence used to detect that allele 

(with the variable position indicated by small letters in the sequence. 

 

Position and primer/probe Sequence ( 5´- 3 ´) 5´Modification 

16093_F GTTCTTTCATGGGGAAGCAG   

16093_R GGGGGTTTTGATGTGGATT   

16093_Probe_c AACCGCTATGTATcTCGTACATTACTG [6FAM] 

16093_Probe_t AACCGCTATGTATtTCGTACATTACTG [HEX] 

195_F TGTCTTTGATTCCTGCCTCA   

195_R GCTGTGCAGACATTCAATTGTT   

195_Probe_t CGAACATACtTACTAAAGTGTGTTAATTAATT [6FAM] 

195_Probe_c CGAACATACcTACTAAAGTGTGTTAATTAATT [HEX] 

8705_F CGACTAATCACCACCCAACA   

8705_R TCCGAGGAGGTTAGTTGTGG   

8705_Probe_t ATAACCAtACACAACACTAAAGGACGA [6FAM] 

8705_Probe_c ATAACCAcACACAACACTAAAGGACGA [HEX] 

15191_F ACATCGGCATTATCCTCCTG   

15191_R GTGTGAGGGTGGGACTGTCT   

15191_Probe_t AGTAATTACAAACtTACTATCCGCCATC [6FAM] 

15191_Probe_c AGTAATTACAAACcTACTATCCGCCATC [HEX] 

7980_F ACGATCCCTCCCTTACCATC   

7980_R TTATACGAATGGGGGCTTCA   

7980_Probe_a AACCAGGCGaCCTGCGA [6FAM] 

7980_Probe_g AACCAGGCGgCCTGCGA [HEX] 

15152_F AAACCTGAAACATCGGCATT   

15152_R AATGTATGGGATGGCGGATA   

15152_Probe_a CTCCCGTGAaGCCAAATATC [6FAM] 

15152_Probe_g CTCCCGTGAgGCCAAATATC [HEX] 
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Table S5.  Comparison of heteroplasmy MAF estimated by ddPCR and by sequencing.  

 

Position Sample 
Major 
allele 

Minor 
allele ddPCR Sequencing 

195 A124d T C 0.007 0.000 

195 A148d T C 0.457 0.416 

195 A124b T C 0.011 0.006 

195 A124c T C 0.116 0.117 

195 R5b T C 0.027 0.002 

195 R5c T C 0.044 0.049 

195 R18b T C 0.169 0.157 

195 R18c T C 0.528 0.567 

195 A148b T C 0.165 0.207 

195 A148c T C 0.454 0.442 

7980 A178b A G 0.397 0.367 

7980 A178c A G 0.654 0.668 

7980 A178d A G 0.856 0.855 

8705 A143B T C 0.360 0.371 

8705 A143C T C 0.425 0.428 

8705 A156B T C 0.095 0.096 

8705 A156C T C 0.207 0.212 

15152 A170b A G 0.775 0.787 

15152 A170c A G 0.001 0.000 

15191 A20B T C 0.275 0.263 

15191 A20C T C 0.679 0.666 

15191 A28B T C 0.412 0.408 

15191 A28C T C 0.322 0.326 

16093 A23B C T 0.043 0.046 

16093 A23C C T 0.031 0.028 

16093 G55B C T 0.057 0.084 

16093 G55C C T 0.017 0.010 

16093 A110B C T 0.069 0.064 

16093 A110C C T 0.021 0.022 

16093 A152B C T 0.028 0.029 

16093 A152C C T 0.012 0.012 

16093 A169B C T 0.034 0.009 

16093 A169C C T 0.010 0.064 
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Table S6.  Discrepant positions between mother-offspring pairs. 

Child ID Position 

Reference 

allele1 

Mother’s 

alleles2 

Major 

allele 

frequency 

Offspring’s 

alleles2 

Major 

allele 

frequency 

Gene 

Annotation Functional effect3 

A173c4 16234 C C/T 0.629 T/C 0.675 CR  

A173d4 16234 C C/T 0.629 T/C 0.683 CR  

L96c 1250 C A/C 0.795 C/A 0.823 MT-RNR1  

G52c 13824 A A/G 0.994 G/A 0.554 SS(MT-ND5)  

A151c 9275 A G/A 0.621 A/G 0.663 SS(MT-COX3)  

G55c 10365 G A/G 0.724 G/A 0.662 NS(MT-ND3) Medium 

G55c 16312 A A/G 0.83 G/A 0.63 CR  

A33c 8405 A A/C 0.999 G/A 0.695 NS(MT-ATP8) not annotated 

R55c 8654 T T/C 0.756 C/T 0.614 NS(MT-ATP6) Neutral 

A170c 8902 G A/G 0.567 G/A 0.999 NS(MT-ATP6) Medium 

A170c 15152 G G/A 0.787 A/G 0.9996 NS(MT-CYTB) High 

A178c5 7980 A A/G 0.633 G/A 0.668 NS(MT-COX2) Neutral 

A178d5 7980 A A/G 0.633 G/A 0.855 NS(MT-COX2) Neutral 

R18c 195 T T/C 0.843 C/T 0.567 CR 
associated with 

bipolar disorder 

A157c 16292 C T/C 0.832 C/T 0.646 CR  

L87c 16311 T C/T 0.56 T/C 0.696 CR  

L106c 789 T C/T 0.78 T/C 0.676 MT-RNR1  

A20c 15191 T T/C 0.737 C/T 0.666 SS(MT-CYTB)   
1rCRS allele 
2first allele is major allele, second is minor allele 
3as predicted by Mutationassessor or from Mitomap (http://www.mitomap.org) 
4A173c and A173d are MZ twins 
5A178c and A178d are DZ twins
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Table S7. Maximum-likelihood estimates (MLE) and Akaike Information Criteria 

(AIC) values for the four bottleneck models.  

 

 

Model MLE Log-Likelihood 
at MLE 

AIC 

Simple  8 -560.96 1123.92 

Variable  9 -558.58 1119.16 

Nucleoid  7 -594.19 1190.38 

Variable Nucleoid  9 -582.50 1167.00 
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