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1 DNase-seq experimental protocol

Intact nuclei were prepared as before (Henikoff et al., 2011) with some alterations. Unfixed yeast cells
(asynchronous W303 cells grown in YPD to ODggp 0.7) were centrifuged at 2000 rpm for 5 min, washed
with sterile water, and resuspended in 20 mL buffer Z (0.56 M sorbitol, 7.4 pH 50 mM Tris, autoclaved).
After resuspension, 14 uL SB-mercaptoethanol and 500 uL of 10 mg/mL zymolyase dissolved in buffer Z
were added. Samples were incubated on the benchtop for 30 min and inverted every few minutes. Cells
were then centrifuged at 1500 rpm for 6 min at 4°C and resuspended in 2.5 mL modified NP buffer (1 M
sorbitol, 50 mM NaCl, 7.4 pH 10 mM Tris, 5 mM MgCly) supplemented with 0.5 mM spermidine, 0.007% (-
mercaptoethanol, and 0.075% NP-40. Next, dilutions of DNase I were prepared on ice to determine the
best digestion conditions. In 1.5 mL tubes, 400 uL of cell mixture from above was added to 12 uL of the
following DNase I solutions: 0.03, 0.1, 0.3, and 1 U/uL. Samples were inverted once and incubated at 37°C
for 16 min. After incubation, 100 uL of stop buffer (5% SDS, 50 mM EDTA) was added to terminate the
reaction. Proteinase K (0.2 mg/mL) was added to each tube, and the tubes were then inverted to mix
and placed at 65°C overnight. The next day, DNA was recovered by phenol extraction and isopropanol
precipitation and run on a 0.8% agarose gel for 3 hours at 85 V to check sample digestion. The samples
that had the optimal amount of DNase I digestion were then prepared for sequencing following the Crawford

DNase-seq protocol (Song and Crawford, 2010).



2 Supplemental figures
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Supplemental Figure 1: Strand-specific cleavage profile of DNase I along the nucleosome, computed by
averaging DNase-seq counts in the Hesselberth data (transformed by the inverse hyperbolic sine function)
within the 2,000 most strongly positioned nucleosome sites in the yeast genome. The same average is
calculated on both in vivo (green and orange) and in vitro (purple and red) data. The distinct DNase I
cleavage profile observed in the in vivo data is completely absent in the in vitro data. We observe that the
DNase I digestion pattern near the dyad is slightly noisier in the Hesselberth data (both in vivo and in vitro)
than in our data, perhaps due to slight differences in the protocols. This figure is similar to Figure 1A, but
is computed using Hesselberth data.



Period of the oscillating cleavage pattern along a nucleosome
(Hesselberth data)
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Supplemental Figure 2: Posterior density of the period of oscillation in the Hesselberth data, as determined
by Bayesian harmonic regression. The most probable period a posterior: for each of the two different strands
is around 10.4 bp. This figure is similar to Figure 1C, but is computed using Hesselberth data.
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Supplemental Figure 3: DNase I cleavage profiles in our data along the nucleosome for the Watson and Crick
strands are almost exactly mirror symmetric with each other. This figure is similar to Figure 1A, but with
the Crick strand profile flipped around the line z = 0.
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Supplemental Figure 4: This figure reproduces the results shown in Figure 2A, but adds the performance of
the individual datasets that form the basis of the MNase consensus map. Using the nucleosome map from
Brogaard et al. (2012) as a reference, we calculate the distribution of center-to-center distances between
our DNase-seq—based nucleosome map and the Brogaard reference map (blue), and between the consensus
MNase-seq—based nucleosome map and the Brogaard reference map (green), as well as between each of
MNase-seq—based nucleosome maps and the Brogaard reference map (orange, red, black, and purple).



FN, TP, and FP of DNase and MNase maps
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Supplemental Figure 5: This figure reproduces the results shown in Figure 2B, but adds the performance of
the individual datasets that form the basis of the MNase consensus map. Using the nucleosome map from
Brogaard et al. (2012) as a reference, we calculate the number of true positives (TP), false negatives (FN),
and false positives (FP) of our DNase-seq—based map, the consensus MNase-seq—based map, and each of
the four individual MNase-seq—based maps. The consensus MNase-seq—based map is compiled by Jiang and
Pugh (2009) based on the four individual MNase-seq—based maps. Set 1 is from Mavrich et al. (2008). Set
2 is from Field et al. (2008). Set 3 is from Jiang and Pugh (2009). Set 4 is from Shivaswamy et al. (2008).
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Supplemental Figure 6: Additional example regions showing nucleosome scores around TSSs (top panels)
and ACSs (bottom panels). The composite score pattern shown in Figure 3 is also observed at individual
genomic loci.
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Supplemental Figure 7: Additional example regions showing nucleosome scores around Abfl (top panels)
and Rebl (bottom panels) binding sites. The composite score pattern shown in Figure 3 is also observed at
individual genomic loci.



DARNS length distribution
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Supplemental Figure 8: The distribution of DARNS lengths, taken from Winter et al. (2013). Note that the
vast majority of DARNS are shorter than 100 bp, and the mode is only around 20 bp.
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Supplemental Figure 9: Median nucleosome scores around human TSSs (A) and CTCF binding sites (B).
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Supplemental Figure 10: DNase I digestion profiles on human nucleosomal DNA (black) and yeast nucle-
osomal DNA (red). The digestion profiles shown in the figure are an average of the forward and reverse
oscillation profiles.

004 Oscillation around random GC or AT rich motifs
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Supplemental Figure 11: We randomly generated five GC (or AT) rich motifs, each with a length of 13 bp (the
length of the Abfl motif). We pooled together all motif matches for these five motifs, filtering out overlapping
matches, and then randomly selected 2,600 motif matches from this pool (2,600 being the number of motif
matches for Abfl). We calculated and plotted the average oscillation around these motif matches as one
curve above. We then repeated this entire process 50 times, resulting in 50 curves for the GC (green) and
50 for the AT (orange) rich motifs. The anti-correlated curves are consistent with nucleosome sequence
preferences for GC and AT nucleotides, which are known to oscillate out of phase with one another.
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Mean-variance relationship
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Supplemental Figure 12: Mean and variance of DNase-seq counts at each position along the nucleosome are
proportional to each other after inverse hyperbolic sine transformation. Each point corresponds to the mean
and variance of one of the 147 positions in the nucleosome window along one of the two strands.
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Supplemental Figure 13: DNase I cleavage profiles (average transformed DNase-seq counts) at 2,000 random
genomic windows are essentially flat, modulo random sampling noise.

Classification AUROC of different approaches
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Supplemental Figure 14: Performance (as measured by AUROC) of different classification approaches on
both our data and Hesselberth data. Classifying nucleosomal vs. non-nucleosomal locations on the basis of
a simple likelihood ratio has the worst performance. Bayes factor approaches that integrate out both the
level parameter a and the curvature parameter b perform similarly to approaches that only integrate out
a. Approaches that include the oscillation pattern have better performance than approaches without the
oscillation pattern. Based on this analysis, we ultimately employed a Bayes factor approach with only a
integrated out and with the oscillation pattern (the fourth set of bars).
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FN, TP, and FP of different greedy algorithm parameters
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Supplemental Figure 15: To explore how sensitive our greedy algorithm might be to various settings of the
overlap parameter, we tested parameter values different from 117 bp. The same false negative (FN), true
positive (TP), and false positive (FP) values as in Figure 2B were calculated and are shown here. The results
were largely insensitive for a range of reasonable parameter values between 97 bp and 127 bp. For reference,
performance of the consensus MNase-seq—based nucleosome map is reproduced in the last column.
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