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Results
Demographic model selection: using PSMC/MSMC

We applied the pairwise sequentially Markovian coalescent (PSMC, Li and Durbin 2011) and
multiple sequentially Markovian coalescent (MSMC, Schiffels and Durbin 2014) as independent means
to explore the demographic history of our populations (Materials and Methods). PSMC infers effective
population size over time from a single diploid genome, while MSMC measures genetic separation of
populations using relative cross coalescence rates between pairs of haplotypes from two populations. We
applied both PSMC and MSMC to our quality-controlled intergenic data. The PSMC curves of the
farmers begin to separate from those of the Pygmies roughly 100-200 kya (Figure S3A), suggesting that
the ancestors of the farmers and Pygmies began differentiating from each other as early as 100-200 kya,
consistent with the inferred divergence time in Model-1. The MSMC curves indicate declining genetic
exchange between Pygmies and farmers ~40-60 kya, suggesting that these two populations may have
diverged from each other at this time (Figure S3D-E). To test if Model-1 and Model-2 recapitulate the
divergence times between farmers and Pygmies indicated by PSMC/MSMC, we applied both methods to
simulated genomes under both models (Figure S3B-E). Under Model-1, the PSMC curves of the
simulated Pygmy and farmer genomes split at about the same time as in the PSMC analysis of the real
data (Figure S3B), while the two simulated populations of Model-2 do not show clear separation until
~70 kya (Figure S3C). The MSMC curves of Model-1 and those of real data agree well, but Model-2
seems to fit the MSMC curve from the real data poorly (Figure S3D-E). Interestingly, the divergence
times indicated using MSMC differ from those we simulated, highlighting the complexity of interpreting
MSMC results. Together, however, these results suggest that Model-1 qualitatively fits the data better,

and the inferred ancient divergence time in Model-1 is plausible.



Importance of controlling variation in mutation and recombination rates across the genome

Methods for detecting natural selection often rely on summaries of local genetic variation, and
they may be biased by variation in mutation rate across the genome (Reich et al. 2002; Drake et al. 2005;
Schaffner et al. 2005; Sainudiin et al. 2007). For example, G2D values (Nielsen et al. 2009) are correlated
with local genetic diversity (Pearson correlation 0.298, p<2.2x10™'°, Figure S4). We addressed this by
estimating and incorporating local mutation rate variation in our simulations (Materials and Methods),
and our simulations can reproduce local genetic diversity in the real data (Pearson correlation=0.902,
Figure S5). To assess whether mutation-rate heterogeneity could bias downstream inferences of selection,
we compared results using two different sets of simulations under Model-1 to assign P-values. In the first
set, the local mutation rate for each window was assigned to be the mean rate of the recombination decile
to which that window belonged (Figure S6). In the second set, we estimated a local mutation rate for each
window individually (Figure S7). The P-value distributions of G2D based on these two sets of
simulations were calculated, and for both analyses we chose the top 0.5% windows in the P-value
distributions as the top-hits. There is a clear shift to larger heterozygosity (estimated using 6/base) for the
top hits in the first simulation set (Figure S6A), compared with the second set (Figure S7A). As expected,
the top hits in the first simulation set tended to be windows with larger numbers of variants, while the top
hits from the second set were distributed across the whole range of observed heterozygosity across the
genome (Figure S6B vs. Figure S7B). This suggests that incorrectly incorporating mutation rate
variation in whole-genome simulations might lead to biases toward regions with unusually high mutation
rate as candidates of natural selection.

The distribution of P-values was sensitive to the genetic recombination map used in the
simulations (Figure S8). In particular, the distribution of G2D p-values using the African American map
(Hinch et al. 2011) is shifted more toward p=1 than using the Yoruba HapMap map, suggesting that
inference using the African American map would be more conservative (Figure S8). To avoid potential
biases due to the choice of map and/or null model, we restricted our candidates to those that are top hits

using all four combinations of the two recombination maps and the two best-fit demographic models.



Because the P-value distributions based on the two null demographic models are highly correlated
(Pearson correlation=0.984, p<2.2x10™'°, Figure S9), and the analysis based on the African American
map is more conservative, unless mentioned otherwise we report P-values and false discovery rates

obtained using Model-1 and the African American map.

Selection scan using iHS: bone synthesis and muscle-related candidates

Among the candidates of our iHS scans for signals of selection, five loci contain genes
associated with bone synthesis. Except EPHB1, which is discussed in details in the main text, the
other four are SLCO2A1 (locus: chr3:133506737-133863702), ZBTB38 (locus: chr3:141105569-
141333249), TSPANS (locus: chr4:99496207-99673561), and GAREM (locus: chr18:29766032-
29896024). SLCO2A1 encodes a prostaglandin transporter protein, and mutations in this gene have been
shown causing Primary Hypertrophic Osteoarthropathy, a rare genetic disease that affects both skin and
bones (Zhang et al. 2012). ZBTB38 encodes a zinc finger transcriptional activator expressed in the brain,
and has been associated with adult height in multiple populations (Lettre et al. 2008; Weedon et al. 2008;
Wang et al. 2013). TSPANS is a member of the tetraspanin protein family and is up-regulated during
osteoclast differentiation (Iwai et al. 2007); knockdown of its expression dramatically inhibits
osteoclastogenesis in vitro (Iwai et al. 2007; Zhou et al. 2014), suggesting its regulatory role in bone
development. GAREM is an adapter protein in intracellular signaling cascades and has recently been
associated with human height in a whole-exome sequencing association study (Kim et al. 2012). A few
large Fst (= 0.2) non-synonymous amino acid substitutions were observed within these candidate regions,
but they are not suggested as functionally important by SIFT (Kumar et al. 2009) or PolyPhen-2
(Adzhubei et al. 2010). Regions near four out of these five genes, however, show high levels of
differentiated SNVs in enhancer/Polycomb-repressed sequences, implying that Pygmy short stature might

arise partly through cis-regulatory evolution (Figure S11).



In addition to OBSCN, two candidate loci also encompass muscle-related genes, COX10 (locus:
chr17:13911228-14241158) and LARGE (locus: chr22:34224706-34359718). COX10 is a cytochrome ¢
oxidase, and Diaz et al. (2005) reported that COX10 knockout mice develop a slowly progressive
myopathy. LARGE is a member of the N-acetylglucosaminyltransferase gene family, and mutations in
this gene cause a form of congenital muscular dystrophy (Longman et al. 2003). Interestingly, Andersen
et al. (2012) recently found evidence that variants in LARGE might have been positively selected for the

resistance of Lassa fever in Western African populations.

Selection scan using G2D: reproduction and gene regulation-related candidates

One of our G2D candidate regions (locus: chr1:183076845-183184161) includes the gene
LAMCI1, which plays a role in reproductive development. LAMCI expression increases in bovine, pig,
and rabbit basal lamina during follicular development (Irving-Rodgers and Rodgers 2005), and is also
expressed in the human ovary (Berkholtz et al. 2006). A recent genome-wide association study reported
that polymorphisms in LAMC] are associated with an increased risk of premature ovarian failure, which
is characterized as the cessation of ovarian function before the age of 40 and could result in amenorrhea
and infertility (Pyun et al. 2012). Another interesting G2D candidate region (chr19:12386669-12523799)
contains cell signal transmission genes, the ZNF genes, which encode proteins with KRAB and zinc-
finger domains. Genes in this protein family have been previously shown to be under positive selection in
African Americans (Nielsen et al. 2005; Nielsen et al. 2009). It is unclear what phenotype these variants
are associated with, but the role of ZNF'442 in transcriptional binding activity suggests trans-regulatory

evolution might play a role in the adaptation of Pygmies.



Methods

Using GRCh37/hg19 for read alignment

Our genomes were assembled using the default Complete Genomics (CGI) analysis pipeline (v.1.10).
Because CGI is currently not supporting GRCh38 (personal communication with the senior scientist Dr.
Birgit Crain at CGI, E-mail date: 12.07.2015), our data was aligned according to GRCh37/hg19.
According to the Genome Reference Consortium

(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/info/index.shtml), the major improvements

in GRCh38, compared to GRCh37/hgl9, are in 1) providing alternative scaffolds to better represent
complex regions (e.g. centromeres) in the genome; 2) closing/reducing the known gaps in the previous
releases (sizes of gaps: ~234 Mb or 7.6% in GRCh37/hg19 and ~151Mb or 4.9% in GRCh38); 3)
correcting assembly errors, particularly for complex regions, in the previous releases. While realigning
our data to GRCh38 might yield more data in complex regions, we do not expect this will affect our
conclusions, because we excluded most complex regions and known gaps from all of our analyses

(Materials and Methods).

Data quality control for genotype calls

Before any quality control filters, 13,276,198 autosomal single nucleotide variants (SNVs) were called in
our samples. Unless mentioned otherwise, we analyzed only variants that were 1) fully called across all
samples, 2) not in any known or called indels, 3) not in any known or CGI called copy number variants, 4)
not in any known segmental duplication regions, and 5) aligned against chimpanzee (PanTro3, Hg19).
Databases used for steps 3, 4, and 5 were downloaded from UCSC Genome Browser in May 2013. We
used Hg19 coordinates, using the UCSC Genome Browser liftOver program if necessary. After filtering,

our data consist of 10,865,288 SNVs.

Demographic inference using dadi



Oadi is a forward time simulator of allele frequency spectrum (AFS) based on a diffusion approximation
(Kimura 1964). To ensure genotype quality for demographic inference using our sample, SNVs were
removed if they overlapped with any known repetitive genomic regions based on the UCSC Genome
Browser databases, Self Chain (if sequence identity > 0.9) and RepeatMasker. We also excluded sites that
are within known copy number variants (CNVs; Database of Genomic Variants, as of May 2013) as well
as the CGI called CNVs. Sites within genes or 1,000 flanking base pairs were excluded to minimize
possible effects of natural selection. Coordinates of genes were from the RefSeq genes database,
downloaded from the UCSC Genome Browser in May 2013. We used the remaining 1,575,394 SNVs
from a total of 325,957,426 non-genic base pairs to build an unfolded AFS. Ancestral states were inferred
using chimpanzee as the outgroup, using human-chimpanzee alignment (PanTro3, Hg19). The estimated
sequence divergence between human and chimpanzee based on these non-genic sequences is 1.14%. We
used the dadi implementation of a context-dependent substitution model to statistically correct the
unfolded AFS to mitigate possible biases due to ancestral state misidentification (Hernandez et al. 2007).
To estimate demographic parameters, the derivative-based BFGS algorithm was used to optimize the
composite log-likelihood.

To test if including sites within putatively functional non-genic regions could bias the AFS, SNPs
within the top 12 strongest signals (i.e. not including the three types: 13 Heterochrom/low signal,
14 Repetitive/CNV, 15 Repetitive/CNV) of ENCODE elements (Gerstein et al. 2012) were removed
from our original non-genic data, resulting in a 20% reduction of the data (from ~1.5 millions to ~1.2
millions). To quantitatively assess for deviations between the AFS of the two data sets, from the original
data set we computationally generated 1,000 bootstraps (random sampling with replacement), in which
each bootstrap has the same number of SNPs as in the ENCODE-filtered data set. For each entry in the
AFS, we then assessed where the ENCODE-filtered data set was within the distribution of values
obtained from the bootstraps of the original data (the third row of Figure S1). We found that the two AFS

from the 1.5 millions and 1.2 millions SNPs are neither qualitatively nor quantitatively different



(Supporting Materials, Figure S1). Thus, we expect that using the ENCODE-filtered AFS will not change

any of our conclusions of demographic inference.

Haplotype phasing

Haplotype phasing was done using BEAGLE v3.1.1 (Browning and Browning 2007). To enhance phasing
accuracy, we included two additional public pygmy genomes, a Bakola and a Bedzen genome (CGI
Assembly Pipeline 1.10, CGA Tools 1.4) from Lachance et al. (2012), into our genome sample. In order
to obtain population-specific phased haplotypes for the Pygmies, we first constructed a scaffold for each
chromosome using the 36 SNP-chip samples, including 16 Biaka Pygmies genotyped by the Human
Genome Diversity Project (HGDP, Li et al. 2008, Illumina 650 K), and 10 Baka and 10 Bakola Pygmies
genotyped by the Hammer lab of the University of Arizona (Affymatrix Axiom 500K). The 9 Pygmy
genomes were then phased using BEAGLE, with the pre-phased scaffold as the reference. The 9 Yoruba
genomes were phased separately using the same framework, together with an additional 4 Luhya genomes
from the CGI public data repository. The scaffold for the Yoruba genomes consisted of genotype data for
81 Yoruba and 86 Luhya samples from the 1000 Genomes Project and 21 Yoruba and 10 Luhya samples
from the HGDP. All of these samples were determined to be unrelated using the identical-by-descent
operation in PLINK (Purcell et al. 2007). All positions were converted into Hg19 coordinates using the

UCSC LiftOver utility if necessary.

Haplotype and diplotype analyses
Hierarchical clustering for both haplotype and diplotype data was performed using the R function “hclust”
in the stats package (R Development Core Team, 2012). We used the R package pegas (v.0.6, Paradis

2010) to plot haplotype network, using pairwise nucleotide differences as the distance matrix.

ENCODE regulatory elements



We downloaded the ENCODE (Gerstein et al. 2012) database (wgEncodeBroadHmmHsmmHMM) using
the UCSC Genome Browser in February 2014. We used the five most reliable functional categories:
Active Promoter (state 1), Strong Enhancer (states 4 and 5), Insulator (state 8), and Polycomb-repressed

(state 12). This yielded 134,769 regulatory elements.



Supplementary Figures
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Figure S1. Evaluation of the possible effect of including ENCODE functional elements on the allele
frequency spectrum (AFS). Top row: the 2-population marginal AFS of original 1.58 million intergenic
SNPs, scaled to match the number of SNPS in the ENCODE-filtered subset. The middle row: the 2-
population marginal AFS of the ENCODE-filtered 1.2 million intergenic SNPs, after excluding the three
lowest signals among the ENCODE elements (13 Heterochrom/low signal, 14 Repetitive/CNV,
15_Repetitive/CNV). Bottom row: location of each entry of the ENCODE-filter AFS in the distribution of
values from 1,000 bootstraps, each of which had 1.2 million SNPs sampled from the original intergenic
data set.
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Figure S2. Decay of linkage disequilibrium in Pygmies and farmers in real and simulated data.
Simulations are based on 100 models drawn from the confidence intervals of the parameter estimates for
each of the two best-fit models. LD is estimated using correlation coefficient (r*) between pairs of
variants in 0.1 cM windows across the whole genome. (A) The Pygmies; (B) the Yoruba farmers.



(A)

Effective population size (x1 04)

(B)

Effective population size (x1 04)

©

Effective population size (x1 04)

25 F

Yoruba(9)

Baka(3) —
Biaka(4)

0 1 1
10% 10° 108 10
Years (g=25, u=2.3x10'8)
3 T T
Yoruba
Baka
o5k Biaka
2 -
=L
15 = |
_il i
1F { Eﬁ 1 ‘ ‘4;'
I ==
Ty et
05 F
0 1 1
10* 10° 108 107
Years (g=25, u=2.3x10%)
3 T T
Yoruba
Baka
25 Biaka
2
1.5
ol
0.5
O 1 1
10* 10° 10° 107

Years (g=25, 1=2.3x10%)



(D)

1.

—_

o
®

o

Relative cross coalescence rate
o
S

0.

(E)
12

1.0

Relative cross coalescence rate

0.2

0.0

Figure S3. PSMC and MSMC analyses. (A) We performed PSMC (Li and Durbin 2011) analysis on the
whole genome samples of the farmer and Pygmy populations. Each line represents a genome, plotted as
the evolution of effective population size against time. The number inside parentheses in the legend
indicates the sample size in each population. (B-C) PSMC analysis using simulated genomes: Model-1,
the continuous asymmetric gene flow (B), Model-2, the single pulse admixture model (C). Red lines are
the farmer population (Yoruba), and the green and blue lines are the two Pygmy groups (Baka and Biaka).
(D) The MSMC (Schiffels and Durbin 2014) results for two random pairs of Biaka-Yoruba (blue solid
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Figure S4. Dependency of G2D statistic on local heterozygosity. Each point represents a window with
500 SNVs. Red dashed line shows the result of a linear regression. Correlation is Pearson’s correlation.



0/base - simulation_222

0.005

0.004

0.003

0.002

0.001

EveryWindow - w500/s100

0.001

0.002 0.003
6/base - real data

0.004

0.005

count

Figure S5. Correlation of per-base 8 (Watterson’s estimator) between windows in real and
simulated whole-genome data. Window are defined as in our selection scans. Pearson correlation is

0.902.

250

200




(A) [6.75e-05,0.139] (0.139,0.302] (0.302,0.492] (0.492,0.708]

0.005-
0.004-
0.003-
0.002-
0.001-

(0.708,0.967] (0.967,1.29] (1.29,1.71] (1.71,2.33]
0.005-
0.004-
03
0 ] type
£0.003 i_l%mpirl;i,tt:al
=2 [o] its
0.002- P
0.001-
(2.33,3.41] (3.41,17.9]
0.005-
0.004-
0.003-
0.002-
0.001-
-2000-1000 O 1000 -2000-1000 O 1000
Density
° 39,0.302] o .492,0.708]
(B) : : g
- - g
s &
& 8 g
z 2 2l To
& g 5 53
£ £e i &
8 g g g
o ‘ o d o o
0.000 0002 ' 0.004 00005 ' 0.0015 ' 0.0025 ' 0.0035 0.0005 '~ 0.0015 ' 0.0025 ' 0.0035 0.001 0.002 0.603 0.004
©/base ©O/base ©lbase ©/base
(0.708,0.967] o (0.967,1.29] (1.29,1.71]
o 3 g
g g -
.1 [l 58 5 58
2o 2 25 ge
o @ o o
[ I [ u87 w w §
all
o B o o o
0.001 0.003 0.005 0001 0002 0003 0.004 0.003 0.005 00005 ' 0.0015 ' 00025 ' 0003
©/base ©lbase ©lbase ©/base
(2.33,3.41] g (3.41,17.9]
s e
&
8
I z<
g £ g
s : ==}
== o
g i =i
w H
° £2 o I i,
0.001 0.003 0.005 0001 0002 0.003 0.004
©/base ©lbase

Figure S6. Biased distribution of candidates for selection (top 0.5% in P-value distribution) with
respect to local mutational heterogeneity. The mutation parameter of each window in the simulation is
assigned to be the mean rate of the recombination decile to which that window belonged. Each subpanel
shows one of the 10 recombination rate deciles. (A) A clear shift to larger heterozygosity for the top hits
under this simulation design. (B) The top hits (red vertical lines) tended to be windows with larger
numbers of variants.
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Figure S7. Unbiased distribution of candidates for selection (top 0.5% in P-value distribution) with
respect to local mutational heterogeneity. The mutation parameter of each window in the simulation
matches its local mutation rate. (A) No clear shift in heterozygosity for the top hits under this simulation
design. (B) The top hits were distributed across the whole range of observed heterozygosity across the
genome.
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Figure S8. Dependence of top-hits in P-value approach on genetic recombination map used in
simulations. (A) Shown are the P-values for windows simulated using the per-window mutation-rate
estimation approach under Model-1 (AsymModel), but with two different published genetic
recombination maps: AAmap: African American genetic recombination map (Hinch et al. 2011),
HapMapYRI: Yoruba HapMap genetic recombination map (The International HapMap Consortium
2007). (B) Zoom in to the bottom-left corner of (A). Black and purple lines indicate the top 0.5% and 1%
cutoff in P-value distributions. Only windows in Quadrant-III are robust to the choice of genetic
recombination map. The color scheme represents the density of the windows on the plot. Similar results
hold for simulations under Model-2 and for iHS as well
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modest. Cross marks (x) represent those Pygmy specific top-hits as discussed in the main text.
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Figure S11. Elevated population differentiation (Fsr) in ENCODE regulatory element sequences in four candidate loci containing several
bone-synthesis related genes. Each panel is titled by the bone-synthesis related gene. Green symbols indicate SNPs residing in ENCODE
elements, while red symbols are variants within protein coding sequences.
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Figure S12. Genome-wide Manhattan plot of the G2D statistic. Each dot is a window of 500 single
nucleotide variants. The dashed line represents the top 0.5% of the outlier threshold of the G2D statistic.
Red dots are the candidates selected using the P-value approach (consensus windows based on the two
best-fit demographic models). Most of chromosome 9 was masked by our quality control filters.
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Table S1. Primary models evaluated during demographic inference using dadi (Gutenkunst et al. 2009). Parameter 0, is 4N,,
where p=2.35x10" per site per generation (Gutenkunst et al. 2009), N is effective population size, T is the time of a demographic
event (in units of 2N, generations, where N, is the ancestral effective population size), m is migration rate (in units of 2N,), and f'is
admixture proportion. Events that occur at the same time are noted using “/”’; otherwise, in our optimization procedure, the order of
time parameters for the divergence and gene flow events is not fixed in a model. Note that we did not choose Model-5 over Model-2,

even though Model-5 has a better log-likelihood than Model-2, because Model-5 is a special case of Model-1.

Model Parameter: estimate Log-likelihood  Optimization
Model-1 (10 parameters) -6712 All converged.
Tsplit-P
| E  0a:206127 Teplit-pr: 0.46
Topicer N & Ngp: 3.02 Tmigpr: 0.115
NFZ 1.76 TSplit-P5 0.015
NPZ 0.86 Mmgp: 1.22
Tep: 0.655 mpr: 11.9
Model-2 (9 parameters) -1737 All converged.

Tsplit—]’

T

admixture

Biaka

Tsplit—PF

N\,

Baka

f,

admixture

0,: 206375
Nep: 2.26
NFZ 2.05
NPZ 0.79
Tep: 0.686

Tsplit-PF: 0.266
Tadmixture: 0.021
TSplit-P5 0.012
fadmixture: 0.6799




Model Parameter: estimate Log-likelihood Optimization

Model-3 (7 parameters) -11877 All converged.
. £ 0,: 207003 Tep: 0.668
NG = Nep: 2.62 Tepiicrr: 0.048
Ng: 1.27 Tspiit-p: 0.019
NPI 1.35
Model-4 (8 parameters) -10978 All converged.
Tsplit-P
T £ 0,:206264 Np: 1.31
NG B Nep: 2.63 Tep: 0.677
NF12 0.64 Tsplit-PF: 0.047

NF22 44.56 Tsplit_pi 0.021




Model Parameter: estimate Log- Optimization
likelihood
Model-5 (10 parameters) -7437 All converged.
Tsplit-P/migraﬁnn
T %’ 0,: 208385 Tep: 0.617
*"“""F\ @ Nep: 3.08 Tsptie-pr: 0.147
NF1: 1.10 Tsplit-P/migration: 0.024
NF22 2.90 MFPI 1.73
NPI 0.97 MPFI 22.36
Model-6 (12 parameters) -6532 *: Parameter that

Biaka

Tsplit-PF

N\,

Baka

Yoruba

0.: 206308

Nep: ¥9.8 -21.9
NEi: 1.47

Np2: ¥5.0 7.1
NPI 0.95

Tep: *0.58 — 0.63

Tsplie-pr: ¥0.3765 — 0.3785
Tro: *0.1265 — 0.1285
Tmig-pr: ¥0.0165 — 0.0185
Tsplit_pi 0.016

MFPI 1.36

MPFI 10.64

did not converge.




Model Parameter: estimate Log- Optimization
likelihood
Model-7 (9 parameters) -8085 *: Parameter that
Tsplit—Pladmixture dld not COnVerge.
T % 0a: 206054 Tep: 0.677
LNy B Nep: 2.63 Topticer: 0.127
NF1: 1.42 Tsplit-P/admixture/F2: 0.016
Nr2: ¥41 - 45 fadmixture: 0.399
fadmixtnre NP: 1’06
Model-8 (12 parameters) -10837 *: Parameter that
Togmivaure | did not converge.
T
- Do INg 2 0,:206311 Tep: *0.768 — 0.868 Also note that
¥ '"'PF\ a 9 %0 1 ) the estimates for
5 N 266 Topiicer: *0.153 — 0.253 T and
T & Npp: 0.58 Tsplit-P/FZ: *(0.126 — 0.246 Tadmixture are the
* £ dmixt . . same, suggesting
- Ni: *40 - 42 Tadmixure: *0.126 — 0.246 A
Np: 1.25 fadmixture: 0.116 occurred at the

same time.




Table S2. Refitting the two candidate models with thinned data set. In the thinned data set, the polymorphisms are at least 0.01 cM apart from
each other. Information criteria, AIC and BIC, were calculated for each of the two best-fit models. Model-1 is preferable over Model-2 using both
AIC and BIC methods.

Model Log likelihood Log likelihood

(# parameters) (full data set) (thinned data set) AlC BIC
Model-1, continuous gene flow (10) -6712 -2803 5624 5669
Model-2, single pulse admixture (9) -7737 -2851 5718 5758

Table S3. Overlap of selection candidates (top 0.5% in P-value distribution) with functional loci (i.e. protein-coding and ENCODE
sequences). Enrichment of top-hit windows was found in genes, but not in ENCODE elements. P-values are calculated based simulations of
Model-1 with the African American genetic recombination map. Similar results hold for the other three simulation conditions.

Significant 117 275 62 330
Non-significant 29392 55766 12865 72293
P-value %
(one-sided Fisher Exact Test) 0.029 0.682




Table S4. The 35 distinct genomic regions with the strongest evidence of Pygmy-specific signals of adaptation identified by iHS. For each
locus, the third column, max(]iHS]), indicates the maximum iHS score among the variants inside the locus.

Locus Gene Name(s) max(|iHS|) P value FDR Notes
chr1:97708629-97876524 DPYD,DPYD-AS1 4.64 1.00x10° 0.16
TDRKH,LINGO4,RORC,C2CD4D,
chrl:151752870-152059462 LOCI100132111,THEM5,THEM4, 4.62 0.00 0 §100A410 is an regulatory element of innate immunity (Han et al. 2012).
S100410,NBPF18P,S100411,TCHHLI
IL6R encodes an interleukin receptor, associated with inflammatory
diseases, such as rheumatoid arthritis and asthma; (Briso et al. 2008).
ADAR involves A-to-I RNA editing and acts as an antiviral gene
chr1:154382442-154782105 1141‘555 g?;ﬁfDlo, UBE2Q1,CHRNB2, 5.36 0.00 0 (Haralambieva et al. 2011).
! TDRD10 is a member of methylarginine-binding proteins that have
enriched expression in the germ line and are strongly associated with
gametogenesis (Chen et al. 2011).

. ACBD3 is a Golgi-resident protein involved in hormone-induced steroid
chrl:226265661-226580188 ACBD3,MIXLL,LIN,PARPI 4.99 0.00 0 biosynthesis in testicular Leydig cells (Fan and Papadopoulos 2013).
chr1:226865560-227209786  ITPKB,PSEN2,ADCK3,CDC42BPA 5.16 0.00 0 L2 95 I S ) LD ST L2 9 L b I 0l

innate immune system (Sauer and Cooke 2010).
WNT9A,MIR5008, WNT3A4,ARF I,
MIR3620,Clorf35,MRPL55,GUK1,GJC2,
. IBA57A4S81,IBA57,Clorf145,0BSCN, OBSCN is an obscurin gene and has an important role in the organization
chrl:228103665-228842760 TRIM11,MIR6742,TRIM17,HIST3H3, > 0.00 0 of myofibrils.
HIST3H2A,HIST3H2BB,MIR46664,
RNF187,BTNL10,RHOU,DUSP5P1
chr2:60242061-60398137 NA 5.10 0.00 0
chr2:72210353-72344610 NA 4.93 0.00 0
chr2:213722832-214136943 MIR4776-2, MIR4776-1,IKZF2 456 0.00 0 IKZF2'1s a hematopoietic-specific transcrlptl.on factor involved in the
regulation of lymphocyte development (Stanic et al. 2014).
chr2:236917302-237037341 AGAPI 4.96 1.00x10° 0.16
chr3:10080721-10242712 FANCD2,FANCD20S,BRK1,VHL,IRAK?2 5.00 1.00x10° 0.16

. TATDN2,GHRLOS,LINC00852,GHRL,
chr3:10285605-10695444 SECI3ATP2B2, MIRSSS 5.00 0.00 0
chr3:111396224-111555201 PLCXD2,PHLDB2 5.53 0.00 0

SLCO2A1 encodes a prostaglandin transporter protein, and mutations in
chr3:133506737-133863702 SRPRB,RAB6B,C30rf36,SLCO241 4.59 0.00 0 this gene have been shown causing a rare genetic disease that affects both

skin and bones (Zhang et al. 2012)
chr3:134572433-134716365 EPHBI 4.44 0.00 0 EPHBI is an Ephrin receptor at sites of osteogenesis.

ZBTB38 encodes a zinc finger transcriptional activator has been associated
chr3:141105569-141333249 ZBTB38,RASA2 4.86 0.00 0 with adult height in multiple populations (Lettre et al. 2008; Weedon et al.

2008; Wang et al. 2013).




chr4:97467886-97840259 NA 5.65 0.00 0

TIMD4 is a T-cell immunoglobulin gene known to be associated with
immune-related disorders, such as allergy and asthma (Li et al. 2014).
HAVCRI has been implicated in susceptibility to allergic asthma in both
mice and humans (Mclntire et al. 2003) and has been hypothesized to have
experienced both positive and balancing natural selection in the course of
primate evolution (Nakajima et al. 2005).

chr5:156183805-156461833 SGCD,PPPIR2P3,TIMD4,HAVCRI 4.85 0.00 0

S0X30 is a transcription factor involved in the regulation of embryonic
chr5:157044944-157310105 SOX30,C50rf52,THGIL,LSM11,CLINTI 5.49 1.00x10° 0.16 development, and its expression pattern is associated with testis
development in mice (Han et al. 2014

chr7:67145543-67233803 NA 4.57 0.00 0

chr7:152220265-152424951 XRCC2 3.77 0.00 0 XRCC2 is an immune-related gene (Sale et al. 2001)

chr8:35880031-36176084 NA 4.40

NCR3LG1 is a ligand for natural killer cell receptors and appears to play
3.68 0.00 0 an immunomodulatory role in response to pro-inflammatory cytokine
si; in

NCR3LG1,KCNJ11,ABCC8,USHIC,

chr11:17398742-17655840 070G

Matta et al. 2013).

HS3ST3B1 encodes a heparan sulphate enzyme that alters the binding of

sporozoite to hepatocytes and its subsequent development in mice infected

3.36 0.00 0 by the malaria parasite P. Berghei (Brisebarre et al. 2014).

Diaz et al. (2005) reported that COX10 knockout mice develop a slowly
rogressive myopathy.

CDRTI15P1,COX10-451,COX10,CDRT15,

chr17:13911228-14241158 HS3ST3BIMGCI2916




Table S4. Continued.

ch122:34224706-34359718 LARGE 539 0.00 0 Mutations in LARGE cause a form of congenital muscular dystrophy
(Longman et al. 2003).




Table S5. The 7 distinct genomic regions with the strongest evidence of Pygmy-specific signals of adaptation identified by G2D.

Position Gene Name Possible Associated Function G2D P-value FDR
chrl:179361049-179468857 AXDNDI Bone Synthesis 230x10°  1.82x10-° 023
chr1:183076845-183184161 LAMCI,LAMC?2 Ovary/ Rep“’d“;t(‘i‘;n Development, 5 ) 108 8.12x10%  0.20
chr1:219895606-220069861 RNUSF-1 1.80x10°  3.76x10%  0.15

chr3:57918877-58055004 FLNB Bone Synthesis 947x10>°  3.12x10° 0.3

‘ HLA-DOA, : 3 P
chr6:32968692-33049012 o [mmunity 2.60x10°  9.90x10 0.03
chr7:152201610-152337563 N/A 838x102  5.54x10*  0.17
chr19:12386669-12523799 NS AT O ik Sl Trrsmission. 16G<00 70907 008

ZNF442,ZNF799




Table S6. Three Gene Ontology gene sets that show the strongest evidence of polygenic adaptation in the Pygmy groups. P-values are from
a one-sided Mann-Whitney U test and Bonferroni corrected.
Name of gene set P-value Gene members (number of genes)
ANTIGEN BINDING 2.31x107 ALB, CDID, CHRNA7 DHCR24 FCNI,
FCN2, IGHA2, IGHGI, IGHG2, IGHGS3,
IGHG4, IGHM, IL7R, KIR2DL3 LAGS3,
LILRAI LILRA2 LILRA3 LILRB4 MSLN,
PPP2RIA PPP2RIB SLAMF1 SLC7A45
SLC7A8 SLC7A49 TAPBP, TOPORS (28)

G1 PHASE 1.75x10™" CDC23, CDC25C, CDC6, CDK10,

OF MITOTIC CELL CYCLE CDK2,CDK6, CDKNIC, E2F1, FOX0O4,
GFI11B, MAP3K11, TAFI, TBRG4 (13)

PATTERN RECOGNITION 5.04x10™" CD14, CLEC74, COLECI2 DMBTI,

RECEPTOR ACTIVITY MARCO, PGLYRPI, PGLYRP2, PGLYRP3,

PGLYRP4, TLR2 (10)
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