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Results 

Demographic model selection: using PSMC/MSMC 

We applied the pairwise sequentially Markovian coalescent (PSMC, Li and Durbin 2011) and 

multiple sequentially Markovian coalescent (MSMC, Schiffels and Durbin 2014) as  independent means 

to explore the demographic history of our populations (Materials and Methods). PSMC infers effective 

population size over time from a single diploid genome, while MSMC measures genetic separation of 

populations using relative cross coalescence rates between pairs of haplotypes from two populations. We 

applied both PSMC and MSMC to our quality-controlled intergenic data. The PSMC curves of the 

farmers begin to separate from those of the Pygmies roughly 100–200 kya (Figure S3A), suggesting that 

the ancestors of the farmers and Pygmies began differentiating from each other as early as 100–200 kya, 

consistent with the inferred divergence time in Model-1. The MSMC curves indicate declining genetic 

exchange between Pygmies and farmers ~40-60 kya, suggesting that these two populations may have 

diverged from each other at this time (Figure S3D-E). To test if Model-1 and Model-2 recapitulate the 

divergence times between farmers and Pygmies indicated by PSMC/MSMC, we applied both methods to 

simulated genomes under both models (Figure S3B-E). Under Model-1, the PSMC curves of the 

simulated Pygmy and farmer genomes split at about the same time as in the PSMC analysis of the real 

data (Figure S3B), while the two simulated populations of Model-2 do not show clear separation until 

~70 kya (Figure S3C). The MSMC curves of Model-1 and those of real data agree well, but Model-2 

seems to fit the MSMC curve from the real data poorly (Figure S3D-E). Interestingly, the divergence 

times indicated using MSMC differ from those we simulated, highlighting the complexity of interpreting 

MSMC results. Together, however, these results suggest that Model-1 qualitatively fits the data better, 

and the inferred ancient divergence time in Model-1 is plausible.  

 

 



Importance of controlling variation in mutation and recombination rates across the genome 

Methods for detecting natural selection often rely on summaries of local genetic variation, and 

they may be biased by variation in mutation rate across the genome (Reich et al. 2002; Drake et al. 2005; 

Schaffner et al. 2005; Sainudiin et al. 2007). For example, G2D values (Nielsen et al. 2009) are correlated 

with local genetic diversity (Pearson correlation 0.298, p<2.2x10-16, Figure S4). We addressed this by 

estimating and incorporating local mutation rate variation in our simulations (Materials and Methods), 

and our simulations can reproduce local genetic diversity in the real data (Pearson correlation=0.902, 

Figure S5). To assess whether mutation-rate heterogeneity could bias downstream inferences of selection, 

we compared results using two different sets of simulations under Model-1 to assign P-values. In the first 

set, the local mutation rate for each window was assigned to be the mean rate of the recombination decile 

to which that window belonged (Figure S6). In the second set, we estimated a local mutation rate for each 

window individually (Figure S7). The P-value distributions of G2D based on these two sets of 

simulations were calculated, and for both analyses we chose the top 0.5% windows in the P-value 

distributions as the top-hits. There is a clear shift to larger heterozygosity (estimated using !/base) for the 

top hits in the first simulation set (Figure S6A), compared with the second set (Figure S7A). As expected, 

the top hits in the first simulation set tended to be windows with larger numbers of variants, while the top 

hits from the second set were distributed across the whole range of observed heterozygosity across the 

genome (Figure S6B vs. Figure S7B). This suggests that incorrectly incorporating mutation rate 

variation in whole-genome simulations might lead to biases toward regions with unusually high mutation 

rate as candidates of natural selection.  

 The distribution of P-values was sensitive to the genetic recombination map used in the 

simulations (Figure S8). In particular, the distribution of G2D p-values using the African American map 

(Hinch et al. 2011) is shifted more toward p=1 than using the Yoruba HapMap map, suggesting that 

inference using the African American map would be more conservative (Figure S8). To avoid potential 

biases due to the choice of map and/or null model, we restricted our candidates to those that are top hits 

using all four combinations of the two recombination maps and the two best-fit demographic models. 



Because the P-value distributions based on the two null demographic models are highly correlated 

(Pearson correlation=0.984, p<2.2x10-16, Figure S9), and the analysis based on the African American 

map is more conservative, unless mentioned otherwise we report P-values and false discovery rates 

obtained using Model-1 and the African American map. 

 

Selection scan using iHS: bone synthesis and muscle-related candidates 

Among the candidates of our iHS scans for signals of selection, five loci contain genes 

associated with bone synthesis. Except EPHB1, which is discussed in details in the main text, the 

other four are SLCO2A1 (locus: chr3:133506737-133863702), ZBTB38 (locus: chr3:141105569-

141333249), TSPAN5 (locus: chr4:99496207-99673561), and GAREM (locus: chr18:29766032-

29896024). SLCO2A1 encodes a prostaglandin transporter protein, and mutations in this gene have been 

shown causing Primary Hypertrophic Osteoarthropathy, a rare genetic disease that affects both skin and 

bones (Zhang et al. 2012). ZBTB38 encodes a zinc finger transcriptional activator expressed in the brain, 

and has been associated with adult height in multiple populations (Lettre et al. 2008; Weedon et al. 2008; 

Wang et al. 2013). TSPAN5 is a member of the tetraspanin protein family and is up-regulated during 

osteoclast differentiation (Iwai et al. 2007); knockdown of its expression dramatically inhibits 

osteoclastogenesis in vitro (Iwai et al. 2007; Zhou et al. 2014), suggesting its regulatory role in bone 

development. GAREM is an adapter protein in intracellular signaling cascades and has recently been 

associated with human height in a whole-exome sequencing association study (Kim et al. 2012). A few 

large FST (" 0.2) non-synonymous amino acid substitutions were observed within these candidate regions, 

but they are not suggested as functionally important by SIFT (Kumar et al. 2009) or PolyPhen-2 

(Adzhubei et al. 2010). Regions near four out of these five genes, however, show high levels of 

differentiated SNVs in enhancer/Polycomb-repressed sequences, implying that Pygmy short stature might 

arise partly through cis-regulatory evolution (Figure S11). 



 In addition to OBSCN, two candidate loci also encompass muscle-related genes, COX10 (locus: 

chr17:13911228-14241158) and LARGE (locus: chr22:34224706-34359718). COX10 is a cytochrome c 

oxidase, and Diaz et al. (2005) reported that COX10 knockout mice develop a slowly progressive 

myopathy. LARGE is a member of the N-acetylglucosaminyltransferase gene family, and mutations in 

this gene cause a form of congenital muscular dystrophy (Longman et al. 2003). Interestingly, Andersen 

et al. (2012) recently found evidence that variants in LARGE might have been positively selected for the 

resistance of Lassa fever in Western African populations. 

 

Selection scan using G2D: reproduction and gene regulation-related candidates 

One of our G2D candidate regions (locus: chr1:183076845-183184161) includes the gene 

LAMC1, which plays a role in reproductive development. LAMC1 expression increases in bovine, pig, 

and rabbit basal lamina during follicular development (Irving-Rodgers and Rodgers 2005), and is also 

expressed in the human ovary (Berkholtz et al. 2006). A recent genome-wide association study reported 

that polymorphisms in LAMC1 are associated with an increased risk of premature ovarian failure, which 

is characterized as the cessation of ovarian function before the age of 40 and could result in amenorrhea 

and infertility (Pyun et al. 2012). Another interesting G2D candidate region (chr19:12386669-12523799) 

contains cell signal transmission genes, the ZNF genes, which encode proteins with KRAB and zinc-

finger domains. Genes in this protein family have been previously shown to be under positive selection in 

African Americans (Nielsen et al. 2005; Nielsen et al. 2009). It is unclear what phenotype these variants 

are associated with, but the role of ZNF442 in transcriptional binding activity suggests trans-regulatory 

evolution might play a role in the adaptation of Pygmies.  

 

 

 

 



Methods 

Using GRCh37/hg19 for read alignment 

Our genomes were assembled using the default Complete Genomics (CGI) analysis pipeline (v.1.10). 

Because CGI is currently not supporting GRCh38 (personal communication with the senior scientist Dr. 

Birgit Crain at CGI, E-mail date: 12.07.2015), our data was aligned according to GRCh37/hg19. 

According to the Genome Reference Consortium 

(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/info/index.shtml), the major improvements 

in GRCh38, compared to GRCh37/hg19, are in 1) providing alternative scaffolds to better represent 

complex regions (e.g. centromeres) in the genome; 2) closing/reducing the known gaps in the previous 

releases (sizes of gaps: ~234 Mb or 7.6% in GRCh37/hg19 and ~151Mb or 4.9% in GRCh38); 3) 

correcting assembly errors, particularly for complex regions, in the previous releases. While realigning 

our data to GRCh38 might yield more data in complex regions, we do not expect this will affect our 

conclusions, because we excluded most complex regions and known gaps from all of our analyses 

(Materials and Methods). 

 

Data quality control for genotype calls 

Before any quality control filters, 13,276,198 autosomal single nucleotide variants (SNVs) were called in 

our samples. Unless mentioned otherwise, we analyzed only variants that were 1) fully called across all 

samples, 2) not in any known or called indels, 3) not in any known or CGI called copy number variants, 4) 

not in any known segmental duplication regions, and 5) aligned against chimpanzee (PanTro3, Hg19). 

Databases used for steps 3, 4, and 5 were downloaded from UCSC Genome Browser in May 2013. We 

used Hg19 coordinates, using the UCSC Genome Browser liftOver program if necessary. After filtering, 

our data consist of 10,865,288 SNVs. 

 

Demographic inference using !a!i 



#a#i is a forward time simulator of allele frequency spectrum (AFS) based on a diffusion approximation 

(Kimura 1964). To ensure genotype quality for demographic inference using our sample, SNVs were 

removed if they overlapped with any known repetitive genomic regions based on the UCSC Genome 

Browser databases, Self Chain (if sequence identity > 0.9) and RepeatMasker. We also excluded sites that 

are within known copy number variants (CNVs; Database of Genomic Variants, as of May 2013) as well 

as the CGI called CNVs. Sites within genes or 1,000 flanking base pairs were excluded to minimize 

possible effects of natural selection. Coordinates of genes were from the RefSeq genes database, 

downloaded from the UCSC Genome Browser in May 2013. We used the remaining 1,575,394 SNVs 

from a total of 325,957,426 non-genic base pairs to build an unfolded AFS. Ancestral states were inferred 

using chimpanzee as the outgroup, using human-chimpanzee alignment (PanTro3, Hg19). The estimated 

sequence divergence between human and chimpanzee based on these non-genic sequences is 1.14%. We 

used the #a#i implementation of a context-dependent substitution model to statistically correct the 

unfolded AFS to mitigate possible biases due to ancestral state misidentification (Hernandez et al. 2007). 

To estimate demographic parameters, the derivative-based BFGS algorithm was used to optimize the 

composite log-likelihood.  

 To test if including sites within putatively functional non-genic regions could bias the AFS, SNPs 

within the top 12 strongest signals (i.e. not including the three types: 13_Heterochrom/low signal, 

14_Repetitive/CNV, 15_Repetitive/CNV) of ENCODE elements (Gerstein et al. 2012) were removed 

from our original non-genic data, resulting in a 20% reduction of the data (from ~1.5 millions to ~1.2 

millions). To quantitatively assess for deviations between the AFS of the two data sets, from the original 

data set we computationally generated 1,000 bootstraps (random sampling with replacement), in which 

each bootstrap has the same number of SNPs as in the ENCODE-filtered data set. For each entry in the 

AFS, we then assessed where the ENCODE-filtered data set was within the distribution of values 

obtained from the bootstraps of the original data (the third row of Figure S1). We found that the two AFS 

from the 1.5 millions and 1.2 millions SNPs are neither qualitatively nor quantitatively different 



(Supporting Materials, Figure S1). Thus, we expect that using the ENCODE-filtered AFS will not change 

any of our conclusions of demographic inference. 

 

Haplotype phasing 

Haplotype phasing was done using BEAGLE v3.1.1 (Browning and Browning 2007). To enhance phasing 

accuracy, we included two additional public pygmy genomes, a Bakola and a Bedzen genome (CGI 

Assembly Pipeline 1.10, CGA Tools 1.4) from Lachance et al. (2012), into our genome sample. In order 

to obtain population-specific phased haplotypes for the Pygmies, we first constructed a scaffold for each 

chromosome using the 36 SNP-chip samples, including 16 Biaka Pygmies genotyped by the Human 

Genome Diversity Project (HGDP, Li et al. 2008, Illumina 650 K), and 10 Baka and 10 Bakola Pygmies 

genotyped by the Hammer lab of the University of Arizona (Affymatrix Axiom 500K). The 9 Pygmy 

genomes were then phased using BEAGLE, with the pre-phased scaffold as the reference. The 9 Yoruba 

genomes were phased separately using the same framework, together with an additional 4 Luhya genomes 

from the CGI public data repository. The scaffold for the Yoruba genomes consisted of genotype data for 

81 Yoruba and 86 Luhya samples from the 1000 Genomes Project and 21 Yoruba and 10 Luhya samples 

from the HGDP. All of these samples were determined to be unrelated using the identical-by-descent 

operation in PLINK (Purcell et al. 2007). All positions were converted into Hg19 coordinates using the 

UCSC LiftOver utility if necessary.  

 

Haplotype and diplotype analyses 

Hierarchical clustering for both haplotype and diplotype data was performed using the R function “hclust” 

in the stats package (R Development Core Team, 2012). We used the R package pegas (v.0.6, Paradis 

2010) to plot haplotype network, using pairwise nucleotide differences as the distance matrix. 

 

ENCODE regulatory elements 



We downloaded the ENCODE (Gerstein et al. 2012) database (wgEncodeBroadHmmHsmmHMM) using 

the UCSC Genome Browser in February 2014. We used the five most reliable functional categories: 

Active Promoter (state 1), Strong Enhancer (states 4 and 5), Insulator (state 8), and Polycomb-repressed 

(state 12). This yielded 134,769 regulatory elements. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figures 
 

 
Figure S1. Evaluation of the possible effect of including ENCODE functional elements on the allele 
frequency spectrum (AFS). Top row: the 2-population marginal AFS of original 1.58 million intergenic 
SNPs, scaled to match the number of SNPS in the ENCODE-filtered subset. The middle row: the 2-
population marginal AFS of the ENCODE-filtered 1.2 million intergenic SNPs, after excluding the three 
lowest signals among the ENCODE elements (13_Heterochrom/low signal, 14_Repetitive/CNV, 
15_Repetitive/CNV). Bottom row: location of each entry of the ENCODE-filter AFS in the distribution of 
values from 1,000 bootstraps, each of which had 1.2 million SNPs sampled from the original intergenic 
data set.  
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Figure S2. Decay of linkage disequilibrium in Pygmies and farmers in real and simulated data. 
Simulations are based on 100 models drawn from the confidence intervals of the parameter estimates for 
each of the two best-fit models. LD is estimated using correlation coefficient (r2) between pairs of 
variants in 0.1 cM windows across the whole genome. (A) The Pygmies; (B) the Yoruba farmers. 
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Figure S3. PSMC and MSMC analyses. (A) We performed PSMC (Li and Durbin 2011) analysis on the 
whole genome samples of the farmer and Pygmy populations. Each line represents a genome, plotted as 
the evolution of effective population size against time. The number inside parentheses in the legend 
indicates the sample size in each population. (B-C) PSMC analysis using simulated genomes: Model-1, 
the continuous asymmetric gene flow (B), Model-2, the single pulse admixture model (C). Red lines are 
the farmer population (Yoruba), and the green and blue lines are the two Pygmy groups (Baka and Biaka). 
(D) The MSMC (Schiffels and Durbin 2014) results for two random pairs of Biaka-Yoruba (blue solid 
lines) and of Baka-Yoruba (green solid lines), one random pair for simulated Biaka-Yoruba and Baka-
Yoruba genomes from Model-1 (dash lines) and Model-2 (dot lines). Curves are plotted on a logarithm 
scale on x-axis. (E) The same results from (D), but plotted on an regular scale. 



 

 
 
Figure S4. Dependency of G2D statistic on local heterozygosity. Each point represents a window with 
500 SNVs. Red dashed line shows the result of a linear regression. Correlation is Pearson’s correlation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure S5. Correlation of per-base ! (Watterson’s estimator) between windows in real and 
simulated whole-genome data. Window are defined as in our selection scans. Pearson correlation is 
0.902. 
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Figure S6. Biased distribution of candidates for selection (top 0.5% in P-value distribution) with 
respect to local mutational heterogeneity. The mutation parameter of each window in the simulation is 
assigned to be the mean rate of the recombination decile to which that window belonged. Each subpanel 
shows one of the 10 recombination rate deciles. (A) A clear shift to larger heterozygosity for the top hits 
under this simulation design. (B) The top hits (red vertical lines) tended to be windows with larger 
numbers of variants. 
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Figure S7. Unbiased distribution of candidates for selection (top 0.5% in P-value distribution) with 
respect to local mutational heterogeneity. The mutation parameter of each window in the simulation 
matches its local mutation rate. (A) No clear shift in heterozygosity for the top hits under this simulation 
design. (B) The top hits were distributed across the whole range of observed heterozygosity across the 
genome. 
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Figure S8. Dependence of top-hits in P-value approach on genetic recombination map used in 
simulations. (A) Shown are the P-values for windows simulated using the per-window mutation-rate 
estimation approach under Model-1 (AsymModel), but with two different published genetic 
recombination maps: AAmap: African American genetic recombination map (Hinch et al. 2011), 
HapMapYRI: Yoruba HapMap genetic recombination map (The International HapMap Consortium 
2007). (B) Zoom in to the bottom-left corner of (A). Black and purple lines indicate the top 0.5% and 1% 
cutoff in P-value distributions. Only windows in Quadrant-III are robust to the choice of genetic 
recombination map. The color scheme represents the density of the windows on the plot. Similar results 
hold for simulations under Model-2 and for iHS as well 

III



 
 
Figure S9. Correlation between P-values under our two best-fit models. Each point is a window of 
500 SNVs and color represents the density of the points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S10. Importance of using P-values to define candidates in the iHS analysis. Each point is a 
window of 500 single nucleotide variants, and color represents the density of points. The vertical black 
line and the horizontal purple line are the top 0.5% significance cutoffs for the G2D and P-value 
distributions, respectively. Windows in Quadrant I are outliers in the iHS distribution but are not 
statistically significant when the effects of demography and genome architecture are controlled for. In 
Quadrant III are the many windows that are statistically significant even though their iHS values are 
modest. Cross marks (x) represent those Pygmy specific top-hits as discussed in the main text. 

 
 
 



 
Figure S11. Elevated population differentiation (FST) in ENCODE regulatory element sequences in four candidate loci containing several 
bone-synthesis related genes. Each panel is titled by the bone-synthesis related gene. Green symbols indicate SNPs residing in ENCODE 
elements, while red symbols are variants within protein coding sequences. 
 
 
 
 



 

 
Figure S12. Genome-wide Manhattan plot of the G2D statistic. Each dot is a window of 500 single 
nucleotide variants. The dashed line represents the top 0.5% of the outlier threshold of the G2D statistic. 
Red dots are the candidates selected using the P-value approach (consensus windows based on the two 
best-fit demographic models). Most of chromosome 9 was masked by our quality control filters. 
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Figure S13. Candidate region of HLA-DPA1 (chr6: 33.03-33.05 Mb) in the farmer and Pygmy samples. Columns are SNPs and rows are 
individual diploid-types. Light grey, dark grey, and black represent homozygous ancestral (Hom. ancestral), heterozygous (Het.), and homozygous 
derived (Hom. derived) genotypes. 
 
 
 
 



 
 
 
 
 

 
Figure S14. Elevated population differentiation (FST) in ENCODE regulatory element sequences the candidate locus around the gene 
bone-synthesis related gene FLNB. Green symbols indicate SNPs residing in ENCODE elements, while red symbols are variants within protein 
coding sequences. 
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Table S1. Primary models evaluated during demographic inference using !a!i (Gutenkunst et al. 2009). Parameter !a is 4Naµ, 
where µ=2.35x10-8 per site per generation (Gutenkunst et al. 2009), N is effective population size, T is the time of a demographic 
event (in units of 2Na generations, where Na is the ancestral effective population size), m is migration rate (in units of 2Na), and f is 
admixture proportion. Events that occur at the same time are noted using “/”; otherwise, in our optimization procedure, the order of 
time parameters for the divergence and gene flow events is not fixed in a model. Note that we did not choose Model-5 over Model-2, 
even though Model-5 has a better log-likelihood than Model-2, because Model-5 is a special case of Model-1. 
 

Model Parameter: estimate Log-likelihood Optimization 
Model-1 

 

(10 parameters)  -6712 All converged. 

!a: 206127 Tsplit-PF: 0.46 
Nep: 3.02 Tmig-PF: 0.115 
NF: 1.76 Tsplit-P: 0.015 
NP: 0.86 mFP: 1.22 
Tep: 0.655 mPF: 11.9 

Model-2 

 

(9 parameters)  -7737 All converged. 

!a: 206375 Tsplit-PF: 0.266 
Nep: 2.26 Tadmixture: 0.021 
NF: 2.05 Tsplit-P: 0.012 
NP: 0.79 fadmixture: 0.6799 
Tep: 0.686  

 

Yo
ru

ba
 

B
ak

a 
B

ia
ka

 
Na 

NP 

Tsplit-PF 

Tmig-PF 

NF 

Nep 

Tep 
mFP 

mPF 

Tsplit-P 

NP 

NP 

Yo
ru

ba
 

B
ak

a 
B

ia
ka

 

Na 

NP 

Tsplit-PF 
Tadmixture 

NF 

Nep 

Tep 

Tsplit-P 

NP 

NP 

fadmixture 



Model Parameter: estimate Log-likelihood Optimization 
Model-3 

 

(7 parameters)  -11877 All converged. 

!a: 207003 Tep: 0.668 
Nep: 2.62 Tsplit-PF: 0.048 
NF: 1.27 Tsplit-P: 0.019 
NP: 1.35  

Model-4 

 

(8 parameters)  -10978 All converged. 

!a: 206264 NP: 1.31 
Nep: 2.63 Tep: 0.677 
NF1: 0.64 Tsplit-PF: 0.047 
NF2: 44.56 Tsplit-P: 0.021 
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Model Parameter: estimate Log-
likelihood 

Optimization 

Model-5 

 

(10 parameters)  -7437 All converged. 

!a: 208385 Tep: 0.617 
Nep: 3.08 Tsplit-PF: 0.147 
NF1: 1.10 Tsplit-P/migration: 0.024 
NF2: 2.90 MFP: 1.73 
NP: 0.97 MPF: 22.36 

Model-6 

 

(12 parameters)  -6532 *: Parameter that 
did not converge. 
 

!a: 206308 Tsplit-PF: *0.3765 – 0.3785 
Nep: *9.8 – 21.9 TF2: *0.1265 – 0.1285 
NF1: 1.47 Tmig-PF: *0.0165 – 0.0185 
NF2: *5.0 – 7.1 Tsplit-P: 0.016 
NP: 0.95 MFP: 1.36 
Tep: *0.58 – 0.63 MPF: 10.64 
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Model Parameter: estimate Log-
likelihood 

Optimization 

Model-7 

 

(9 parameters)  -8085 *: Parameter that 
did not converge. 
 

!a: 206054 Tep: 0.677 
Nep: 2.63 Tsplit-PF: 0.127 
NF1: 1.42 Tsplit-P/admixture/F2: 0.016 
NF2: *41 - 45 fadmixture: 0.399 
NP: 1.06  

Model-8 

 

(12 parameters)  -10837 *: Parameter that 
did not converge. 
 
Also note that 
the estimates for 
Tsplit-P/F2 and 
Tadmixture are the 
same, suggesting 
these events 
occurred at the 
same time. 

!a: 206311 Tep: *0.768 – 0.868 
Nep: 2.66 Tsplit-PF: *0.153 – 0.253 
NF1: 0.58 Tsplit-P/F2: *0.126 – 0.246 
NF2: *40 - 42 Tadmixture: *0.126 – 0.246 
NP: 1.25 fadmixture: 0.116 
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Table S2. Refitting the two candidate models with thinned data set.  In the thinned data set, the polymorphisms are at least 0.01 cM apart from 
each other. Information criteria, AIC and BIC, were calculated for each of the two best-fit models. Model-1 is preferable over Model-2 using both 
AIC and BIC methods. 

Model 
(# parameters) 

Log likelihood 
(full data set) 

Log likelihood 
(thinned data set) AIC BIC 

Model-1, continuous gene flow (10) -6712 -2803 5624 5669 

Model-2, single pulse admixture (9) -7737 -2851 5718 5758 

 
 
 
 
 
Table S3. Overlap of selection candidates (top 0.5% in P-value distribution) with functional loci (i.e. protein-coding and ENCODE 
sequences). Enrichment of top-hit windows was found in genes, but not in ENCODE elements. P-values are calculated based simulations of 
Model-1 with the African American genetic recombination map. Similar results hold for the other three simulation conditions. 

 Non-exon Exon Non-ENCODE ENCODE 

Significant 117 275 62 330 

Non-significant 29392 55766 12865 72293 

P-value 
(one-sided Fisher Exact Test) 0.029* 0.682 

 



Table S4. The 35 distinct genomic regions with the strongest evidence of Pygmy-specific signals of adaptation identified by iHS. For each 
locus, the third column, max(|iHS|), indicates the maximum iHS score among the variants inside the locus. 

Locus Gene Name(s) max(|iHS|) P value FDR Notes 
chr1:97708629-97876524 DPYD,DPYD-AS1 4.64 1.00x10-3 0.16  

chr1:151752870-152059462 
TDRKH,LINGO4,RORC,C2CD4D, 
LOC100132111,THEM5,THEM4, 
S100A10,NBPF18P,S100A11,TCHHL1 

4.62 0.00 0 S100A10 is an regulatory element of innate immunity (Han et al. 2012). 

chr1:154382442-154782105 IL6R,SHE,TDRD10,UBE2Q1,CHRNB2, 
ADAR,KCNN3 5.36 0.00 0 

IL6R encodes an interleukin receptor, associated with inflammatory 
diseases, such as rheumatoid arthritis and asthma; (Briso et al. 2008). 
ADAR involves A-to-I RNA editing and acts as an antiviral gene 
(Haralambieva et al. 2011). 
TDRD10 is a member of methylarginine-binding proteins that have 
enriched expression in the germ line and are strongly associated with 
gametogenesis (Chen et al. 2011). 

chr1:226265661-226580188 ACBD3,MIXL1,LIN9,PARP1 4.99 0.00 0 ACBD3 is a Golgi-resident protein involved in hormone-induced steroid 
biosynthesis in testicular Leydig cells (Fan and Papadopoulos 2013). 

chr1:226865560-227209786 ITPKB,PSEN2,ADCK3,CDC42BPA 5.16 0.00 0 ITPKB, Inositol-trisphosphate 3-kinase B, which plays an active role in 
innate immune system (Sauer and Cooke 2010). 

chr1:228103665-228842760 

WNT9A,MIR5008,WNT3A,ARF1, 
MIR3620,C1orf35,MRPL55,GUK1,GJC2, 
IBA57AS1,IBA57,C1orf145,OBSCN, 
TRIM11,MIR6742,TRIM17,HIST3H3, 
HIST3H2A,HIST3H2BB,MIR4666A, 
RNF187,BTNL10,RHOU,DUSP5P1 

5.11 0.00 0 OBSCN is an obscurin gene and has an important role in the organization 
of myofibrils. 

chr2:60242061-60398137 NA 5.10 0.00 0  

chr2:72210353-72344610 NA 4.93 0.00 0  

chr2:213722832-214136943 MIR4776-2,MIR4776-1,IKZF2 4.56 0.00 0 IKZF2 is a hematopoietic-specific transcription factor involved in the 
regulation of lymphocyte development (Stanic et al. 2014). 

chr2:236917302-237037341 AGAP1 4.96 1.00x10-3 0.16  

chr3:10080721-10242712 FANCD2,FANCD2OS,BRK1,VHL,IRAK2 5.00 1.00x10-3 0.16  

chr3:10285605-10695444 TATDN2,GHRLOS,LINC00852,GHRL, 
SEC13,ATP2B2,MIR885 5.00 0.00 0  

chr3:111396224-111555201 PLCXD2,PHLDB2 5.53 0.00 0  

chr3:133506737-133863702 SRPRB,RAB6B,C3orf36,SLCO2A1 4.59 0.00 0 
SLCO2A1 encodes a prostaglandin transporter protein, and mutations in 
this gene have been shown causing a rare genetic disease that affects both 
skin and bones (Zhang et al. 2012) 

chr3:134572433-134716365 EPHB1 4.44 0.00 0 EPHB1 is an Ephrin receptor at sites of osteogenesis. 

chr3:141105569-141333249 ZBTB38,RASA2 4.86 0.00 0 
ZBTB38 encodes a zinc finger transcriptional activator has been associated 
with adult height in multiple populations (Lettre et al. 2008; Weedon et al. 
2008; Wang et al. 2013). 



Table S4. Continued.     

chr4:97467886-97840259 NA 5.65 0.00 0  

chr4:99496207-99673561 TSPAN5 3.50 0.00 0 TSPAN5 is a member of the tetraspanin protein family and is up-regulated 
during osteoclast differentiation (Iwai et al. 2007). 

chr5:156183805-156461833 SGCD,PPP1R2P3,TIMD4,HAVCR1 4.85 0.00 0 

TIMD4 is a T-cell immunoglobulin gene known to be associated with 
immune-related disorders, such as allergy and asthma (Li et al. 2014). 
HAVCR1 has been implicated in susceptibility to allergic asthma in both 
mice and humans (McIntire et al. 2003) and has been hypothesized to have 
experienced both positive and balancing natural selection in the course of 
primate evolution (Nakajima et al. 2005). 

chr5:156595169-156722896 ITK,CYFIP2 5.04 1.00x10-3 0.16  

chr5:157044944-157310105 SOX30,C5orf52,THG1L,LSM11,CLINT1 5.49 1.00x10-3 0.16 
SOX30 is a transcription factor involved in the regulation of embryonic 
development, and its expression pattern is associated with testis 
development in mice (Han et al. 2014) 

chr7:10943346-11263539 NDUFA4,PHF14 3.72 0.00 0  

chr7:67145543-67233803 NA 4.57 0.00 0  

chr7:151529659-151654789 PRKAG2,PRKAG2-AS1,GALNTL5 4.21 0.00 0 
GALNTL5 is an essential functional molecule for sperm development, and 
the GALNTL5 mutation may cause human asthenozoospermia (Takasaki 
et al. 2014) 

chr7:152220265-152424951 XRCC2 3.77 0.00 0 XRCC2 is an immune-related gene (Sale et al. 2001) 

chr8:35242514-35469684 UNC5D 5.40 0.00 0  

chr8:35880031-36176084 NA 4.40 0.00 0  

chr8:37377237-37712337 ZNF703,ERLIN2,LOC728024,PROSC, 
GPR124,BRF2 5.08 0.00 0 GPR124 an immune-related gene (Fredriksson et al. 2003) 

chr11:17398742-17655840 NCR3LG1,KCNJ11,ABCC8,USH1C, 
OTOG 3.68 0.00 0 

NCR3LG1 is a ligand for natural killer cell receptors and appears to play 
an immunomodulatory role in response to pro-inflammatory cytokine 
signaling (Matta et al. 2013). 

chr14:76694616-76974036 ESRRB 5.04 0.00 0 
The gene product of ESRRB is similar to the estrogen receptor. Its function 
is unknown; however, a similar protein in mouse plays an essential role in 
placental development; (Luo et al. 1997) 

chr17:13911228-14241158 CDRT15P1,COX10-AS1,COX10,CDRT15, 
HS3ST3B1,MGC12916 3.36 0.00 0 

HS3ST3B1 encodes a heparan sulphate enzyme that alters the binding of 
sporozoite to hepatocytes and its subsequent development in mice infected 
by the malaria parasite P. Berghei (Brisebarre et al. 2014). 
Diaz et al. (2005) reported that COX10 knockout mice develop a slowly 
progressive myopathy. 

chr18:29766032-29896024 MEP1B,GAREM 4.58 0.00 0 

MEP1B encodes the subunit of Meprins, a multidomain zinc 
metalloprotease that has been implicated in intestinal inflammation 
(Claudia and Christoph 2013). 
GAREM is an adapter protein in intracellular signaling cascades and has 
recently been associated with human height in a whole-exome sequencing 
association study (Kim et al. 2012). 



Table S4. Continued.     

chr21:23493685-23662959 NA 4.23 0.00 0  

chr22:34224706-34359718 LARGE 5.39 0.00 0 Mutations in LARGE cause a form of congenital muscular dystrophy 
(Longman et al. 2003). 

chr22:39290370-39477973 
APOBEC3A_B,APOBEC3A,APOBEC3B,
APOBEC3BAS1,APOBEC3C,APOBEC3, 
APOBEC3F,APOBEC3G 

3.99 1.00x10-3 0.16 
The APOBEC cluster includes seven related genes that play a role in 
immunity, especially against retroviruses such as HIV-1 and SIV (Bogerd 
et al. 2006). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
Table S5. The 7 distinct genomic regions with the strongest evidence of Pygmy-specific signals of adaptation identified by G2D. 

Position Gene Name Possible Associated Function G2D P-value FDR 
chr1:179361049-179468857 AXDND1 Bone Synthesis 2.30x103 1.82x10-3 0.23 

chr1:183076845-183184161 LAMC1,LAMC2 Ovary/Reproduction Development, 
skin 3.02x103 8.12x10-4 0.20 

chr1:219895606-220069861 RNU5F-1  1.80x103 3.76x10-4 0.15 
chr3:57918877-58055004 FLNB Bone Synthesis 9.47x102 3.12x10-3 0.23 

chr6:32968692-33049012 HLA-DOA, 
HLA-DPA1,HLA-DPB1 Immunity 2.60x103 9.90x10-6 0.03 

chr7:152201610-152337563 N/A   8.38x102 5.54x10-4 0.17 

chr19:12386669-12523799 ZNF44,ZNF563, 
ZNF442,ZNF799 Cellular Signaling Transmission 1.66x103 7.92x10-5 0.09 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Table S6. Three Gene Ontology gene sets that show the strongest evidence of polygenic adaptation in the Pygmy groups. P-values are from 
a one-sided Mann-Whitney U test and Bonferroni corrected. 

Name of gene set  P-value Gene members (number of genes) 
ANTIGEN BINDING 2.31x10-25 ALB, CD1D, CHRNA7  DHCR24  FCN1,  

FCN2,  IGHA2, IGHG1, IGHG2, IGHG3, 
IGHG4, IGHM,  IL7R,  KIR2DL3 LAG3,  
LILRA1  LILRA2  LILRA3  LILRB4  MSLN,  
PPP2R1A PPP2R1B SLAMF1  SLC7A5  
SLC7A8  SLC7A9  TAPBP, TOPORS (28) 

G1 PHASE  
OF MITOTIC CELL CYCLE 

1.75x10-19 CDC23, CDC25C, CDC6, CDK10, 
CDK2,CDK6, CDKN1C, E2F1, FOXO4, 
GFI1B, MAP3K11, TAF1, TBRG4 (13) 

PATTERN RECOGNITION 
RECEPTOR ACTIVITY 

5.04x10-14 CD14, CLEC7A, COLEC12 DMBT1, 
MARCO, PGLYRP1, PGLYRP2, PGLYRP3, 
PGLYRP4, TLR2 (10) 
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